RW impedance and CBI

FCC Booster

Ali Rajabi Rome, 13 November, 2023

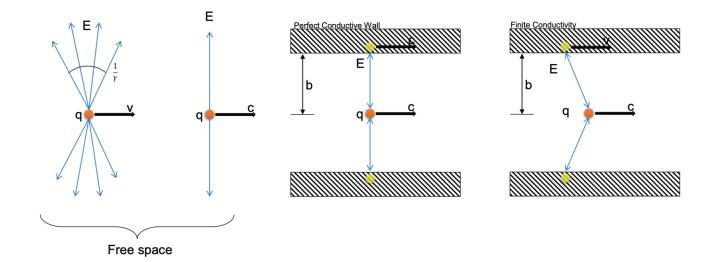
HELMHOLTZ

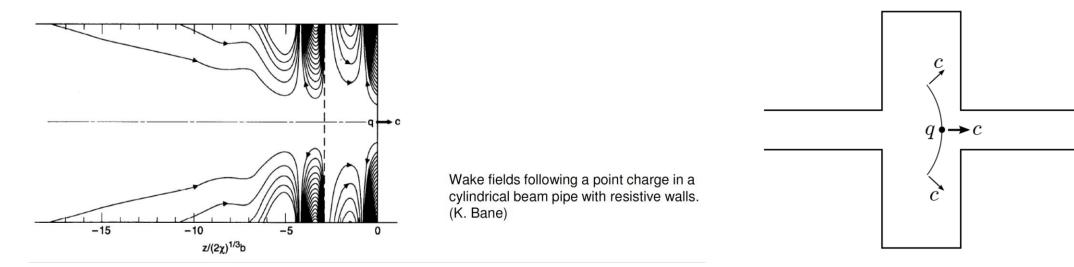
This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 951754

Table of content

Collective Effects and Instabilities

- **1** Collective Effects
 - 1. Introduction
 - 2. Resistive wall impedance
 - 3. VACI CODE
 - 4. Results

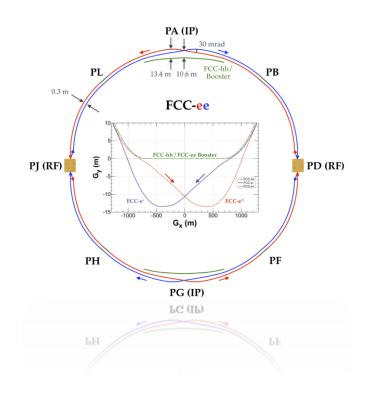

- 2 Instabilities
 - 1. Introduction
 - 2. Single-Bunch
 - 3. Multi-bunch


Collective Effects

Introduction

What are collective effects?

- Interactions between particles within a beam are generally known as collective effects
 - 1. Incoherent
 - ✤ Space-charge
 - ✤ Scattering
 - 2. Coherent
 - ✤ Wake-fields



Source of Impedance in the Ring

FCC Rings (old parameters, CDR)

- Beam pipes (Resistive Wall Impedance, ~92 km)
- RF Cavities (No. 56 in a 4-cell array)
- RF Cavity Tapers (No. 14 double tapers)
- Synchrotron Radiation Absorbers
- Collimators (No. 20)
- BPMs (No. 4000)
- Bellows (No. 8000)

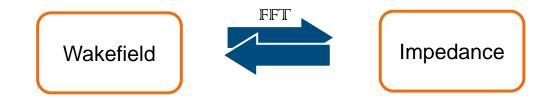
Wake-field

Maxwell's equation

A is the ring area

 $\boldsymbol{\theta}$ is the angle distribution of electrons around the ring

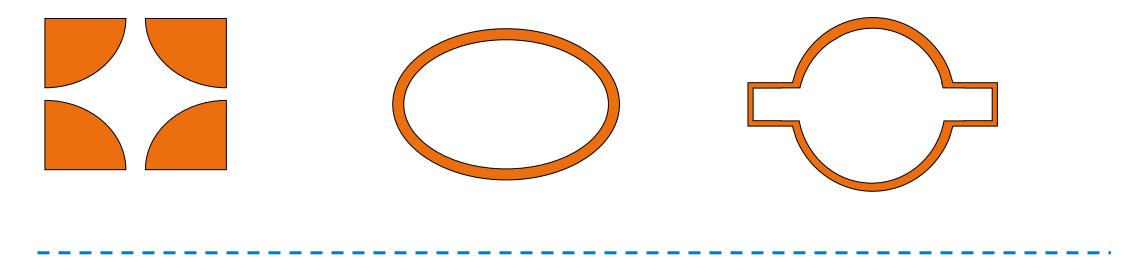
Resistive wall wake-field


Simple Geometries

$$E_{s} = -\frac{16q}{4\pi\varepsilon_{0}b^{2}} \left(\frac{e^{u}}{3}\cos(\sqrt{3}u) - \frac{\sqrt{2}}{\pi}\int_{0}^{\infty}\frac{x^{2}e^{ux^{2}}}{x^{6}+8}\,dx\right), \quad (14.114)$$

$$E_{r} = cB_{\theta} = \frac{8qr}{4\pi\varepsilon_{0}b^{3}\xi^{2/3}} \times \left(\frac{e^{u}}{3}\cos(\sqrt{3}u) - \frac{e^{u}}{\sqrt{3}}\sin(\sqrt{3}u) - \frac{\sqrt{2}}{\pi}\int_{0}^{\infty}\frac{x^{4}e^{ux^{2}}}{x^{6}+8}\,dx\right), \quad (14.115)$$

$$u = \frac{z}{b\xi^{2/3}}.$$
 (14.116)


δ_{skin}

Wolski, A. (2023). Beam Dynamics in High Energy Particle Accelerators 2nd Edition

DESY. | Resistive wall impedance | Ali Rajabi, 13.11.2023 | Rome

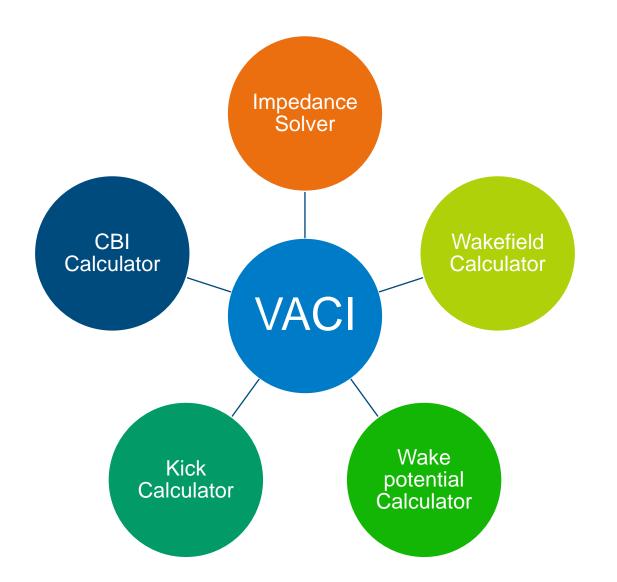
Resistive wall wake-field

General Geometries

Simulation Codes

CST GDFIDL IW2D BeamImpedance2D

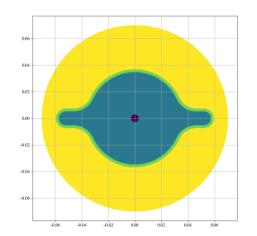
VACI

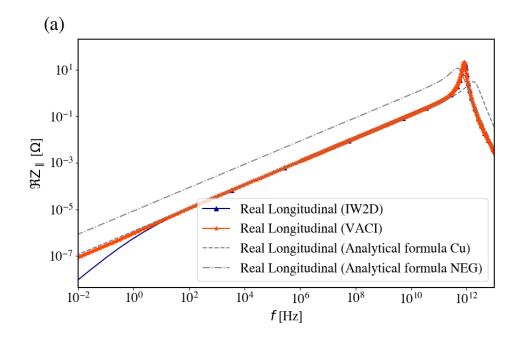

VACI Suite

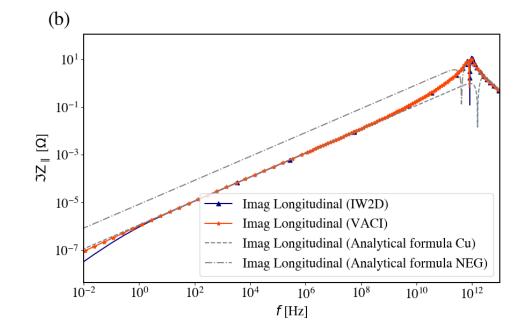
A versatile tool for calculating the RW impedance in arbitrary pipe cross-sections

| Resistive wall impedance | Ali Rajabi, 13.11.2023 | Rome

VACI Suite

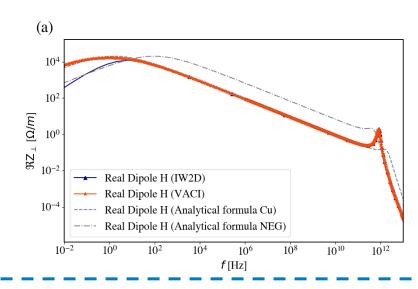

Modules

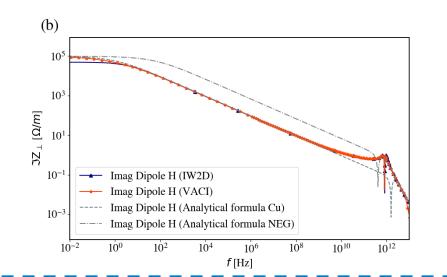


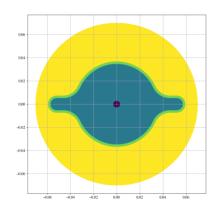

FCC main Ring

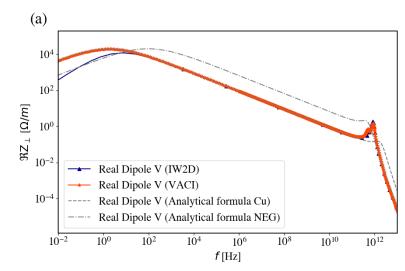
Monopolar Impedance

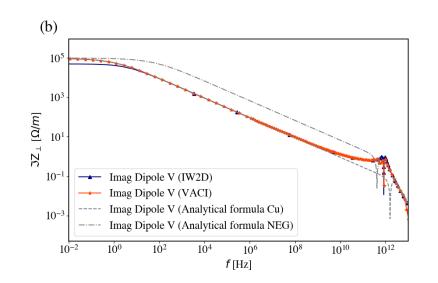
E -> 45.6 GeV Pipe -> Cu (5.96e7 S/m) NEG -> 1e6 (S/m) R -> 35 mm

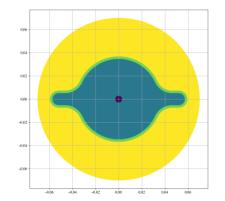


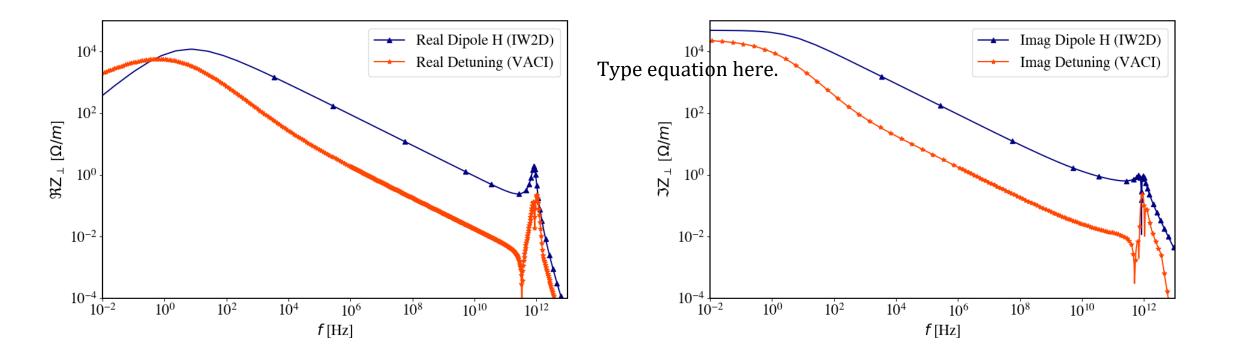


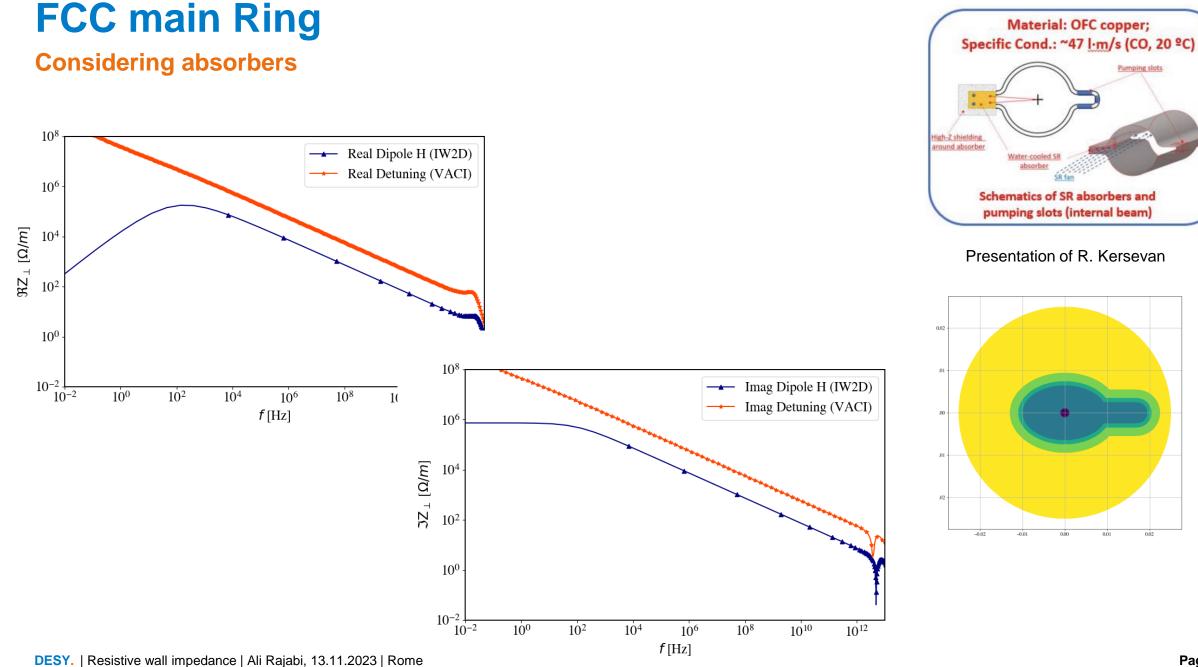



FCC main Ring


Dipolar Impedance

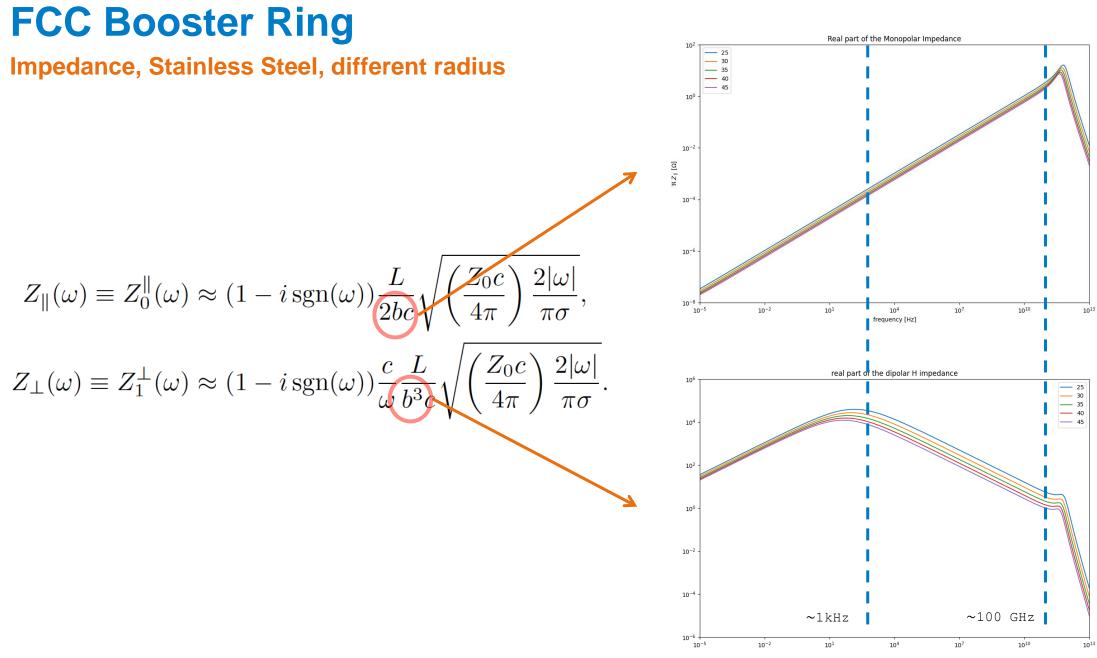





FCC main Ring

Detuning Impedance

$$W_x = x_s W_x^{dip} + x_w W_x^{det}$$


Pumping slots High-Z shielding around absorber absorber SR far Schematics of SR absorbers and pumping slots (internal beam) Presentation of R. Kersevan

-00

0.00

Material: OFC copper;

0.02

Instabilities

Introduction

Classification of beam instabilities

- Single-Bunch instabilities
 - Longitudinal single bunch collective effects
 - 1. Short-range longitudinal wakefields and broadband impedance
 - 2. Potential well distortion
 - 3. Longitudinal microwave instability
 - 4. Measurements
 - 5. CSR microbunching instability
 - Transverse single bunch collective effects
 - 1. Short-range transverse wakefields and broadband impedance
 - 2. Head-tail modes (e.g. TMCI) and chromaticity
 - 3. Measurements
 - 4. Damping with feedback
 - Intrabeam (IBS) and Touschek scattering

- Multi-bunch instabilitie
 - Longitudinal Multibunch collective effects and cures
 - 1. Longitudinal coupled bunch instabilities
 - 2. Measurements
 - 3. Passive cures
 - 4. The Robinson Instability
 - 5. Harmonic RF systems
 - 6. Feedback systems
 - Transverse multibunch collective effects and cures
 - 1. Transverse coupled bunch instabilities
 - 2. Measurements
 - 3. Passive cures
 - 4. Feedback systems
 - Beam-Ion instabilities
 - Electron cloud instabilities

Transverse coupled bunch instabilities

Due to RW impedance

$$\begin{aligned} \frac{d^2 x_n}{dt^2} + \omega_\beta^2 x_n &= \frac{F_x}{\gamma_0 m N_b} \\ F_x &= -\frac{(qN_b)^2}{C_0} \sum_{k=0}^\infty \sum_{n'=0}^{n_b-1} W_1(z) \, x_{n'} \left(t + \frac{z}{c}\right) \\ z &= -\frac{(n'-n)}{n_b} C_0 - kC_0 \end{aligned}$$

$$\omega_{\beta}^2 - \Omega_{\mu}^2 = -\frac{q^2 N_b c^2}{E_0 C_0} \sum_{k=-\infty}^{\infty} \sum_{n'=0}^{n_b-1} W_1(z) e^{2\pi i \mu (n'-n)/n_b} e^{-i\Omega_{\mu} z/c}$$

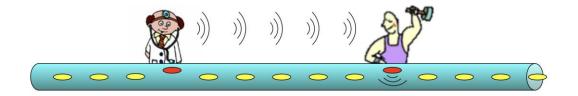
$$\mu = 7 \quad \frac{\varphi_{1}}{\sqrt{2}} \quad \frac{\varphi_{1}}{\sqrt{2}$$

Transverse coupled bunch instabilities

Due to RW impedance

$$\omega_{\beta}^{2} - \Omega_{\mu}^{2} = -\frac{q^{2}N_{b}c^{2}}{E_{0}C_{0}} \sum_{k=-\infty}^{\infty} \sum_{n'=0}^{n_{b}-1} W_{1}(z)e^{2\pi i\mu(n'-n)/n_{b}}e^{-i\Omega_{\mu}z/c}$$

$$\Omega_{\mu} - \omega_{\beta} = -i\frac{4\pi}{Z_0c}\frac{n_b N_b r_0 \omega_0 c}{8\pi^2 \gamma_0 \nu_x} \sum_{p=-\infty}^{\infty} Z_1^{\perp}(\omega_{\beta} + (\mu - n_b p)\omega_0) \qquad n_b p = \frac{\Omega_{\mu} - \omega_p}{\omega_0} + \mu \qquad \nu_x = \omega_{\beta}/\omega_0$$


$$\mu - n_b p = -int(\nu_x) - 1 \qquad \qquad \frac{1}{\tau} = Im(\Omega_\mu) = \frac{n_b N_b r_0 c}{4\pi^2 \gamma_0 \nu_x b^3} \sqrt{\left(\frac{4\pi}{Z_0 c}\right) \frac{cC_0}{\sigma} \frac{1}{\sqrt{1 - frac(\nu_x)}}}$$

Transverse coupled bunch instabilities

Due to RW impedance

$$\frac{1}{\tau} = \operatorname{Im}(\Omega_{\mu}) = \frac{n_b N_b r_0 c}{4\pi^2 \gamma_0 \nu_x b^3} \sqrt{\left(\frac{4\pi}{Z_0 c}\right) \frac{cC_0}{\sigma}} \frac{1}{\sqrt{1 - \operatorname{frac}(\nu_x)}}$$

- Growth rate for transverse resistive wall CBI depends:
 - Strongly on the beam pipe radius $\propto 1/b^3$
 - Weakly on the conductivity $\propto \sqrt{1/\sigma}$
 - Therefore, replacing the booster's beam pipe from copper (or stainless steel with a copper coating) to stainless steel, wherein we need to augment the beam pipe radius to offset the effects of TMCI, would be advantageous for CBI

Courtesy: Marco Lonza

Outlooks

Beam Dynamics with XSuite

- Impedance budget of booster ring (with Mauro Migliorati and Adnan Ghribi)
- TMCI for the main and booster rings with Xsuite (One turn Matrix)
- Distributed Wakefields and physical apertures with local wakefields (maybe, full Ring)
- Intrabeam scattering
- Multibunch tracking
- Feedback system
- Ramp-up

Thank you

Contact

Ali Rajabi Deutsches Elektronen-Synchrotron DESY

www.desy.de

Ali.rajabi@desy.de

+49 40 8998 3071