Which vacuum pressure is acceptable in the booster?

L. Mether, F. Sommerfelt Grønvold

Acknowledgements: G. Rumolo, F. Zimmermann

FCCIS 2023 WP2 workshop Rome, Italy 13-15 November 2023

Which vacuum pressure is acceptable in the booster? Vacuum constraints from ion trapping and instability

L. Mether, F. Sommerfelt Grønvold

Acknowledgements: G. Rumolo, F. Zimmermann

FCCIS 2023 WP2 workshop Rome, Italy 13-15 November 2023

Ion trapping in electron machines

Beam-induced gas ionization gives rise to electrons and ions along the beam path

• The positive ions are attracted by the electron beam field and may be trapped in oscillation along the bunch train

- Trapped ions accumulate over the passage of a bunch train and can lead to a fast beam-ion instability (FBII)
 - Due to their large mass, the trapped ions barely move during the passage of a single bunch
 - However, they transfer information on the offset of one bunch to the next, seeding a coupled-bunch instability
 - Ion trapping also gives rise e.g. to emittance growth and tune shifts

Machine observations

• Fast beam-ion instabilities have been observed since the 90's in several machines

- In most cases the instability has been observed only in the presence of vacuum degradation
 - During commissioning
 - Due to a local pressure rise, e.g. due to impedance-induced heating
 - During experiments with additional injected gas

Analytical model: Ion trapping

Ion trapping can be modelled using the linear approximation of the Bassetti-Erskine formula for a Gaussian beam field

• An ion with mass number *A*, receives a velocity kick by the beam

$$\frac{2N_b r_p c}{A} \frac{x, y}{\left(\sigma_x + \sigma_y\right)\sigma_{x, y}} = k_{x, y} * x, y$$

 N_b = bunch intensity r_p = classical proton radius $\sigma_{x,y}$ = transverse beam size

Raubenheimer et al., Phys. Rev. E 52, 5, 5487, Stupakov et al., Phys. Rev. E 52, 5, 5499

L. Mether

Analytical model: Ion trapping

Ion trapping can be modelled using the linear approximation of the Bassetti-Erskine formula for a Gaussian beam field

• An ion with mass number *A*, receives a velocity kick by the beam

$$\frac{2N_b r_p c}{A} \frac{x, y}{\left(\sigma_x + \sigma_y\right)\sigma_{x, y}} = k_{x, y} * x, y$$

- During the bunch spacing T_b , the ions drift
 - The kick drift kick drift... motion is stable if $k_{x,y}T_b < 4$
 - ightarrow Trapping condition for the ion mass number

- The instability rise time can also be estimated
 - Opposite dependence on bunch spacing, beam size and intensity w.r.t the trapping condition
 - Faster instability for large pressure, small mass (if trapped) and long trains

$$A > A_{\text{trap}} = \frac{N_b r_p T_b c}{2 \left(\sigma_x + \sigma_y\right) \sigma_{x,y}}$$

$$\tau_{\rm inst}^2 \propto \frac{\gamma^2 A \omega_\beta}{n_b^4 N_b^3 P^2 T_b c} \left(\sigma_x + \sigma_y\right)^3 \sigma_{x,y}^3$$

N _b = bunch intensity	n_b = nr of bunches
r_p = classical proton radius	<i>P</i> = pressure
$\sigma_{x,y}$ = transverse beam size	ω_{θ} = betatron frequency

Raubenheimer et al., Phys. Rev. E 52, 5, 5487, Stupakov et al., Phys. Rev. E 52, 5, 5499

Ion trapping in the booster

- Since ion trapping is more likely for small bunch spacing, it is of concern mainly for Z mode operation
 - We consider the booster parameters as presented at the FCC Week 2023 by A. Chance
 - Assuming the "standard" booster optics and LINAC as injector
 - For the filling scheme, we assume "case 4" from the MTR, with 10% of the collider bunch intensity

<u>A. Chance et al, FCC Week 2023</u>										
Injector		LINAC	LINAC	LINAC	Filling scheme		1	2	3	4
Injection energy	GeV	20	20	20	Bunch Intensity [x10 ¹⁰ ppb]			2.15	2.15	2.43
Extraction energy	GeV	45.6	45.6	45.6	Bunch spacing [ns]		15	20	25	25
Injection hor. emittance $\epsilon_{x,inj}$ (norm.)	μm	50	10	10			0.45			0.5.5
Injection vert. emittance $\epsilon_{y,inj}$ (norm.)	μm	50	10	1	Train length [# bunches]		2.15	280	560	255
Injection energy spread $\delta_{p,inj}$	%	0.1-0.15	0.1-0.15	0.1-0.15	0.4					
Extraction hor emittance $\epsilon_{x,ext}$ (geom)	μm	<0.3	<0.3	<0.3	<0.3					
Extraction vert emittance $\epsilon_{y ext}$ (geom)	pm	<1.42	<1.42	<1.42	<1.42					
Extraction energy spread $\delta_{p,ext}$	%	0.04	0.04	0.04	0.04					
Accumulation time	S	24	24	24	54					
Ramp time	S	0.32	0.32	0.32	0.37					
Flat top	S	2.6	1.9	1	1.9					
Total cycling time	S	26.92	26.22	25.32	56.27					

Ion trapping in the booster

- Based on the emittance evolution during the booster cycle, we can estimate the evolution of the trapping mass
 - The trapping condition is determined by the vertical plane
 - The trapping mass is lowest, i.e. most critical, right after injection and increases with the decrease in vertical emittance

- In this case the initial trapping mass is around 5
 - Consequently, H_2 (A = 2) should not be trapped, while most heavier species would be trapped
 - However, in reality, the situation is more subtle

A. Chance et al, FCC Week 2023

•

Analytical model: beyond the linear approximation

The linear approximation is good only in a small region around the centre of the beam: $x, y \le 0.5 \sigma_{x,y}$

Analytical model: beyond the linear approximation

The linear approximation is good only in a small region around the centre of the beam: $x, y \le 0.5 \sigma_{x, y}$

 In the non-linear regime, ion trajectories are altered and ions below the trapping mass can oscillate around a bunch train for some time ("weak trapping")

Trajectories for ion of mass A during the passage of a CLIC bunch train

$$x_0 = 0.7 \sigma_x, y_0 = 0.7 \sigma_y$$

Analytical model: beyond the linear approximation

The linear approximation is good only in a small region around the centre of the beam: $x, y \le 0.5 \sigma_{x,y}$

 In the non-linear regime, ion trajectories are altered and ions below the trapping mass can oscillate around a bunch train for some time ("weak trapping")

Trajectories for ion of mass A during the passage of a CLIC bunch train

$$x_0 = 1.5 \sigma_x, y_0 = 1.5 \sigma_y$$

Weak trapping in simulations

- This effect has been observed also in a past simulation study for the FCC-ee from 2017 (with obsolete parameters)
 - Weak trapping can also cause instability, but with different characteristics than for fully trapped ions

FCCIS 2023 WP2 workshop, Rome, 13-15 November 2023

Weak trapping in simulations

- This effect has been observed also in a past simulation study for the FCC-ee from 2017 (with obsolete parameters)
 - Weak trapping can also cause instability, but with different characteristics than for fully trapped ions

FCCIS 2023 WP2 workshop, Rome, 13-15 November 2023

First instability simulations for booster

- Ideally, we should simulate the FBII with a realistic composition of vacuum species for different total pressures over at least a damping time
 - FBII simulations are computationally very heavy
 → such a study takes months to perform
- First simulations cover only a few cases over a small number of turns
 - Focus on H₂, despite weaker trapping, since heavier species make up a much smaller fraction of the total pressure
 - With initial emittances of 10 µm in both planes, an instability develops within 2 turns even for a pressure of 2 nTorr ≈ 2.7e-9 mbar

Trapping of heavier species

- Heavier species, such as CO, N2 and CO2, are strongly trapped with a round beam of 10 μm
- Also for these species, an instability develops within 2 turns for a pressure of 2 nTorr ≈ 2.7e-9 mbar
 - However, this would correspond to larger total pressures, since the fraction of heavier species is typically much lower

Impact of initial emittances

- Since the trapping mass number increases with decreasing emittance, a lower (vertical) emittance at injection should alleviate the instability, at least for H₂
- Simulations confirm that the option with 1 μm vertical emittance at injection is significantly less impacted by H₂ trapping, although smaller amplitude oscillations still occur

Impact of initial emittances

- Since the trapping mass number increases with decreasing emittance, a lower (vertical) emittance at injection should alleviate the instability, at least for H_2
- Simulations confirm that the option with 1 μ m vertical emittance at injection is significantly less impacted by H₂ trapping, although smaller amplitude oscillations still occur
 - Ο

Normalised Vertical Emittance

Conclusion and outlook

- The fast beam-ion instability is likely to cause problems with the currently foreseen vacuum system
 - o lon trapping is strongest just after injection
 - Heavier ion species, e.g. CO, N₂, CO₂ are trapped for all considered emittances
 - Hydrogen is weakly trapped for emittance of ~30 μm or smaller, but can still cause instability
 - Opting for a smaller vertical emittance at injection reduces the impact, but it is probably not sufficient
- Mitigation measures that don't rely on low vacuum pressure can be considered
 - The instability can generally be mitigated with a transverse feedback, but ion trapping will still occur and may still lead to tune shift and emittance growth
 - Clearing electrodes could be another solution, but design and impact e.g. on impedance need to be considered
- A more extensive study (with the latest parameters) is needed for more accurate constraints
 - The need for mitigation measures should be assessed and their effectiveness evaluated
 - Mitigation strategy should be included in the overall design process, including in cost estimates