### ○ FCC

# **FCC-ee** Collider Magnets

# Correction circuits with trim coils

J. Bauche, C. Eriksson, F. Saeidi

FCCIS WP2 Workshop, Rome, 14th November 2023.

# Outline

FCC

### Magnet field tapering and correction circuits

- Baseline specification and alternative options
- Trim circuits characteristics
  - Dipole
  - Quadrupole
  - Sextupole

### Summary and next steps

## **Specifications**

# Field tapering and correction circuits

### Baseline

- Field tapering trims on each aperture of dipoles and quadrupoles
  → granularity: every 4 FODO
- Orbit and quadrupole corrections: trim coils in sextupoles
  - $\rightarrow$  granularity: at every sextupole, so <u>only at ~60% of the arc half-cells</u>
- → We studied options to remove orbit correction from sextupoles
  - → Improve granularity of correction
  - → Free space in the sextupole to decrease its power consumption (current density)

### Alternatives

- 1) H + V orbit corrections use quadrupole tapering trim coils
  - → granularity: at every arc half-cell
- 2) H orbit correction uses dipole tapering trim coils +

V orbit correction uses quadrupole tapering trim coils

 $\rightarrow$  granularity: at every arc half-cell

| BASELINE           | Location  | Mag.<br>Length | Peak field (B)<br>or gradient (Q) | Integrated<br>strength |
|--------------------|-----------|----------------|-----------------------------------|------------------------|
|                    |           | [m]            | [T] or [T/m]                      | [Tm] or [T]            |
| Orbit correction H | Sextupole | 1.5            | 0.013                             | 0.02                   |
| Orbit correction V | Sextupole | 1.5            | 0.013                             | 0.02                   |
| Normal quadrupole  | Sextupole | 1.5            | 0.4                               | 0.6                    |
| Skew quadrupole    | Sextupole | 1.5            | 0.4                               | 0.6                    |

#### Correction specifications from optics

| ALTERNATIVE 1      | Location   | Mag.<br>Length | Mag. Peak field (B)<br>Length or gradient (Q) |             |
|--------------------|------------|----------------|-----------------------------------------------|-------------|
|                    |            | [m]            | [T] or [T/m]                                  | [Tm] or [T] |
| Orbit correction H | Quadrupole | 2.9            | 0.0067                                        | 0.02        |
| Orbit correction V | Quadrupole | 2.9            | 0.0067                                        | 0.02        |

| ALTERNATIVE 2      | Location   | Mag.<br>Length | Mag. Peak field (B)<br>Length or gradient (Q) |             |
|--------------------|------------|----------------|-----------------------------------------------|-------------|
|                    |            | [m]            | [T] or [T/m]                                  | [Tm] or [T] |
| Orbit correction H | Dipole     | 21.15          | 0.0009                                        | 0.02        |
| Orbit correction V | Quadrupole | 2.9            | 0.0067                                        | 0.02        |

## Dipole

# Dipole design

### Trim coils

FCC

- Allow to modulate the field in the apertures independently
  - Used for field tapering up to ±2.5 % (tt<sub>bar</sub>)
  - Can be used for field tuning up to ±1 % (all phases) and H orbit correction up to ±1.5 %
- → Worst case: could be up to 5% of main field variation
- Simulations performed assuming trim coils over the whole magnet length, but we could imagine a shorter length with more ampere-turns for a similar strength
- A part of the yoke could be **laminated** to operate with a **fast feedback system**



### Magnetic model cross-section ( $tt_{bar}$ excitation, B = 61 mT)



# Dipole field quality

FCC

- The magnet field quality is good with all harmonics <1 unit, except a quadrupolar component of 1.5 units at low field (H operation)
  - → This could be compensated by the main quadrupole circuit
- The effect of the trim coils for the field tapering, tuning and H orbit correction on the field quality is negligible



Computed field harmonics

## Quadrupole

FCC

# Quadrupole design

- Trim coils at poles (instead of at back leg in previous version)
- **Magnetic axis shift** well mitigated w.r.t. previous designs (~0.40 mm); worst case b1 is ~10 units, gives ~0.01 mm shift.



Harmonics at reference radius 10 mm, for different powering cases. Presented at FCC week 2023: "Status of the FCC-ee booster and collider magnet developments", 7th June 2023.



Collider quadrupole cross section, FCC week 2023

FCC

# Quadrupole design

- Trim coils at poles (instead of at back leg in previous version)
- **Magnetic axis shift** well mitigated w.r.t. previous designs (~0.40 mm); worst case b1 is ~10 units, gives ~0.01 mm shift.



Harmonics at reference radius 10 mm, for different powering cases. Presented at FCC week 2023: "Status of the FCC-ee booster and collider magnet developments", 7th June 2023.



Collider quadrupole cross section, FCC week 2023

### Horizontal & vertical correction

- Trim coils used for quadrupolar tapering and tuning can be used for generating a dipolar component if polarities of 2 coils are reversed
- Maximum field strength required for correction:  $L_{sext}B_{corr, sext} = L_{quad}B_{corr, quad}$

$$\Rightarrow B_{corr, quad} = \frac{1.5 \text{ m}}{2.9 \text{ m}} 13 \text{ mT} = 6.7 \text{ mT}$$

Powering setup for horizontal correction (vertical B field)



Powering setup for vertical correction (horizontal B field)

FCC

# **Circuit requirements**

 If only quadrupolar tapering / tuning is needed, all trim coils in each aperture can be powered in series
 → 1 trim coil power supply per aperture

2. If either vertical or horizontal correction is required, each pair of adjacent trim coils can be powered in series

 $\rightarrow$  2 trim coil power supplies <u>per aperture</u>

- 3. If both **vertical and horizontal correction** is required, each trim coil needs to be powered independently
  - $\rightarrow$  4 trim coil power supplies <u>per aperture</u>



(Tapering/tuning + H/V corr.)





or

### Horizontal correction: field quality

• Field quality **dB/B ≈ 6%**.

FCC

Large sextupole component

| Rref =<br>10 mm | Main harmonic:<br>B1 |
|-----------------|----------------------|
| b1              | 10000.000            |
| b2              | -9.499               |
| b3              | 578.806              |
| b4              | -0.005               |
| b5              | 5.581                |
| b6              | 0.000                |
| b7              | -0.292               |
| b8              | -0.001               |
| b9              | -0.006               |
| b10             | 0.000                |
| Ha              | armonics –           |

horizontal correction dipole



<u>Main coils OFF</u>  $\rightarrow$  Field homogeneity and harmonics w.r.t. **dipole component** 

### Vertical correction: field quality

- Same as for horizontal corr., due to pole symmetry, but components are skew
- Field quality **dB/B ≈ 6%**.
- Large skew sextupole component

| Main harmonic:<br>A1 |
|----------------------|
| 10000.000            |
| 0.265                |
| -577.456             |
| 0.032                |
| 5.659                |
| 0.002                |
| 0.295                |
| 0.000                |
| -0.006               |
| 0.000                |
|                      |

Harmonics – vertical correction dipole



<u>Main coils OFF</u>  $\rightarrow$  Field homogeneity and harmonics w.r.t. **dipole component** 

FCC

### Quadrupole field quality with orbit correction

Rref = 10 mm

b1

b2

b3

b4 b5 b6 b7 b8 b9 b10

 Sextupole component introduced by horizontal or vertical correction is significant with respect to the main quad field

| Main<br>narm:<br>32 | Rref =<br>10 mm | Main<br>harm:<br>B2 |   | Rref =<br>10 | Main<br>harm:<br>B2 | Rref =<br>10 | Main<br>harm:<br>B2 |
|---------------------|-----------------|---------------------|---|--------------|---------------------|--------------|---------------------|
| 554.930             | a1              | 0.000               | b | 01           | -4.357              | a1           | 554.098             |
| 000.000             | a2              | 0.000               | b | 02           | 10000.000           | a2           | 0.020               |
| 31.367              | a3              | 0.000               | b | 03           | -1.004              | a3           | -31.996             |
| 0.001               | a4              | 0.000               | b | 04           | 0.000               | a4           | 0.002               |
| 0.345               | a5              | 0.000               | b | 5            | 0.033               | a5           | 0.313               |
| 0.271               | a6              | 0.000               | b | 06           | 0.271               | a6           | 0.000               |
| -0.018              | a7              | 0.000               | b | 07           | -0.002              | a7           | 0.016               |
| -0.005              | a8              | 0.000               | b | 08           | -0.005              | a8           | 0.000               |
| 0.000               | a9              | 0.000               | b | 9            | 0.000               | a9           | 0.000               |
| -0.003              | a10             | 0.000               | b | 010          | -0.003              | a10          | 0.000               |
| s of qua            | drupole fi      | ield with           | H | larmonio     | cs of qua           | drupole fi   | eld with            |

max vertical correction.

Harmonics of quadrupole field with max horizontal correction.

## Powering requirements

Vertical correction:

FCC

• Minimal cross-talk; **NI = 177 A** per trim coil to achieve max corr. field.

### Horizontal correction:

- Large cross-talk between apertures: opposing aperture must apply an opposing correcting field to compensate
  - With peak correction field, each trim coil needs NI = 477 A

### $\rightarrow$ H orbit correction in the quad is <u>not a viable option</u>



Flux potential for vertical (top) and horizontal (bottom) corrections (Latest design)

### Sextupole

### Main sextupole

○ FCC

| Parameter                      | Unit              | Value   |
|--------------------------------|-------------------|---------|
| Sextupole strength<br>(B"=2*S) | T/m2              | 880     |
| Bore aperture                  | mm                | 33      |
| Ampere-turns                   | A                 | 4250    |
| Number of turns per coil       | -                 | 14      |
| Peak current                   | А                 | 304     |
| Conductor dimensions           | mm <sup>2</sup>   | 8.5×8.5 |
| Cooling diameter               | mm                | 4       |
| Peak current density           | A/mm <sup>2</sup> | 5.1     |
| Voltage drop per magnet        | V                 | 23.4    |
| Resistance per magnet          | mΩ                | 78      |
| Peak power per magnet          | kW                | 7.2     |
| Number of water circuits       | -                 | 6       |
| Water temperature rise         | °C                | 13.2    |
| Cooling water speed            | m/s               | 1.8     |
| Pressure drop                  | bar               | 6       |
| Revnolds no.                   | -                 | 3530    |



Flux density in iron





Sextupolar gradient homogeneity



Main parameters

Transfer function

Natural normalized harmonics

### Trim coils layout

FCC

- Space occupancy in coil cross-section dominated by orbit correction circuits
- Moving orbit correction to dipoles and quadrupoles would allow to redistribute the space and reduce the current density in the sextupole, so its power consumption





Green Coils: Main Sextupole Brown Coils: Horizontal Corrector Orange Coils: Vertical Corrector Red Coils: Normal Quadrupole Yellow Coils: Skew Quadrupole

### Corrector circuits

- H corrector is the most power demanding
- J is a bit high for the quadrupole correction circuits (would be cured if we move the orbit correction to the dipoles/quads)

| Parameter                            | Ver.<br>Corrector | Horiz.<br>Corrector | Nor. Quad.<br>Corrector | Sk. Quad.<br>Corrector |
|--------------------------------------|-------------------|---------------------|-------------------------|------------------------|
| Integrated Strength(Tm)/(T)          | 0.02              | 0.02                | 0.6                     | 0.6                    |
| Magnetic field (mT)/(T/m)            | 13                | 13                  | 0.4                     | 0.4                    |
| Effective length (mm)                | 1500              | 1500                | 1500                    | 1500                   |
| Ampere-Turns per pole (A.t)          | 345               | 400/200             | 210                     | 378                    |
| Number of turns                      | 48                | 48/24               | 14                      | 24                     |
| Conductor size (mm <sup>2</sup> )    | 3.75 × 1.6        | 3.75 × 1.6          | 3.75 × 1.6              | 3.75 × 1.6             |
| Current (A)                          | 7.2               | 8.3                 | 15                      | 15.8                   |
| Current Density (A/mm <sup>2</sup> ) | 1.2               | 1.4                 | 2.5                     | 2.6                    |
| Resistance per magnet (Ω)            | 1.7               | 2.5                 | 0.5                     | 0.4                    |
| Total Voltage (V)                    | 12.1              | 21                  | 7.4                     | 6.62                   |
| Total Power (W)                      | 87                | 175                 | 110                     | 104                    |
| Total Cable Length (m)               | 590               | 885                 | 172                     | 147                    |
| Total Cable Weight (kg)              | 32                | 48                  | 9                       | 8                      |

X (mm

#### **Vertical Corrector**



#### Horizontal Corrector





-200

**Normal Quad Corrector** 

#### **Skew Quad Corrector**



### Correction circuits field quality



<u>Main coils OFF</u>  $\rightarrow$  Field homogeneity and harmonics w.r.t. correction field component



**FCC** 





Normal gradient homogeneity

 $G_{n}(0) = 0.4 \text{ T/m}$ 



Skew gradient homogeneity  $G_s(0) = 0.4 \text{ T/m}$ 

### Correction circuits field quality



- The Horizontal dipole corrector introduces a strong normal sextupole component that can be cured by the main sextupole coil
- The Horizontal/Vertical dipole correctors introduce strong normal/skew decapole components
- The Normal/Skew Quadrupole corrector introduce a strong normal/skew octupole term

### All coils ON (main and trim)

→ Field harmonics w.r.t. **sextupole** component



Flux potential with main and trim coils at peak current

## Summary and next steps

## Summary

FCC

- Impact of orbit and quadrupole correction circuits hosted in the sextupole on field quality is
  - Up to ~40 units of normal / skew decapoles for H / V orbit corrections
  - Up to ~70 units of normal / skew octupoles for normal / skew quadrupole corrections
- Hosting the orbit correction circuits in the dipoles and quadrupoles, using field tapering trim coils
  - Offers orbit correction granularity at every arc half-cell
  - **Reduces the number of circuits** by merging the orbit correction, tuning and tapering functions
  - Makes more room for the sextupole main coils and reduce its power consumption
- H orbit correction made by the dipole trim coils has no impact on the dipole field quality
- Horbit correction made by the quadrupole trim coils doesn't appear as a reasonable option as it requires a lot of ampere-turns and generates coupling between apertures
- V orbit correction made by the quadrupole trim coils, generates up to ~30 units of skew sextupole

Can beam dynamics team **assess the suitability** of each option in terms of optics performance? → We could then **evaluate the lifetime cost** (CAPEX + OPEX) of each suitable option FCC

### Acknowledgements

We would like to thank all the members of the FCC collaboration for their contribution to the FCC-ee magnet development work, and in particular T. Raubenheimer, R. Tomas, K. Oide and F. Zimmermann for the fruitful exchange of ideas on the magnet correction circuits.

# Thank you for your attention!

S FCC

## Questions?

FCC

# SPARE SLIDES

## **Collider magnet specifications**

- Includes aperture reduction
- Aperture in sextupole assumes no bake-out system (as in CDR baseline)
- Sextupoles are present in only about ½ of the arc halfcells

|            | Mag. Length | Bore<br>aperture | Vacuum<br>aperture | Pole tip field | Number of<br>units (arcs) | Total magnetic<br>length | Ring filling<br>factor (91 km) |
|------------|-------------|------------------|--------------------|----------------|---------------------------|--------------------------|--------------------------------|
|            |             | (reduced)        | (reduced)          |                |                           |                          |                                |
|            | [m]         | [mm]             | [mm]               | [T]            |                           | [km]                     | [%]                            |
| Dipole (S) | 19.30       |                  |                    |                | 1128                      | 21.77                    |                                |
| Dipole (M) | 20.95       | 37               | 30                 | 0.061          | 284                       | 5.95                     |                                |
| Dipole (L) | 22.65       |                  |                    |                | 1428                      | 32.35                    |                                |
| Total      |             |                  |                    |                | 2840                      | 60.1                     | 65.9                           |
| Quadrupole | 2.9         | 37               | 30                 | 0.438          | 2836                      | 8.2                      | 9.0                            |
| Sextupole  | 1.5         | 33               | 30                 | 0.442          | 4672                      | 7.0                      | 7.7                            |

#### Arc magnet specifications from optics (with vacuum aperture $\Phi$ 60 mm)

Field quality specifications
 from latest beam dynamic
 studies

| Error & maget type                                                 | Z        | tt  |
|--------------------------------------------------------------------|----------|-----|
| b <sub>3</sub> in arc dipoles                                      | 2        | 2   |
| b <sub>3</sub> in IR dipoles                                       | 0.1      | 0.5 |
| $b_3$ in arc quadrupoles                                           | 10       | 8   |
| $b_3$ in QY                                                        | 0.1      | 8   |
| <i>b</i> <sub>3</sub> in QC, QT, QA, QB,<br>QG, QH, QL, QR, QU, QI | 1        | 8   |
| a3 in QC1, QC2                                                     | 1        | 5   |
| $b_4$ in arc quadrupoles                                           | 10       | 10  |
| $b_4$ in QC, QY<br>$b_4$ in QT, QA, QB,                            | 0.01-0.1 | 0.1 |
| QG, QH, QL, QR, QU, QI                                             | 1        | 1   |
| $b_6$ in arc quadrupoles                                           | 5        | 5   |
| b6 in IR quadrupoles                                               | 0.01     | 1   |
|                                                                    |          |     |

Magnet field quality specifications from optics – March 2023 (E. Ahmadi, R. Tomas)

### Comparing the Collider Sextupole Electrical and Cooling Parameters





| Parameter                | er Unit CDR (2019) |      | New          |
|--------------------------|--------------------|------|--------------|
|                          |                    |      | (June 2023)  |
| Inter-beam distance      | mm                 | 300  | 350          |
| Sextupole strength       | T/m2               | 807  | 880          |
| Aperture radius          | mm                 | 38   | 33           |
| Magnetic length          | m                  | 1.4  | 1.5          |
| Pole tip field           | Т                  | 0.59 | 0.48         |
| Total current            | At                 | 6300 | 4250         |
| Number of turns per coil | -                  | 14   | 14           |
| Operation current        | А                  | 448  | 304          |
| Conductor dimensions     | mm <sup>2</sup>    | 8×8  | 8.5×8.5      |
| Cooling diameter         | mm                 | 3    | 4            |
| Current density          | A/mm <sup>2</sup>  | 7.87 | 5.1          |
| Voltage drop per magnet  | V                  | 34.3 | 23.4         |
| Resistance per magnet    | mΩ                 | 76   | 79           |
| Power per magnet         | kW                 | 15.4 | 7.3          |
| Number of water circuits | -                  | 18   | 6            |
| Water temperature rise   | °C                 | 10.4 | 13.4         |
| Cooling water speed      | m/s                | 2.77 | 1.75         |
| Pressure drop            | bar                | 6    | 6            |
| Reynolds no.             | -                  | 4160 | 3450         |
| Conductor length/magnet  | m                  | 255  | 277          |
| Conductor mass/magnet    | kg                 | 128  | 147          |
| Trim coil dimensions     | mm                 | -    | 3.75	imes1.6 |
| Number of trim coils     | -                  | -    | 48+24        |
| Trim coil length/magnet  | m                  | -    | 1327         |
| Trim coil wight/magnet   | kg                 | -    | 72           |





### Fcc-ee Sextupole Specifications Update

| Main Parameter                                                 | Unit    | CDR<br>(2019) | New   | Comment                                                              |
|----------------------------------------------------------------|---------|---------------|-------|----------------------------------------------------------------------|
| Sextupole strength (B'')                                       | T/m2    | 807           | 876.6 | Including tapering (3%) & tuning (5%) margins                        |
| Bore aperture radius (CDR)                                     | mm      | 38            | 38/33 | Considering 2 mm thickness of the vacuum chamber and 1 mm clearance. |
| Reference radius for good field region (GFR)                   | mm      | ±10           | ±10   |                                                                      |
| Field quality in GFR                                           | 1.0E-04 | ≈1            | 1     |                                                                      |
| Magnetic length                                                | mm      | 1400          | 1500  |                                                                      |
| Drift space between two consecutive sextupole magnetic lengths | mm      | 100           | 150   | Considering in 3D designing                                          |
| Magnet maximum physical half-width in inter-beam distance      | mm      | 145           | 170   | Considering that beam inter distance of 350 mm.                      |
| Horizontal orbit correction integrated field strength          | Tm      | -             | 0.02  | B=0.013 T                                                            |
| Vertical orbit correction integrated field strength            | Tm      | -             | 0.02  | B=0.013 T                                                            |
| Skew quadrupole correction integrated gradient                 | Т       | -             | 0.6   | G=0.4 T/m                                                            |

Info K.Oide and R. Tomas: 19th April 2023

It gets worse in the updates in point of magnet design with (R=38)
 ✓ S=880 T/m2

✓ L=1.5 m

> Inter-beam distance D=350 mm! The created space could be utilized for more iron or more coil turns!

## Sextupole (R = 38 mm)

### Wider Pole width

- □ Reserving space for Iron
- N=22 turn
- □ Auxiliary coils = 32+16 turns (too high current density)







| Parameter                | Unit              | Value   |
|--------------------------|-------------------|---------|
| Sextupole Strength       | T/m2              | 880     |
| Total current            | At                | 6920    |
| Number of turns per coil | -                 | 22      |
| Conductor dimensions     | mm <sup>2</sup>   | 6.5×6.5 |
| Cooling diameter         | mm                | 3.5     |
| Current density          | A/mm <sup>2</sup> | 9.6     |
| Voltage drop per magnet  | V                 | 70      |
| Resistance per magnet    | mΩ                | 223     |
| Power per magnet         | kW                | 22.1    |
| Number of water circuits | -                 | 18      |
| Water temperature rise   | °C                | 13.2    |
| Cooling water speed      | m/s               | 2.3     |
| Pressure drop            | bar               | 6       |
| Reynolds No.             | -                 | 4030    |

- The current density is increased to 9.6 A/mm<sup>2</sup>.
- The saturation is about 1.5% but the power is increased to 22 kW.
  Problems in cooling (18 cooling circuits)
- > Small space for Axillary coils.
- The larger inter-beam distance and increased magnetic length (D=350 mm) do not compensate the increase of field strength in the new specifications