

FCC-ee IR Tuning Knobs

SATYA SAI JAGABATHUNI

With inputs from Frank Zimmermann, Michael Hofer & Leon Van Riesen-Haupt

FCCIS 2023 WP2 Workshop, Rome, Italy

Introduction

• FCC-ee foreseen to target unprecedented luminosity

$$L = \frac{N_1 N_2 f n_b}{4\pi \, \sigma_x^* \, \sigma_y^*}$$

- Field errors or alignment issues cause differences in the optics parameters at the IP
- As a consequence, it is critical to achieve the desired target
- Essential to introduce knobs that would help in the fine-tuning of the IR optics
- Studies carried out on z-lattice whose operating energy is 45.6GeV (Radiation and RF turned off)

The term "Tuning knobs"

- Magnet excitations in specific linear combinations forming the so-called "Tuning Knobs"
- The term tuning knob is commonly used for one or several magnets which are used to tune one variable
- Find out which magnet groups/combinations can be used to achieve the desired value of the IP parameters
- Linear changes in the magnet strengths correspond to the target parameter

$Implementation: \beta^*_{x,y} \text{ and } w_{x,y} \text{ knobs}$

- Can be constructed using the Final-Focus Doublet magnets and Matching section
- Idea motivated by Leon Van Riesen-Haupt at FCC-ee optics tuning and correction workshop, 2023 <u>https://indico.cern.ch/event/1242395/</u>
- Generate Response matrix (M) by varying the individual magnet strengths (k_i)

 $\Delta(\beta_{x,y}^*, w_{x,y}, \dots, w_{j}) = M_{ji}^* \Delta k_i$

• Construct Pseudo inverse of response matrix (M⁻¹) using SVD decomposition, which will be useful to find the correct setting of k_i for a desired change in $\beta^*_{x,y}$, $w_{x,y}$

$$\Delta k = M^{-1} * \Delta(\beta_{x,y}^*, w_{x,y} \dots)$$

Lattice with Errors

- Demonstrated the effectiveness of knobs on the ideal lattice
- Examine the functionality of knobs on an error lattice
- Include random distribution of alignment errors in the lattice
- Error creation routine written in Python is available

https://gitlab.cern.ch/mihofer/fccee_xample_longrange_alignment

• Applied to the arc quadrupoles only

```
# call error creation routine using loaded twiss as input
error_df = cet.main(
    twiss_df=twiss_df, # twiss file to get list of elements and their location
    errors_dict={'Reference_radius': 0.01, 'Q[FD]\d\..*':{ 'dX_rand':10e-6,'dY_rand':10e-6 },},
    full_table=False
)
```

w_x knob robustness: Ideal vs Error Lattice

- Performance of w_x knob on the other linear parameters for both the ideal & error lattices is demonstrated
- Working range seems to be
 0.3m
- Expecting the curves (ideal & error case) to be identical
- Non-linear aberrations noticed on β_y^* and w_y when the knob is applied on error lattice

β_x^* knob robustness: Ideal vs Error Lattice

- Performance of β_x^* knob on the other linear parameters for both the ideal & error lattices is demonstrated
- Tuning range appears to be 20%
- Knob impacts β_y^* , w_y and w_x in a **non-linear fashion**

 Knobs have a significant impact on the performance of linear optics within a lattice subjected to errors

- Knobs have a significant impact on the performance of linear optics within a lattice subjected to errors
- This arises from the distortion of the orbit within the knob region

- Knobs have a significant impact on the performance of linear optics within a lattice subjected to errors
- This arises from the distortion of the orbit within the knob region
- The remedy is to **correct the orbit**

- Knobs have a significant impact on the performance of linear optics within a lattice subjected to errors
- This arises from the distortion of the orbit within the knob region
- The remedy is to correct the orbit
- Install orbit correctors upstream of matching section

w_x knob post orbit correction

- Following the orbit correction, a • consistent behavior is noticed
- Curves are parallel, differing only $\frac{E}{2}$ in the magnitude of error
- Please review the additional slides provided in the backup that illustrate the performance of the w_v knob

0.3

0.2

0.2

0.3

β_x^* knob post orbit correction

- Following the orbit correction, a consistent behavior is noticed
- Need to comprehend the behavior of w_x
- For β_y^* knob, kindly have a look at the end of the presentation

Motivation (Vertical Dispersion & Coupling knobs)

- Tuning knobs are necessary to correct optics errors at the IP to achieve the desired luminosity
- misalignment error/source of coupling leads to spurious D_y & coupling, in turn affecting the beam size, which explains that developing tuning knobs are essential

•
$$\sigma_y^* = \sqrt{\beta_y^* \epsilon_y + D_y^{*2} \delta_p^2} \quad \sigma_y^* = \sqrt{\beta_y^* \epsilon_y + \beta_y^* \epsilon_x |F_{1001}^*|^2}$$

Terms to be vanished in σ_y^*

 The idea was originally motivated by K.Oide at the FCC-ee tuning meeting, on 9 June 2022 https://indico.cern.ch/event/1167740/

Motivation

Extra skew windings at the Final-Focus
 doublet and at least the nearest
 6 sextupoles on each side of IP, which
 eventually helps in controlling vertical
 dispersion & coupling at the IP

0_SF.4R2 0_SD.5R2 6R2 -SF:0h2 SF.3R2 SY.1L2 SF.3L2 SD. SF1.4-SD1.3-ZH2:3= SD37.2 SF38.1 SF38.2 **N1L** SF1.3 SY2L SD1.4 10000 4000 Ξ ³⁰⁰⁰ 7500 β_y [m] 💑 2000 5000 2500 1000 Ω 21500 22000 22500 23000 23500 0.8 0.8 D_x [m] 0.4 0.4 D_y [m] $\sim\sim\sim\sim\sim$ 0.0 0.0 -0.4 -0.4-0.8 -0.8 21500 22000 22500 23000 23500 0.050 0.050 0.025 0.025 0.000 0.000 -0.025 -0.025 -0.050 -0.05021500 22000 22500 23000 23500 S [m]

 $|F_{1001}|$

Skew quads

Final doublet

Sextupoles

Implementation

- MADx "matching" technique
- Match the constraint in such a way that changes in the observables (parameters other than constraints) must be minimized
- The dispersion is matched in small steps of the range of application
- For coupling, MADx matches a combination of two skew quadrupolar terms $F_{1001}(real)$ and $F_{1001}(imaginary)$
- Strengths of the tuning skew quads are plotted as a function of dispersion/coupling
- The components of the knob vector are computed by fitting the slope of these plots

Cross talk of $\boldsymbol{D}_{\boldsymbol{V}}^*$ Knob

- Aberrations are quadratic being the impact on other IP parameters negligible
- Tuning range is simulated to be **1mm**

Chromatic variations of β , α , tune and Coupling

- Knob influence on chromatic behavior mirrors that of an ideal lattice
- knob setting of 5mm has a significant impact

Chromatic variations of β , α , tune and Coupling

- Knob influence on chromatic behavior mirrors that of an ideal lattice
- knob setting of 5mm has a significant impact

Cross talk of $|F_{1001}^*|$ Knob

- Knob created has no potential to influence other linear optics
- Kindly review the backup slides provided for the replicated studies concerning the | F^{*}₁₀₁₀ | knob

Chromatic variations of β , α , tune and Coupling

- Chromatic coupling in various situations runs similarly, with the only distinction being the specific value we assign with the knob
- The chromatic pattern remains consistent in both the ideal scenario and with the knob

Chromatic variations of β , α , tune and Coupling

- Chromatic coupling in various situations runs similarly, with the only distinction being the specific value we assign with the knob
- The chromatic pattern remains consistent in both the ideal scenario and with the knob

Conclusions & Further Work

- IP tuning knobs are necessary for precise tuning of optics
- Studied linear optics knobs for Z-lattice
 - Orbit distortion made it critical for the knobs to work in a lattice with errors
 - Performed orbit correction by placing the appropriate correctors
- Developed D_y^* & coupling knobs for the ideal lattice
 - Vertical dispersion knob setting of 5mm or above demonstrates an influence on the chromatic behavior

Next Steps:

- Orbit adjustment in the arc section may also be necessary, as the D^*_y and coupling knobs extends over the arc
- Include errors in the straight sections (IR) as well and examine any further corrections are required to enhance the effectiveness of knobs
- Need to implement $D_{\boldsymbol{x}}^{\ast}$ knob

Thank you for your attention

Backup Slides

```
\mathbf{w}_{\mathbf{x}} knob on ideal lattice
```


β_x^* knob on ideal lattice

wy knob wrt linear optics parameters

β_y^* knob post orbit correction

Cross talk of $|F_{1010}^*|$ Knob

Chromatic variations of β , α , tune and Coupling

 $\beta_{x,y}^{\ast}$ and $w_{x,y}$ knobs

