\qquad

MITICATION BY FAST IP FEEDBACK

A first look

John P T Salvesen (University of Oxford/CERN)

With thanks to: F. Zimmermann, P. Burrows, K. Oide, D. Shatilov, E. Howling, M. Wendt, T. Lefevre, S. Sai Jagabathuni, V. Gawas and all FCC-ee/FCCIS colleagues

Outline

Performance Requirements
Sources of Error
Existing Feedback Systems
Hardware Layout
Input Signals
Correctors
Conclusions

Performance Requirements

- IP Feedback required to maintain luminosity and lifetime
- Previous studies on acceptable vertical offsets in position and momentum performed by D Shatilov [1], looking at the Z working point

What is Acceptable Vertical Orbit at IP?

- Previously identified requirements:
- "We should maintain the stability of the vertical orbit at BPMs within 5% of σ_{y} "
- 5% of σ_{y} :
- Z: 1.8nm
- $\mathrm{tt}: 2.5 \mathrm{~nm}$

Sources of Error

- Errors from vibration, due to:
- Seismic ground motion
- Machine components (power, cooling)
- Can split into components:
- Resonant with the betatron frequency
- Non resonant Vibrations
- Previous studies by K. Oide at Z [2]:
- Resonant contribution: $\sqrt{\Delta y^{* 2}} \sim 13.7 \mathrm{pm}$
- Non-resonant contribution: $\sqrt{\Delta y^{* 2}} \sim 32.9 \mathrm{~nm}$
- Final focus quadrupoles (QC1) produce majority of the non-resonant effect (excluding QC1 5.8nm)
- May be pessimistic: assumes each quadrupole oscillates independently

Via K. Oide

Existing Feedback Strategies

Method	Beam Beam Deflection
Source Detection Method	Error generated beam offsets
Example	SuperKEKB, SLC Position Monitors

| Beamstrahlung |
| :--- | :--- |
| monitoring |\quad| Dithering |
| :--- |
| Error generated beam
 offsets |
| Beamstrahlung photon
 monitor |
| SLC |

FCC-ee Beam Beam Effects

- Strength of beam-beam effects quantified by the Beam Beam Parameter
- Case very similar for Z, WW, ZH
- Very different situation for tt
- Beam beam parameter in x comparable to y case for other working points

Parameter	\mathbf{Z}	$\mathbf{W W}$	$\mathbf{Z H}$	$\mathbf{t t}$
$\xi_{x}(\times 1000)$	2.2	13	10	73
$\xi_{y}(\times 1000)$	97	128	88	134
$\phi_{p w}(\mathrm{BS})$	26.5	3.70	5.40	0.82
Crab Ratio [\%]	70	55	50	40

parameters of the tt working point mean different feedback strategies may be required

Piwinski angle of 0.82 : more similar to a head on collision

To fully address these beam beam effects (e.g. hourglass $\}$), the PIC solver GUINEA-PIG has been used for all simulations

Hardware Layout

- Current system involves only previously proposed elements:
- Previously BPMs beside LumiCal and in QC1
- Updated- see talk by E. Howling 15/11
- BS Monitor downstream
- Correctors on QC1 elements

E. Howling/ M. Wendt Quad

| Corrector |
| :---: | :---: |
| BPM |
| Anti-sol |

QC1L
QC1R

Beamstrahlung Monitoring

- Beamstrahlung photon monitoring currently proposed in the BI plans for FCC-ee
- 500m downstream of IP
- Very high power, concentrated in a small area:
- At Z with 0 offset, 230kW
- Increases with y offset up to $>300 \mathrm{~kW}$
- Provides a per beam signal
- Previously proposed 2 step approach:
- Fully characterised photons at low power
- Analysis of tails, or non-invasive methods during normal operation

Beamstrahlung photons monitoring

- A significant fluence of photons is generated at the IPs in the forward direction by different mechanisms (beamstrahlung, radiative Bhabha, SR , etc.)
- $\pm 2 \mathrm{MeV}$ average, extending up to 100 MeV
- $\mathbf{\sim} \mathbf{4 0 0} \mathbf{k W}$ in few cm^{2}
- To be absorbed reliably and safely

Beamstrahlung photons monitoring

- Measuring the intensity, position and size of high-power densities beamstrahlung photon beams
- Possibly using a two-step approach with different diagnostics
- Fully characterising the photon beams at low power using, e.g., scintillating screens and cameras (to be studied) that will only be inserted in the photon beam extraction line during single bunch or few bunch operation
- Measure the transverse tails of beamstrahlung photon distribution using intercepting sensors (i.e., scintillators, gaseous detectors, pixel detectors..) or developing fully non-invasive methods (e.g., using ionisation or fluorescence of gas jets) that would be able to withstand the full photon beam power
- Detailed study will start soon..

Beamstrahlung Signals

- Beamstrahlung spectra show strongly logarithmic distributions
- Requires large statistics to model well

- Photon power increases rapidly with y offset
- Further simulations required with larger numbers of photons for improved statistics

Beamstrahlung Signals

- Monitor $\sim 500 \mathrm{~m}$ downstream:
- Photon spot largest at Z
- Extent is $\sim 25 \mathrm{~cm}$ in $x 20 \mathrm{~cm}$ in y
- Spot centre position varies with offset:
- Clear variation with y offset
- Variation with x offset only for tt

Beam Position Monitors

- Work on IR BPMs ongoing
- Previously proposed locations:
- LumiCal BPM: 1150mm
- QC1LR1 BPM: 2180mm
- QC1LR1-2 BPM: 2930mm

LumiCal BPM Pickup: A Proposal

- QC1LR2-3 BPM: 4260mm
- LumiCal BPM particularly challenging
- Still on the common beampipe
- Elliptical cross section

Proposal for BPM pickups near QC1LR1
 ear the BPM pickup!
with four skewed button
($6 \underset{\text { Staggered by } 12}{ }$ Staggered by 12.5
the signal cables

Signal transfer impedance:
$Z_{\text {button }}(\omega)=\frac{V_{\text {button }}(\omega)}{I_{\text {beam }}(\omega)}=\phi R_{\text {load }} \frac{\omega_{1}}{\omega_{2}} \frac{j \omega / \omega_{1}}{1+\omega / \omega_{1}}$ Button size $d_{\text {button }}$ and coverage factor ϕ $\phi=\frac{\iint_{\text {wall }} d A_{\text {elec }}}{\iint_{\text {wall }} d A_{B P M}} \cong \frac{A_{\text {elec }}}{A_{B P M}}=\frac{d_{\text {button }}}{4 D_{\text {pipe }}}$
E. Howling/ M. Wendt

Beam Beam Deflection

- Clear signal available from beam deflections with y offset
- For an offset of 0.05 sigma, deflection of $\sim 1.5 \mu \mathrm{rad}$
- Equates to $\sim 1.7 \mu \mathrm{~m}$ at the lumical BPM
- For system performance, sub micron resolution
- Linear beam beam kick model does not adequately describe the results

$$
\Delta p_{x, y}= \pm \frac{2 \pi \xi_{x, y}}{\beta_{x, y}^{*}} \Delta_{\mathrm{x}, y}
$$

Luminosity

- Luminosity variation with displacement is a key signal for dithering
- Much stronger for tt due to high ξ_{x}
- Monitoring performance strongly dependant on lumical performance:
- New Doctoral Student: Vaibhavi Gawas
- Due to "examine the FCC-ee luminometer concept and the implied alignment or beamstability tolerances"

Correctors and Dithering

- IR correctors included in optics repository [3]
- MADX orbit bumps do not include the beam beam effect
- Currently implemented in MADX as thin corrector elements

- Proposed to use these correctors for both dithering and correction
- Low strength requirements allow for fast response
- Response time may be limited by shielding of the metal beampipe
- Revolution frequency: 3.3 kHz
- May need to move kickers away from IP if higher frequencies required

Example orbit bump using MADX correctors S. Sai Jagabathuni

Conclusions

- Current proposed strategy:
- Dithering to minimise x offset
- Beamstrahlung monitoring and beam deflection monitoring to minimise y offset
- These approaches have been used successfully at other accelerators e.g. SuperKEKB
- Hardware performance will be critical:
- Beamstrahlung monitoring under high radiation power
- Sub micron resolution of BPMs at the IP
- Strategy applicable to the Z, WW and ZH working points may be different from tt
- All discussion today is with respect to the baseline optics
- IP tolerances must be checked for alternative optics too

Thank you for your attention.

APPENDIX

Parameters

Working Point	GeV	\mathbf{Z}	$\mathbf{W W}$	$\mathbf{Z H}$	tt
Beam Energy	10^{11}	45.6	80	120	182.5
Bunch Population		2.14	1.45	1.15	1.55
Bunches/Beam	nm	11200	1780	440	60
RMS Horizontal Emittance ε_{x}	pm	0.71	2.17	0.71	1.59
RMS Vertical Emittance ε_{y}	mm	1.9	2.2	1.4	1.6
Horizontal IP Beta β_{x}	mm	110	220	240	1000
Vertical IP Beta β_{y}	$\%$	0.7	1	1	1.6
Energy Spread $\sigma_{\delta}(\mathrm{BS})$	0.089	0.109	0.143	0.192	
Crab Waist Ratio	$\%$	70	55	50	40
Luminosity /IP [Nominal]	10^{34}				
$\mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	140	20	5.0	1.25	

GP vs Analytic Deflection: x offset

Theory Description:

- Beams with relative vertical offset at the IP by $\Delta_{\mathrm{x}, \mathrm{y}}$, each beam receive a beam-beam kick at the IP:

$$
\Delta p_{x, y}= \pm \frac{2 \pi \xi_{x, y}}{\beta_{x, y}^{*}} \Delta_{\mathrm{x}, \mathrm{y}}
$$

Where ξ_{y} is the vertical beam beam parameter

- Poor agreements with theory across the board

GP vs Analytic Deflection: y offset

Theory Description:

- Beams with relative vertical offset at the IP by $\Delta_{\mathrm{x}, \mathrm{y}}$, each beam receive a beam-beam kick at the IP:

$$
\Delta p_{x, y}= \pm \frac{2 \pi \xi_{x, y}}{\beta_{x, y}^{*}} \Delta_{\mathrm{x}, \mathrm{y}}
$$

Where ξ_{y} is the vertical beam beam parameter

- Theory description agrees well for Z and $t t$ with y offsets, but poor agreement with W and H
- Likely due to high disruption parameters of W and H

BS Photon Power with Offset

- Offset in x shows variation only for $t t$ due to high beam beam parameter
- Offset in y shows clear variation for all working points

Photon Spots with x offset

- Top plot: 0 offset, lower plot: 1 sigma x offset. Shown for Z, WW, ZH and tt
- No variation observed with x offset

Photon Spots with y offset

- Top plot: 0 offset, lower plot: 1 sigma y offset. Shown for Z, WW, ZH and tt
- Clear variation observed, but much less than the photon spot size

BS Photon Spot Centroids with x offset

- Variation of x position, correlates with change in energy
- No variation of y centre position with x offset

BS Photon Spot Centroids with y offset

- Variation of x position, correlates with increase in BS photon power
- Strong variation of y centre position with offset

