

STATUS OF FCC-EE BEAM-BEAM STUDIES

Peter Kicsiny, X. Buffat, G. Iadarola, D. Schulte, T. Pieloni, M. Seidel

Special thanks to: H. Burkhardt, F. Carlier, M. Hofer, K. Oide, L. van Riesen-Haupt, D. Shatilov, D. Zhou

FCCIS 2023 WP2 Workshop 13-15/11/2023

- 1. Introduction
- 2. First studies with FCC-ee nonlinear lattice
- 3. Bhabha scattering lifetimes
- 4. SuperKEKB studies
- 5. Summary

1. Introduction

2. First studies with FCC-ee nonlinear lattice

3. Bhabha scattering lifetimes

4. SuperKEKB studies

5. Summary

First studies with FCC-ee nonlinear lattice

- Beam-beam collisions in FCC-ee
 - Harmful consequences on beam dynamics
 - 3D flip-flop, coherent synchro-betatron instability (not discussed here)
 - Emittance growth, dynamic aperture, beam lifetime
- Goal: benchmark FCC-ee nonlinear lattices with beam-beam against results with SAD obtained by K. Oide [1], to later study instabilities, collimation, impact of machine errors etc...
- This enables more detailed studies of beam lifetimes due to Bhabha scattering & beamstrahlung (in progress)

1. Introduction

2. First studies with FCC-ee nonlinear lattice

3. Bhabha scattering lifetimes

4. SuperKEKB studies

5. Summary

Emittance scan

- In the lattice models we need to introduce vertical dispersion artificially which will give the lattice a vertical emittance
- Introduce vertical dispersion by adding wigglers (e.g. SBEND in MAD-X) [2]
- ϵ_v can be tuned by the magnet strength of the wigglers
- After inserting these wigglers, the ε_v can be cross-checked by tracking [3]
- Presence of beam-beam collisions results in a transverse (mostly vertical) emittance blowup
- Cross-check lattice ε_v with tracking + quantify blowup due to beam-beam

Emittance scan results

- $\epsilon_{y,0}$: only lattice
- ε_{y,bb}: with beambeam+beamstrahlung
- Black: tracked results with Xsuite
- Pink: ε_y "target" from parameter table (~desired max. ε_y with beam-beam) [1]
- Orange: data provided by K. Oide

Dynamic aperture - setup

- 10,000 test particles on a grid (4 phases)
- Track the grid
 - Lattice+weak bunch set to nominal ε_{ν.}
 - Strong bunch set to target ε_v
 - Mean synrad
 - Beam-beam
 - No beamstrahlung
- Record the number of survived turns T_{surv} for each particle
 - Colormap on next slide: average T_{surv} over the phases

 $J_i = \sqrt{\left(\frac{i}{\sigma_i}\right)^2 + \left(\frac{p_i}{\sigma_{p_i}}\right)^2}, \ i \in \{x, y\}$

Dynamic aperture

Conclusions

- Equilibrium emittances & dynamic aperture with beam-beam successfully benchmarked against SAD
- Possible next step: similar studies with relaxed optics

1. Introduction

2. First studies with FCC-ee nonlinear lattice

3. Bhabha scattering lifetimes

4. SuperKEKB studies

5. Summary

Bhabha scattering – Cross section

- Event generator adapted from GUINEA-PIG [4]
- Method of equivalent photons:
 - 1. Generate virtual photons of beam 1 slice
 - 2. Compton scatter virtual photons on beam 2 macroparticle
- Bhabha cross section from single collision: count emitted photons above mom. acceptance (1-2%, from [1] & [5])

Bhabha scattering - Luminosity

- Comparison of luminosity in GUINEA-PIG and Xsuite
- PIC vs soft-Gaussian
- Xsuite WS to GUINEA-PIG: ~10% less lumi
- Xsuite SS to GUINEA-PIG: ~5% less lumi, except Z where soft Gaussian is the least accurate

○ FCC 15 / 11 / 2023 | FCCIS 2023 WP2 Workshop

Bhabha scattering

Conclusions

- Xsuite Bhabha scattering event generator successfully benchmarked
- Can be used in other types of studies (MDI & collimation)
- In progress: lifetimes from tracking in nonlinear lattice

1. Introduction

2. First studies with FCC-ee nonlinear lattice

3. Bhabha scattering lifetimes

4. SuperKEKB studies

5. Summary

SuperKEKB studies

- Goals:
 - 1. Review of experimental and simulated beam-beam effects at SuperKEKB
 - 2. Xsuite simulation benchmarks with the SuperKEKB machine
 - Investigation of beam-beam driven synchro-betatron resonances and instability analysis to explain this phenomenon observed at SuperKEKB via experiments and simulations.

17

SuperKEKB studies

- Collaboration with D. Zhou @ KEK
- Starting point: Xsuite simulation benchmarks with the SuperKEKB machine
- Linear lattice
- synrad + BB (no BS)
- Scan Qx with LER parameters
- Compare eq. beam sizes Xsuite WS vs BBWS
- Good agreement between the 2 codes

CW OFF — Xsuite BBWS σ_{x 0}=1.8e-05 [m] ت ا ه[.] ه Q_{x. design}=0.524 0.510 0.515 0.520 0.525 0.530 0.535 0.540 0.545 0.550 Q_x [1] CW ON A Xsuite BBWS — Q_{x. design}=0.524

skekb_ler $N_m = 1.00e + 03$, $N_t = 2.00e + 04$

1. Introduction

2. First studies with FCC-ee nonlinear lattice

3. Bhabha scattering lifetimes

4. SuperKEKB studies

5. Summary

Summary

Nonlinear lattice

- Low energies (Z, W) likely need to track for more turns to see converged emittances
- Possible next step: similar studies with relaxed optics

Bhabha lifetimes

- Good agreement
 - Xsuite with BBBREM & GUINEA-PIG
 - Lifetimes using linear tracking + hard edge acceptance
- Next step: lifetimes from tracking in nonlinear lattice
 <u>SuperKEKB studies</u>
- Good progress so far, good agreement between BBWS and Xsuite
- Next step: simulate with longitudinal wakefields+BB in Xsuite

This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program.

Summarv

Thank you!

References

[1] https://indico.cern.ch/event/1202105/contributions/5408583/attachments/2659051/4608141/FCCWeek_Optics_Oide_230606.pdf

[2] <u>https://github.com/xsuite/xtrack/blob/main/examples/fcc_ee/install_wigglers.madx</u>

[3] https://indico.cern.ch/event/1330032/contributions/5599084/attachments/2724483/4734409/010_eq_emittances.pdf

- [4] https://gitlab.cern.ch/clic-software/guinea-pig-legacy
- [5] https://cds.cern.ch/record/2651299/files/CERN-ACC-2018-0057.pdf
- [6] https://github.com/xsuite/xtrack/blob/main/examples/fcc_ee/000_build_xsuite_model.py

[7] https://gitlab.cern.ch/acc-models/fcc/fcc-ee-lattice/-/tree/V18_xsuite

BACKUP

Workflow – everything in Xsuite

Prepare Xtrack line once [6]:

load MAD-X sequence [7]
add wigglers
convert to Xtrack line
build + twiss 4D
slice sequence
build + twiss 4D
save Xtrack line

Loop over a range of ε_{y} values:

load Xtrack line	:
add observation point @ RF	add beam-beam element (optional)
build + twiss 4D	build
twiss 6D mean synrad + tapering	set quantum synrad
match ε_v	track
, twiss 6D mean synrad + tapering	repeat with next $\boldsymbol{\epsilon}_{y}$

Emittance scan results

- Small discrepancy compared to SAD results
- Xsuite likely not yet converged
- Need more turns to see converged emittances

Bhabha lifetimes

- Linear lattice
- Hard edge momentum acceptance

Bhabha lifetimes

$$\frac{1}{\tau} = \frac{1}{N_b} \frac{dN_b}{dt} = \frac{1}{N_b} \sigma_{Bhabha} L_{inst} \cdot N_{IP} = \frac{1}{N_b} R_b \cdot f_{rev} \cdot N_{IP}$$

- T: Bhabha lifetime [s]
- N_b: bunch intensity [1]
- σ_{Bhabha}: Bhabha cross section [m^2]
- N_{IP}: number of lps [1]
- L_{inst}=L*f_{rev}: instantaneous lumi of 1 bunch crossing [m^-2 s^-1]
- L: integrated lumi of a single collision (collision luminosity) [m^-2]
- f_{rev}: revolution frequency [s^-1]
- $R_b = \sigma_{Bhabha}^*L$: number of emitted Bhabha photons with E above mom. acceptance [1]