Transverse profile systems for FCC-ee

Daniele Butti, Stefano Mazzoni CERN SY-BI

with many thanks to M.Hofer and F. Ewald (ESRF)

Outline

Requirements for transverse diagnostics

Synchrotron Radiation based systems

pinhole camera

X-ray imaging

interferometric techniques

options for SR sources

Alternatives to Synchrotron Radiation diagnostics

laser wire scanner

Conclusion

Requirements for transverse diagnostics

Qualitative priority matrix based on present understanding of needs

Numbers are being defined but we already have a global picture

Multiple systems likely required to meet all specifications

Real-time precise measurement is top priority for commissioning

BI specs input spreadsheet

Pinhole camera

Standard for X-ray diagnostics

- robust and minimal system
- good precision <2%
- good accuracy for $\sigma > 50 \ \mu m$...typically with $E_{ph} < 150 \ keV$

Guess of parameters for FCC

- $d \sim 100 \text{ m}$ for beam-light separation
- $D/d \sim 3 4$ for magnification
- w_{PH} shall minimize PSF, but > 10 μ m for manufacturing

Simplified analytical formulae exist \rightarrow check applicability to FCC case

Ray tracing

Ray tracing

Ray tracing confirms analytical estimation of the Point Spread Function around the optimum W_{PH}

Deviations for large w_{PH} because blur is enhanced by large bending radius

$$\sigma_{eff}^2 = \sigma_{ideal}^2 + \sigma_{PSF}^2$$

Point Spread Function of pinhole camera

Theoretical σ_{PSF} computed for realistic range of pinhole widths and photon energy

All scenarios allow resolution of **horizontal** beam sizes

Even at the highest photon energies, **vertical** sizes around 10 µm are hardly resolvable

Pinhole upgrade: X-ray imaging

Pinhole cameras are far from diffraction limit of X-rays

$$\sigma_{PSF} \xrightarrow{\lim}{\lim} \frac{\lambda}{4\pi \vartheta_{SR}} \stackrel{*}{\approx} 0.2 \ \mu m$$

... but are far from optical quality standard

- significant chromatic aberrations (monochromator required)
- non-negligible attenuation
- increased setup complexity

*realistic 50 keV photons and $\vartheta_{SR} \approx 0.1 \rho^{1/3} \lambda^{2/3} \approx 10 \mu rad$

Alternatives to pinhole: X-ray interferometry

Interferometry is complementary technique to imaging \rightarrow assess beam size from contrast of interference fringes

...but with common challenges

- require monochromatic light
- highly sensitive to distortions
- increased setup complexity

Imaging and interferometry can **coexist** on same extraction line, often with same detector

filament

beam

extended

beam

Options for Synchrotron Radiation sources

Diagnostics challenges

- small vertical beam sizes
- high photon energy

Integration challenges

- high radiation and power load
- large bending radius (long extraction lines)

Options for SR source

- arc dipole: maximum flexibility but harsh environmental conditions
- Exp/tech site dipoles: limited choice but more favorable beam sizes

Arc dipoles

Parameter	Z	ww	ZH	tt	Unit
Energy	45.6	80	120	182.5	GeV
Current	1280	135	26.7	5	mA
Emittance H / V	710 / 1.42	2170 / 4.34	640 / 1.29	1490 / 2.98	pm
ho / l arc dipole	10000 / ~20				m
λ_c / E_c arc dipole	59.0 / 21.0	10.9 / 113.6	3.2 / 383	0.9 / 1350	pm / keV

- radiation power load ~8kW/mrad
- photon energy beyond diagnostics capabilities and destructive for instrumentation in ttbar
- challenging beam sizes due to low beta in arcs

$$z \begin{cases} \beta_{y} \sim \beta_{x} \sim 100 \text{ m} \\ \varepsilon_{(y)} \sim 1.3 \text{ pm} \\ \sigma_{\min(y)} \sim 12 \text{ um} \end{cases}$$

ttbar
$$\begin{cases} \beta_{y} \sim \beta_{x} \sim 50 \text{ m} \\ \varepsilon_{(y)} \sim 3 \text{ pm} \\ \sigma_{\min(y)} \sim 12 \text{ um} \end{cases}$$

2000

1000

Dispersion [m] 0 70

0

45500

45550

45600

45650

s [m]

45700

45750

45800

45850

-1000

-500

Dipole magnets around IPs Pro: softer bends less SR power BG1.40 BG1.41 BC5.3 BC6.3 BS2.3 BS3.3 BG1.3 BC7.3 <u>B1</u> BS1.3 E_c [keV] larger sizes • 10 15 20 25 5 7000 Mode Z V23 $\beta_y \sim 3000 \text{ m}$ 6000 5000 $\sigma_{\rm v} \sim 80 \ {\rm um}$ 4000 ق ع 3000 ق ع

Cons:

- integration (wigglers?)
- radiation from IP (?)

500

1000

Example centre of BC7 💽 with $\sigma_{PSF}^2 \sim 40 \ \mu m$ for pinhole at $E_c = 15 \ \text{keV}$ 20 20 15 **B1** position [m] 2 15 [keV] 10 IP Mode Z -5 d + D = 500 m

0

x position [m]

Dipole magnets around IPs (ttbar mode)

Critical energies of most dipoles too high (>1 MeV) for diagnostics at tt mode \rightarrow working in low frequency tail of spectrum

Example centre of BC7 \bigcirc $\beta_y \sim 1500 \text{ m}$ with $\sigma_{PSF}^2 \sim 15 \ \mu\text{m}$ for pinhole at $E_{ph} = 150 \text{ keV}$ $\sigma_y \sim 50 \ \text{um}$

Alternative to SR diagnostics: Laser Wire Scanner

LWS can achieve micrometric resolution \rightarrow suitable for accurate vertical measurements

Similar hardware as **polarimeter** \rightarrow possible common **integration**

FCC has very high electron energies
→ lower cross section and higher photon energy than all present applications

Laser technology is quickly advancing
→ higher power laser and better focusing systems likely available by FCC era

Conclusion

Precise and real-time monitoring is priority for commissioning and operation \rightarrow **pinhole** looks camera more convenient option

Experimental sites offer more favorable conditions for SR beam size measurements \rightarrow integration needs to be studied

Pinhole alone cannot meet accuracy requirement in vertical \rightarrow X-ray imaging and interferometry can complement SR-based diagnostics

Alternatives to SR techniques may diversify diagnostics and improve accuracy \rightarrow Laser Wire Scanner being considered

Thank you for your attention!

Dipole magnets around RF (ttbar mode)

