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FCC-ee lattices

« Currently, two lattice design under study
 Baseline design: variable length FODO cell with arc cell phase advance of 90°/ 90°,

73 (2)/143 (tt) sextupole pairs used for DA/MA optimization
* LCCO lattice (formerly Hybrid FODO HFD): with phase and beta-modulation,

one sextupole family per plane
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FCC-ee lattices

« Currently, two lattice design under study
» Baseline design:

Local chromaticity correction in vertical plane with virtual crab sextupole

 LCCO lattice (formerly Hybrid FODO HFD):
Dedicated chromaticity section in horizontal and vertical plane, as well as Crab sextupole
« Additional sextupole at image points to reduce chromatic variation of optics
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Methodology

» Study impact of errors and performance in both lattices

» First, check sensitivities to random errors, both as input for static alignment,
but also as indication for dynamic errors

» To refine studies and guide metrology strategy, refine alignment modelling in the arcs

» Finally, look into commissioning and correction strategies to get an idea of situation in
both lattices
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Arc quadrupole sensitivities S. Liuzzo

« Comparing sensitivity of arc quadrupoles to horizontal and vertical misalignment

« Baseline lattice yields an average Aﬁx/ﬁx of 1% for Ax = 2.7 ym, whereas
latest LCCO finds equivalent beta-beating at Ax = 4.1 um
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Arc quadrupole sensitivities
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* In each error category, the LCCO arc cell shows a lower sensitivity to alignment errors

in the arc quadrupoles
» Usually outperforms by a factor 2 or higher

Tolerance to reach

O?r?]roaél;)n IR’(I;/IOSOL(l)r:]t;lt Aﬁ/ﬁ (1%) Dispersion (1mm) (5;2:;1;;5 :h)

Ax [um] Ay [pm]  Ax [um] Ay [um] Ax [pum] Ay [um]  Ax [um] Ay [um]
Baseline V22  Z 1.9 1.9 2.9 0.7 0.1 0.1 3.0 1.0
HFD66 Z >10 >10 >10 4.2 3.9 1.8 >10 2.7
Baseline V22 tt 1.3 1.5 1.5 0.5 0.12 0.2 0.5 0.17
HFD66 tt 2.5 2.5 5.5 2.2 2.5 1.0 9.8 0.5
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Arc sextupole sensitivities
« Thanks to weaker arc sextupoles and common powering of arc sextupoles,
LCCO arc sextupoles are less sensitive to alignment errors
Tolerance to reach
SpEratian : AB 0 : : Emittance €
E)mode RMS Orbit (100pm) /g (1%) Dispersion (1mm) (1% €,/1%o €,)
A
Ax [um] Ay [um]  Ax [um] [ur’r']] Ax [um] Ay [um]  Ax [um] Ay [um]
Baseline V22  Z >100 >100 17 8.5 3.1 2.6 90 39
HFD66 yA >100 >100 65 45 10 10 >100 >100
Baseline V22 tt >100 >100 10 7.0 7.5 10 27 26

HFD66 tt >100 >100 20 10 12 12 18 38
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Final focus quadrupoles sensitivities
* Many iterations on the HFD Final focus layout to improve sensitivities
« Baseline less sensitive to final focus quadrupole misalignments in
Z operation-mode, opposite at tt operation-mode
Tolerance to reach
Emittance €

o) JSg-UliM  RMS Orbit (100pm) Aﬁ/g (1%)

Lattice
-mode

DISPEEEN QU | g - e -

Ax [um] Ay [um]  Ax [um] [3%] Ax [um] Ay [um]  Ax [um] Ay [um]
Baseline V22  Z 0.8 $90 (1512 0.05 %’822;) 0001 (@210) 0.008
HFD66 Z 3.0 1.0 15 92 <001 <001 <001 <0.01
Baseline V22 tt 2.0 0.35 21 022 024 004 11 0.06
HFD66 tt 6.2 2.0 3.5 1.0 1.0 0.05 1.0 <0.01
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Final focus sextupole sensitivities Stz

» Despite larger number of sextupoles in final focus system, LCCO shows similar or
better sensitivity to misalignments
« Sidenote: In SKEKB, SR heating deforms beamline, resulting in orbit deviation in
chromaticity correction section and leading to change of gy, [ref]

Tolerance to reach

| sitee O?riroacgieon RMS Orbit (100pm) /5 (1%) Dispersion (1mm) (15?2:/?‘;:: :h)
Ax [pum] Ay [pm]  Ax [um] [qu] Ax [um] Ay [um]  Ax [um] Ay [um]
Baseline V22 Z >10 >10 >10 0.25 >10 1.2 >10 >10
HFD66 Z >10 >10 >10 1.1 7.8 2.0 >10 >10
Baseline V22 tt >10 >10 >10 0.5 >10 2.6 >10 8

HFD66 tt >10 >10 >10 2.2 >10 3.5 >10 >10


https://indico.cern.ch/event/1192040/contributions/5011646/attachments/2497236/4289027/SuperKEKB_optics_FCCeeTuning.pdf
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Coherent alignment in arcs

Initially, purely random alignment errors assumed
« As input for metrology group and alignment strategy,
resonant wavelengths of the arcs to be identified

Assign misalignment to arc quadrupoles and arc sextupoles

based on

Ax = Asin(?7/)) sin(”s/larc) ,
where A is set Amplitude, s location in the arc,
and A alignment wavelength

« Assumes perfect alignment at the extremities of the arcs

&x [mm]
o
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Coherent alignment in arcs

Initially, purely random alignment errors assumed
« As input for metrology group and alignment strategy,
resonant wavelengths of the arcs to be identified

Assign misalignment to arc quadrupoles and arc sextupoles
based on
Ax = Asin(?7/)) sin(”s/larc) ,
where A is set Amplitude, s location in the arc,
and A alignment wavelength
« Assumes perfect alignment at the extremities of the arcs

In baseline lattice for Z operation mode,
wavelengths A above 500m do not show significant impact
» Lower critical wavelength found for tt operation mode
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Coherent alignment in arcs

Initially, purely random alignment errors assumed
« As input for metrology group and alignment strategy,
resonant wavelengths of the arcs to be identified

Assign misalignment to arc quadrupoles and arc sextupoles
based on
Ax = Asin(?7/)) sin(”s/larc) ,
where A is set Amplitude, s location in the arc,
and A alignment wavelength
« Assumes perfect alignment at the extremities of the arcs

In baseline lattice for Z operation mode,

wavelengths A above 500m do not show significant impact
» Lower critical wavelength found for tt operation mode
HFD lattice shows less sensitivity and similar wavelength

RMS_A8, /B,[1]

RMSA.Bx/ﬁx [1]
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Long range alignment model

Suggested by Tor Raubenheimer last year, alignment model for arcs further refined

As alignment over longer lengths scale becomes more challenging,
see how beam-based alignment performs
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https://indico.cern.ch/event/1203316/contributions/5153505/attachments/2561642/4416191/221206%20FCC%20BBA.pdf
https://gitlab.cern.ch/mihofer/fccee_xample_longrange_alignment
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Long range alignment model

Suggested by Tor Raubenheimer last year, alignment model for arcs further refined

As alignment over longer lengths scale becomes more challenging,
see how beam-based alignment performs
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https://indico.cern.ch/event/1203316/contributions/5153505/attachments/2561642/4416191/221206%20FCC%20BBA.pdf
https://gitlab.cern.ch/mihofer/fccee_xample_longrange_alignment

Long range alignment model

Suggested by Tor Raubenheimer last year, alignment model for arcs further refined

As alignment over longer lengths scale becomes more challenging,
see how beam-based alignment performs
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scale [m]
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Initial proposal for alignments with different lengths scale

Developed model/script using given tolerances for
different length scales



https://indico.cern.ch/event/1203316/contributions/5153505/attachments/2561642/4416191/221206%20FCC%20BBA.pdf
https://gitlab.cern.ch/mihofer/fccee_xample_longrange_alignment
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Table 3: B-beating, dispersion and emittances after correc-
L . . tion of 10 pm random alignment errors on dipole quadrupole
* Full commissioning simulations performed and sextupole magnets for the FCC-ee lattice using analytic
usi ng pyAT and for Z operation mode ORM derivative (1856 BPMs, 18 steerers). The input lattice

is tested: without radiation, with radiation and with radia-

 Evaluate in 6D and tion and tapering. Reference lattice is in all cases without

including SR Radiation and tapering radiation.
(std)so % % Ann  Any, A
* Procedure involves: units %o % mm mm pmrad
1. Install BPMs and orbit correctors ADerr 363 6137 1187 8236 -
2. Misalign arc quadrupoles and sextupoles 4Dcor 084 424 2567 958 071
with given RMS misalignment 6Derr  3.60 59.45 120.54 8245 -

6Dcor 081 429 26.0 9.57 0.17

6D err
+tapering 3.61 61.33 119.59 82.96 -

3. Trajectory steering and finding closed orbit
(no sextupole ramp required)

4. Correct orbit, tunes, and chromaticity 6D cor
5. Optics and coupling correction using +tapering 082 422 2603 965 0.8
analytic ORM A.Franchi et al. Analytic derivative of orbit response matrix and dispersion with thick error

6. EXtraCt Iattice properties (A,Bx,y/ﬁx y1 Ex,y N ) sources and thick steerers implemented in python, MOPLOG69, IPAC2023
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Optics commissioning results
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S.Liuzzo et al., Commissioning simulations tools based on python
Accelerator Toolbox, MOPA142, IPAC2023, IOP
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 CCO Z-lattice
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Optics commissioning summary :. s

« Correction studies performed included using only errors in the arcs,
RF and Radiation/tapering and using identical correction procedures
» Similar to sensitivities, LCCO shows smaller optics perturbations for
same misalignment
« Larger misalignment in LCCO still gives comparatively good results

RMS

Lattice | alignment in [N Ay A.Bx/ ABy p Dy Dy
arcs (] O
Va2 10 208 12.0 081 4.29 26.0 9.57 690.8 0.17
LCCO 10 86 91 0.07 0.06 0.91 112 54252  0.14

LCCO 70 515 58.84 0.5 0.77 6.39 6.84 543.19 6.33
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Summary

« For FCC-ee to reach the design performance, careful optics tuning required
« Size of the machine makes alignment a challenging and costly task,
with major impact on performance

« Two FCC-ee lattice concepts under study
« LCCO option less sensitive to alignment errors in the arcs compared to baseline
« Final focus magnets show similar sensitivity

» Arc alignment models being reviewed and refined as input for metrology group and
in view of evaluating BBA

« Optics commissioning simulations performed for both baseline and LCCO lattice
« LCCO may tolerate larger transverse misalignments



Thanks for your attention!
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