



# **SuperKEKB Studies and Plans**

#### Jacqueline Keintzel\*, Yukiyoshi Ohnishi, Rogelio Tomas

FCC-ee IS WP2 Workshop Rome, Italy 15 November 2023



**FCCIS – The Future Circular Collider Innovation Study.** This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

\*jacqueline.keintzel@cern.ch

### Introduction

- Integrated FCC project spans over this century
- FCC-ee first stage with commissioning in 2040s
- FCC-ee requires
  - Robust optics design and tuning techniques
  - Controlling alignment tolerances
  - Accurate and fast optics measurement techniques
- M. Benedikt:
- Low-risk technical solution based on 60 years of e<sup>+</sup>e<sup>-</sup> circular colliders and particle detectors ; R&D on components for improved performance, but no need for "demonstration" facilities; LEP2, VEPP-4M, PEP-II, KEKB, DAΦNE, or SuperKEKB already used many of the key ingredients in routine operation

Requires beam tests at existing machines to test FCC-ee challenges Understanding SuperKEKB is crucial for FCC-ee







# **SuperKEKB**

- Collider with 3 km circumference
- Record luminosity of 4.65 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Very similar to FCC-ee
  - Non-interleaved sextupoles with -I transformation
  - Crab-waist collisions
  - Top-up injection

#### SuperKEKB is small FCC-ee





.

. . .



#### **Schedule and Status for 2024**

Y. Ohnishi, 19 September 2023: https://kds.kek.jp/event/48117





FCC IS WP2 WORKSHOP 15 NOV 2023



#### **Machine Parameters**

|                                                | June 8, 2022            |                 | Target at post-LS1 (1)  |                 | Target at post-LS1 (2)  |                 | Unit                                              |
|------------------------------------------------|-------------------------|-----------------|-------------------------|-----------------|-------------------------|-----------------|---------------------------------------------------|
| Ring                                           | LER                     | HER             | LER                     | HER             | LER                     | HER             |                                                   |
| Emittance                                      | 4.0                     | 4.6             | 4.0                     | 4.6             | 4.0                     | 4.6             | nm                                                |
| Beam Current                                   | 1321                    | 1099            | 2080                    | 1480            | 2750                    | 2200            | mA                                                |
| Number of bunches                              | 2249                    |                 | 2346                    |                 | 2346                    |                 |                                                   |
| Bunch current                                  | 0.587                   | 0.489           | 0.89                    | 0.63            | 1.17                    | 0.94            | mA                                                |
| Horizontal size $\sigma_x^*$                   | 17.9                    | 16.6            | 17.9                    | 16.6            | 17.9                    | 16.6            | μm                                                |
| Vertical cap sigma Σ <sub>y</sub> *            | 0.303                   |                 | 0.217                   |                 | 0.178                   |                 | μm                                                |
| Vertical size σ <sub>y</sub> *                 | 0.215                   |                 | 0.154                   |                 | 0.126                   |                 | μm                                                |
| Betatron tunes v <sub>x</sub> / v <sub>y</sub> | 44.525 / 46.589         | 45.532 / 43.573 | 44.525 / 46.589         | 45.532 / 43.573 | 44.525 / 46.589         | 45.532 / 43.573 |                                                   |
| β <sub>x</sub> * / β <sub>y</sub> *            | 80 / 1.0                | 60 / 1.0        | 80 / 0.8                | 60 / 0.8        | 80 / 0.6                | 60 / 0.6        | mm                                                |
| σ <sub>z</sub>                                 | 4.6                     | 5.1             | 6.5                     | 6.4             | 6.5                     | 6.4             | mm                                                |
| Piwinski angle                                 | 10.7                    | 12.7            | 10.7                    | 12.7            | 10.7                    | 12.7            |                                                   |
| Crab waist ratio                               | 80                      | 40              | 80                      | 80              | 80                      | 80              | %                                                 |
| Beam-Beam ξ <sub>y</sub>                       | 0.0407                  | 0.0279          | 0.0444                  | 0.0356          | 0.0604                  | 0.0431          |                                                   |
| Specific luminosity                            | 7.21 x 10 <sup>31</sup> |                 | 7.62 x 10 <sup>31</sup> |                 | 9.31 x 10 <sup>31</sup> |                 | cm <sup>-2</sup> s <sup>-1</sup> /mA <sup>2</sup> |
| Luminosity                                     | 4.65 x 10 <sup>34</sup> |                 | 1 x 10 <sup>35</sup>    |                 | 2.4x 10 <sup>35</sup>   |                 | cm <sup>-2</sup> s <sup>-1</sup>                  |

10<sup>35</sup> and 2.4 x 10<sup>35</sup> are tentative and considered by Y. Funakoshi.  $_3$ 





# **BBA Studies and Commissioning**

- For arc quadrupoles and possibly also arc sextupoles (takes about 10 mins per element)
- Alignment of crab-waist sextupoles



quadrupoles, with residual

An example of BBA measurement



H. Sugimoto, 19 September 2023: https://kds.kek.jp/event/48117

X. Huang, 14 September 2023: https://indico.cern.ch/event/1325263/



# **Turn-by-Turn Measurements**

- Orbit recorded ideally horizontally and vertically Turn-by-Turn (TbT)
- Requires beam excitation
  - Single kick

Top: FCC-Z mode 45.6 GeV beam energy Damping of single particle tracking orbit after  $10\sigma_x$ ,  $10\sigma_y$  kick

 $2300 \text{ turns damn$ 

2300 turns damping time

 $\rightarrow\,$  Slow enough to be used for TbT measurements

Bottom: FCC-ttbar mode 182.5 GeV beam energy Damping of single particle tracking orbit after  $10\sigma_x$ ,

 $10\sigma_v$  kick

40 turns damping time

 $\rightarrow$  Too fast to be used for TbT measurements





JACQUELINE KEINTZEL

# **Turn-by-Turn Measurements**

- Orbit recorded ideally horizontally and vertically Turn-by-Turn (TbT)
- Requires beam excitation
  - Single kick
  - Driven motion

FCC-Z mode with 45.6 GeV beam energy Single particle tracking without radiation damping





Continous excitation achieved in SuperKEKB using transverse feedback system and amplification

- + Drives the beam at the natural tune (no compensation)
- Typically limited in amplification (low excitation)





#### H. Sugimoto

# **Orbit Response Matrix SKEKB**

- Explore Orbit Response Matrix (ORM) approach for FCC-ee
- Including Closed Orbit Distortion (COD) method with fewer correctors as in SKEKB

In SuperKEKB:

Closed Orbit Distortion (COD) performed 3 pairs of orbit correctors generate 6 closed orbit distortions

+ Routinely performed and used to calculate corrections

- + Very good resolution of about 5  $\mu m$
- Rather time consuming procedure

- Orbit limited to 10-20  $\mu m$  to avoid distortions from interaction region quadrupoles and sextupoles





JACQUELINE KEINTZEL

#### **Measurement Techniques**

- Various excitation techniques for TbT measurements and comparison to closed-orbit measurements
  - Use horizontal kicker and new vertical kicker for the first time (possibly to be commissioned 2024)
  - Continue exploring using feedback kicker (PLL) further for simultaneous H and V measurements
  - Compare various measurement techniques and benchmark results

| Parameter               | Closed Orbit Distortion    | Turn-l                   | _                   |                     |
|-------------------------|----------------------------|--------------------------|---------------------|---------------------|
|                         | chooca orbit Distortion    | Injection Kicker         | Phase Lock Loop     | _                   |
| BPMs in HER             | 466                        | 68                       | 68 Mo               | re TbT BPMs         |
| BPMs in LER             | 444                        | 70                       | <b>70</b> pos       | sible?              |
| Hor. optics measurement | yes                        | yes                      | yes                 |                     |
| Ver. optics measurement | yes                        | no                       | yes                 |                     |
| RDTs measurement        | no                         | some                     | yes                 |                     |
| Calibration independent | no                         | yes                      | yes                 |                     |
| Status for measurements | stable                     | stable                   | being explored      |                     |
| Trigger to record data  | yes                        | yes                      | no                  |                     |
| Time for measurement    | $\approx 20 \mathrm{mins}$ | $\approx 2  \text{mins}$ | $\approx 2 \min $ T | bT typically faster |





### **Lepton Decoherence**

#### Decoherence studies for kicked lepton beams

- Single kicks to observe decoherence, ideally horizontally and vertically
- Aim to reduce decoherence value using various octupole settings
- Damping over various kick strengths
- Benchmark (new) theory





Improved technique for amplitude detuning measurement in lepton storage rings



JACQUELINE KEINTZEL



### **Crab-Waist and Sextupole Schemes**

- Exploration of crab-waist sextupole and other sextupole settings
  - Optics measurements at various (crab-waist sextupole) settings for both beams
  - Measurement of lifetime and luminosity over crab-waist transformation
  - Dynamic aperture optimization studies





### **Intensity Dependent Effects**

- Different bunch configurations to understand single and multi-bunch effects
  - Various bunch intensities for both beams

15 NOV 2023

• Various number of bunches circulating for measurements for both beams



**BEAM TESTS AT SUPERKEKB** 

COLLIDER

#### **Beam-Beam and Emittance**

- Beam-beam parameter and beam-size blow-up and emittance increase:
  - Measure tune shift over bunch intensity
  - Measure beam-size with x-ray monitor
  - Use data during physics run

FCC IS WP2 WORKSHOP

15 NOV 2023





LER: beam-beam parameter large at 0.8 mA

Y. Ohnishi, 19 September 2023: https://kds.kek.jp/event/48117

JACOUELINE KEINTZEL

| 14 O FU <sup>-</sup> | TURE   |
|----------------------|--------|
| CIR                  | RCULAR |
| CO                   | LLIDER |

#### **Summary**

• SuperKEKB is similar to FCC-ee in various aspects

• Understanding and solving SuperKEKB challenges helps improving FCC-ee and shape its design

• Start of next SuperKEKB run foreseen end of January 2024, until end of June 2024

- Many opportunities to engage in experimental beam tests on various topics
  - (Optics measurements, BBA, intensity dependent effects, machine learning, etc.)









#### **Thank you!**

#### Jacqueline Keintzel\*, Yukiyoshi Ohnishi, Rogelio Tomas

FCC-ee IS WP2 Workshop Rome, Italy 15 November 2023



**FCCIS – The Future Circular Collider Innovation Study.** This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

\*jacqueline.keintzel@cern.ch



#### LER operation only in 2023c

- Vacuum scrubbing
  - 80 ~ 100 Ah (Owl shift on weekday, 3 shifts for holiday)
- Adjustment and check of hardware devices (need time because it is after 1 year and half shutdown)
  - beam monitors, magnet polarity, magnet power supplies, timing system, injection system, cooling system, etc.
  - Mis-wiring of magnet cable and BPM cable should be considered.
- Commissioning of the nonlinear collimator (including OHO wiggler optics tuning)
- Correction of beam obit and optics (including BPM gain mapping, beam based alignment)
- Measurements of optics parameters, orbit fluctuations, tune scan, tune shift, TBT BPM analysis, etc.
  - chromatic X-Y coupling( $r_1^{*'}$  and  $r_2^{*'}$ ) adjustment by using rotatable sextupoles
- Measurement and optimization of dynamic aperture
  - change sextupole setting, change crab-waist ratio, use QCS octupoles, etc.
- High bunch current operation with low total current and low impedance (test of SBL?)



#### LER and HER operation in 2024a

- BPM gain mapping, Quad BPMs (as early as possible) in the HER
- Adjustment and check of hardware devices of HER as well as the LER
- Isolation of BPM from quadrupole magnet in the local chromaticity correction region in the HER
- Measurements of optics parameters, orbit fluctuations, tune scan, tune shift, TBT BPM analysis, etc. (cont'd)
- Measurement of dynamic aperture by using kicker and TBT BPMs
- Sextupole optimization to make Touschek lifetime longer in the HER
- Octupole optimization to suppress detuning and to check beam lifetime in the HER
- Tune scan (beam size, lifetime, injection efficiency) in the HER
- Scan of vertical angle at IP orbit to maximize luminosity: check SR from IR in the HER
- Change crab-waist ratio (0% to 80 % to check lifetime and luminosity)
- Beta squeezing down to 0.8 mm (in 2024b ?)