FCC OPTICS CORRECTION STUDIES AND POSSIBLE VERIFICATION AT PETRA

Elaf Musa PHD student at the Deutsches Elektronen-Synchrotron (DESY)

FCCIS 2023 WP2 Workshop
Nov 13-15, 2023

Table of content

- Orbit and optics corrections in FCCee
- Correction of alignments errors on the arc magnets of Fcc-ee V22 Z Lattice
- First test with beam beam
- Larger misalignments on arc magnets
- Possible verification at PETRA

Orbit and optics corrections

- Several corrections steps are required to achieve a well focused beam at the IPs, increasing the dynamic aperture and achieving high machine luminosity.
- Orbit and optics corrections algorithms aim to minimize the lattice errors by correcting the magnet's strength and finding the proper orbit corrector strength values.

Distortion of the horizontal closed orbit due to of $1 \mu \mathrm{~m}$ alignments of arc magnets

Impact of $1 \mu \mathrm{~m}$ alignments and errors of arc magnets on the IR and arc regions (sext on)

Correction procedure

- To simulate the FCC-ee optics and corrections we used the Python accelerator toolbox (PyAT)
- Assumptions:

BPMs noise $=0.0$
Radiation off
Girders are not included

- One orbit corrector and one bpm added next to each quadrupole.
- One skew quadrupole added at each sextuple. (on going).

Correction procedure

Switch

off Sext \rightarrow\begin{tabular}{c}
Field \& Misalignments

errors applied

\rightarrow

Orbit

correction

\rightarrow

Tune \&

Shitch on

Sext

correction

$\rightarrow \rightarrow$

LOCO (beta \&

coupling) iterations
\end{tabular}

- SVD used to invert the response matrix to find the proper orbit correctors kicks θ that satisfy the relation $\Delta x+C \Delta \theta=0$. Choosing the proper cut of the singular values.
- Fitting tune and chromaticity

```
fit_tune(ring, QF, QD,nominal_tune )
fit_chrom(ring, DF, SD,nominal_crom)
```

- LOCO $\chi^{2}=\sum_{i, j} \frac{\left(C_{\text {measure }, i, j}-\hat{C}_{i, j}\right)^{2}}{\sigma_{i}^{2}}$
- Calculating the Jacobian matrix: Each column of the Jacobian $J=\sum_{k} \frac{\partial C_{i, j}}{\partial g_{k}}$ matrix is the derivative of the residual vector over one Fitting Parameter.
- 20 correctors where used.
- Parallel processing in DESY maxwell cluster
$J(1876,20,1876) \sim 15 \mathrm{~min}$
- Non linear least square minimization.

Previous study on V22 t̄t lattice

- Applying horizontal and vertical random alignment errors of 10 $\mu \mathrm{m}$ and $20 \mu \mathrm{~m}$ truncated at 2.5σ and random relative field errors of value 2.e-04 to the lattice arc quadrupoles
- 3 Iteration of LOCO correction, the tune was recorded and corrected in between
$20 \mu \mathrm{~m}$ alignment errors

$10 \mu \mathrm{~m}$ alignment errors

FCCee-t-v22 DA before and after corrections for several seeds

$10 \mu \mathrm{~m}$ alignment errors

Vertical Beta beating

$20 \mu \mathrm{~m}$ alignment errors

Vertical Beta beating

Correction	None	Orbit	LOCO
rms orbit $\mathrm{x}(\mu m)$.	31.97	15.61	15.63
rms orbit $\mathrm{y}(\mu m)$.	34.73	2.05	3.5
rms $\Delta \beta_{x} / \beta_{x}$.	16.66	3.49	1.18
ms $\Delta \beta_{y} / \beta_{y}$	17.04	11.42	1.39

Table 2: Arc quads subjected to $10 \mu \mathrm{~m}$ alignment errors

Correction	None	Orbit	LOCO
rms orbit $\mathrm{x}(\mu \mathrm{m})$.	57.64	26.83	26.84
rms orbit $\mathrm{y}(\mu \mathrm{m})$.	106.57	6.27	8.38
$\operatorname{rms} \Delta \beta_{x} / \beta_{x}$.	63.45	4.95	1.56
$\operatorname{ms~} \Delta \beta_{y} / \beta_{y}$	31.26	18.5	2.54

Table 3: Arc quads subjected to $20 \mu \mathrm{~m}$ alignment errors

Frequency map for the ideal lattice

Used lattice Fcc-ee V22 Z FODO arc lattice

K. Oide, June 1, 2023 @ 168th FCC-ee Optics Design

Meeting \& 39th FCCIS WP2.2 Meeting

Parameter (unit)	E $[\mathrm{Gev}]$	εh $(\mathrm{~nm})$	εv (pm)	Q_{x}	Q_{y}	$\xi^{\xi x / y}$	β_{z} at IP (m/y (mm)
Value	45.6	0.71	1.4	218.16	222.2	$0 /+5$	$110 / 0.7$

DA of Fcc-ee V22 Z lattice at the IP
Sigma $x=8.84 \mathrm{e}-06$
Sigma $y=3.12 e-08$
(456) IR quadrbols and (64) IR sextupoles.

(1420) arcs quadrbols and (568) arcs sextupoles.

Impact of alignments errors on arc components

- Appling hor \& ver displacement and 3 angles rotations randomly distributed via a Gaussian distribution, truncated at 2.5 sigma to arc quadrupoles, sextuples

Misaligned	Hor. And elements $(\mu \mathrm{m})$ tift $(\mu \mathrm{rad})$
Quads	10,20
Sextuples	10,20

$\underset{\&}{\text { Errors (}}$ ($\mu \mathrm{rad}$) $)$	$\begin{aligned} & \text { rms orbit } \\ & x(\mu \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { rms orbit } \\ & \qquad \begin{array}{c} \mathrm{y} \\ (\mu \mathrm{~m}) \end{array} \end{aligned}$	$\Delta \beta x / \beta x \%$ (sext on)	$\Delta \beta y / \beta y \%$ (sext on)	$\begin{gathered} \Delta \eta \mathrm{X} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \Delta \mathrm{ny} \\ & (\mathrm{~mm}) \end{aligned}$
10 (seed1)	1787.184	646.373	0.436	0.626	4388.37	41892.71
20 (seed1)	1404.5	4018.9	0.863	0.826	5997	127571
20 (seed2)	1221.6	3502.25	1.168	1.414	3247	121153
20 (seed3)	2194.0	1422.3	1.12	0.614	5160.	45696
20 (seed4)	602.86	2090.51	1.7318	1.3597	919.5	65640

Correction result with beam beam simulation Lifetrac by Dmitry Shatilov

Errors ($\mu \mathrm{m}$) \& ($\mu \mathrm{rad}$)	$\begin{aligned} & \text { rms } \\ & \text { orbit } \\ & \times(\mu \mathrm{m}) \end{aligned}$	rms orbit y ($\mu \mathrm{m}$)	$\begin{gathered} \Delta \beta x / \beta x \\ \% \text { (sext } \\ \text { on) } \end{gathered}$	$\begin{gathered} \Delta \beta y / \beta y \\ \%(\operatorname{sext} \\ \text { on) } \end{gathered}$	$\begin{gathered} \Delta \eta x \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \Delta \mathrm{\eta y} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { Eh } \\ & (\mathrm{nm}) \end{aligned}$	$\begin{aligned} & \mathrm{Ev} \\ & (\mathrm{pm}) \end{aligned}$	(lifetrac) Ev (pm) Without Beam Beam	(lifetrac) Ev (pm) Beam Beam	With Radiation and tapering
$\begin{gathered} 10 \\ (\operatorname{seed} 1) \end{gathered}$	2.69	2.55	0.155	0.325	60.47	7.44	0.721	1.065	0.77	1.52	
$\begin{gathered} 20 \\ (\operatorname{seed} 1) \end{gathered}$	5.8178	4.917	0.335	0.348	55.71	32.18	0.7177	0.901	0.96	33.4	
$\begin{gathered} 20 \\ (\text { seed } 2) \end{gathered}$	5.4903	5.663	0.774	1.094	61.08	3.143	0.7172	5.196	3.92	10.8	
$\begin{gathered} 20 \\ (\text { seed } 3) \end{gathered}$	5.6538	7.205	0.583	1.406	56.26	5.304	0.717	2.0243	2.00	6.29	
$\begin{gathered} 20 \\ (\text { seed } 4) \end{gathered}$	5.987	4.903	0.323	0.893	61.07	16.59	0.720	1.661	1.44	8.70	

Larger maslignments on arc magnets

- Without radiation.
- Appling hor \& ver displacement errors and 3 angles rotations randomly distributed via a Gaussian distribution, truncated at 2.5 sigma to arc quadrupoles, sextupoles, and to the lattice dipoles.
- Up to $60(\mu \mathrm{~m})$ Hor. \& Ver shift errors and Rotations ($\mu \mathrm{rad}$) to arc magnet while the sextupoles OFF.
- Up to $\mathbf{1}(\mu \mathrm{m})$ Hor. \& Ver shift errors and Rotations ($\mu \mathrm{rad}$) to arc magnet while the sextupoles $\mathbf{1 0 0 \%}$ ON.

Misaligned elements	Hor. And Ver. Shift $(\mu \mathrm{m})$	Rotation (山rad) (Roll/Pitch/Yaw)
Quadrupoles	$10,20, . .60$	$10,20,, . .60$
Sextuples	$10,20,, . .60$	$10,20,, . .60$
Dipoles	$10,20,, . .60$	$10,20,, . .60$ (Only Roll)

Impact of alignments errors on arc components and dipoles

- coupling and dispersion were not corrected

$\begin{gathered} <20 \\ \text { seeds> } \end{gathered}$	rms orbit	rms orbit	$\Delta \beta x / \beta x$ \%	$\Delta \beta y / \beta y \%$	$\Delta \eta x$	Δ Пy	Eh	Ev
Errors ($\mu \mathrm{m}$) \& ($\mu \mathrm{rad}$)	x ($\mu \mathrm{m}$)	$\begin{gathered} y \\ (\mu \mathrm{~m}) \end{gathered}$	(sext on)	(sext on)				
10	1660.64	1852.96	2.868	1.1769	8372.5	95190.9	-	-
Corrected	0.9509	1.215	0.268	0.238	7.829	18.094	0.0026	2.0487
20	2405.49	4668.72	4.199	4.256	9491.0	184837	-	-
Corrected	8.619	11.676	1.420	1.531	21.1526	18.061	0.01497	11.033
30	4499.84	4449.24	7.7149	7.1481	33826.24	348549	-	-
Corrected	17.02	19.53	4.855	4.913	46.799	24.719	0.1341	39.398

Impact of alignments errors on arc components and dipoles

- coupling and dispersion were not corrected

<20 seeds>	rms orbit $\mathrm{x}(\mu \mathrm{m})$	rms orbit y $(\mu \mathrm{m})$ Errors $(\mu \mathrm{m})$	$\Delta \beta x / \beta x \%$ $($ sext on) $)$	$\Delta \beta y / \beta y \%$ $($ sext on $)$	$\Delta \eta x$ $(\mathrm{~mm})$	$\Delta \eta y$ $(\mathrm{~mm})$	Eh (nm)	Ev (pm)
40	4558.61	9721.86	8.90295	8.38948	32810.6	374301.8	-	-
Corrected	26.984	37.89	5.1846	5.333	60.51	36.53	0.165	50.1196
50	5898.9	9059.81	9.90	9.358	41165.948	709196.7	-	-
Corrected	26.984	41.305	5.606	5.62	163.11	42.28	2.071	127.69
60	8446.4	15690.1	11.533	11.318	66069.7	864452	-	-

Emittances after correction

Correction of 20 hor and ver shift errors
Correction of 20 hor and ver shift errors \& rotations

Possible verification at PETRA

PETRA III at DESY

PETRA history :

- 1979 - 1986: e+e-collider (up to 23.3 GeV / beam)
- 1988 - 2007: pre-accelerator for HERA (p @ 40 GeV , e @12 GeV)
- Since 2009: Dedicated 3rd generation light source PRTA III one of the brightest storage ring X -ray sources in the world

Parameter	Value
Beam energy [Gev]	6.0
Circumference (m)	2304
Eh (nmrad)	1.2
Ev (pmrad)	12
Current (mA)	100
Qx/Qy	$37.128 / 30.27$

Optics correction at PETRA III

(PETRA III-High-Beta Optics p3x_v24)

- The lattice has 246 BPMs, 620 Correctors, 4446 Dipoles, and 417 quadrupoles.
- Measurement was with all corrector magnets of type PKH (41) and PKV(55).
- Optics errors were introduced by changing 4 quadrupoles. BPMs noise included

Orbit response matrices

PETRA III measurements test (PETRA III-High-Beta Optics p3x_v24)

- The implemented LOCO was utilized.
- The results were applied to the model lattice.
- Including the BPMs and correctors calibration errors in the fit.
- $\Delta \beta x / \beta x=7.768 \%$
- $\Delta \beta y / \beta y=2.032 \%$

- The correction has not been implemented in the machine; another measurement will be conducted.

Summary

- Analysis of the Fcc-ee V22 Z Lattice correction has been performed.
- Common code based on PyAT for Fcc-ee and PETRA has been developed.
https://github.com/elafmusa/pyat_opics_corrections/tree/main/Examples
- Results have been integrated with beam-beam interactions, highlighting the need for further studies
- IR misalignments to be further implemented.
- First test at PETRA.

Work ongoing

- Coupling and dispersion correction.
- Larger misalignments, possible additional correction steps.
- HFD lattice

References

[1] J. Safranek, "Experimental determination of storage ring optics using orbit response measurements," Nucl. Inst. And Meth. A388, pp. 27-36, 1997.
[2] atcollab/at: Accelerator Toolbox (github.com)
[3] K.Oide,June1,2023@168th FCC-ee Optics Design Meeting\&39th FCCISWP2.
[4] https://github.com/fscarlier/xsequence
[5] K. Balewski, "Commissioning of PETRA III", IPAC'10.

THANK YOU FOR YOUR ATTENTION

BACK UP SLIDES

Linear Optics from Closed Orbits (LOCO)

Established at NSLS by J.
Safranek, 1996

The response matrix is the shift in orbit at each BPM for a change in strength of each steering magnet.

$$
C_{m n}=\frac{\sqrt{\beta_{m} \beta_{n}}}{2 \sin (\pi \nu)} \cos \left(\pi \nu-\phi(s)+\phi\left(s_{0}\right)\right)+\frac{\eta_{i} \eta_{j}}{\alpha_{c} L_{o}}
$$

The measured data are fitted to a lattice model by adjusting parameters P in iterations

$$
\begin{gathered}
\chi^{2}=\sum_{i, j} \frac{\left(C_{\text {measure }, i, j}-\hat{C}_{i, j}\right)^{2}}{\sigma_{i}^{2}} \quad \Delta \mathbf{C}=\frac{d \Delta C}{d K_{j}} \Delta K_{j}+\frac{d \Delta C}{d \theta_{j}} \Delta \theta_{j}+\frac{d \Delta C}{d G_{j}} \Delta G_{j}+\frac{d \Delta C}{d(\Delta p / p)_{j}} \Delta(\Delta p / p)_{j} \\
\boldsymbol{\delta} \boldsymbol{h}_{\mathrm{gn}}=\left[\left[\boldsymbol{J}^{\top} \boldsymbol{W} \boldsymbol{J}\right]\right]^{-} 1 \boldsymbol{J}^{\top} \boldsymbol{W}(\boldsymbol{C}-\hat{\boldsymbol{C}})
\end{gathered}
$$

Correction procedure

Switch off Sext

Field \& Misalignments errors applied

```
Switch on
    Sext
```

Tune \& chromaticity correction + LOCO iterations including coupling

LOCO

- Calculating the Jacobian matrix: $J=\sum_{k} \frac{\partial C_{i, j}}{\partial g_{k}}$ Each column of the Jacobian matrix is the derivative of the residual
vector over one Fitting Parameter.

Reducing Processing Time

- Limiting the number of steering magnets in the response matrix.
20 Cor used out of 1876
- Parallel processing in DESY maxwell cluster $J(1876,20,1876) \sim 15 \mathrm{~min}$
- Code profiling and optimisation.

$$
\Delta g_{k}=\left(\sum_{i j} \sum_{k} \frac{\partial C_{i, j}{ }^{T}}{\partial g_{k}} W \frac{\partial C_{i, j}}{\partial g_{k}}\right)^{-1} \quad \begin{aligned}
& \mathrm{a}=\text { np.sum(dcx[i], axis }=0) \\
& \mathrm{b}=\text { np.sum(dcx[j], axis }=0) \\
& \text { Ax[i, j] }=\text { np.dot }(\mathrm{a}, \mathrm{~b})
\end{aligned}
$$

- A.Franchi S. Liuzzo and Z. Marti, Analytic formulas for the rapid evaluation of the orbit response matrix and chromatic functions from lattice parameters in circular accelerators, https://arxiv.org/abs/1711.06589

Beam Beam studies with 5 seeds

Betatron Tunes and Vertical Emittances at Z

$$
\varepsilon_{x} \approx 0.72 \mathrm{~nm}, \varepsilon_{y} \text { should be } \sim 1.4 \mathrm{pm} \text { with beam-beam, so it should be several times smaller without beam-beam. }
$$

$$
v_{x} / v_{y} / \varepsilon_{y o} / \varepsilon_{y}[\mathrm{pm}]
$$

		Seed_1	Seed_2	Seed_3	Seed_4	Seed_5
Radiation OFF	MADX	$0.15890 / 0.20077$	$0.15817 / 0.20148$	$0.15871 / 0.20030$	$0.15879 / 0.20151$	$0.15933 / 0.20075$
	Lifetrac	$0.15881 / 0.20077$	$0.15808 / 0.20148$	$0.15862 / 0.20031$	$0.15869 / 0.20151$	$0.15924 / 0.20075$
Radiation \& tapering	MADX	$0.15887 / 0.20049 / 0.62$	$0.15801 / 0.20047 / 0.90$	$0.15855 / 0.19928 / 3.41$	$0.15864 / 0.20051 / 1.68$	$0.15918 / 0.19975 / 1.04$
	Lifetrac	$0.15874 / 0.20073 / 0.77 / 1.52$	$0.15800 / 0.20144 / 0.96 / 33.4$	$0.15236 / 0.21151 / 3.92 / 10.8$	$0.15862 / 0.20147 / 2.00 / 6.29$	$0.15916 / 0.20070 / 1.44 / 8.70$
Radiation no tapering	MADX	$0.15255 / 0.21188 / 0.35$	$0.15183 / 0.21252 / 0.78$	$0.15236 / 0.21151 / 1.64$	$0.15246 / 0.21247 / 0.86$	$0.15296 / 0.21181 / 0.72$
	Lifetrac	$0.15256 / 0.21276 / 0.41 / 8.51$	$0.15184 / 0.21339 / 0.84 / 35.9$	$0.15237 / 0.21240 / 2.07 / 13.9$	$0.15247 / 0.21333 / 1.08 / 12.3$	$0.15297 / 0.21267 / 1.16 / 14.2$

