

FORSCHUNG | DER LEHRE | DER BILDUNG

FCC OPTICS CORRECTION STUDIES AND POSSIBLE VERIFICATION AT PETRA

Elaf Musa PHD student at the Deutsches Elektronen-Synchrotron (DESY)

FCCIS 2023 WP2 Workshop Nov 13 – 15, 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Table of content

- Orbit and optics corrections in FCCee
- Correction of alignments errors on the arc magnets of Fcc-ee V22 Z Lattice
- First test with beam beam
- Larger misalignments on arc magnets
- Possible verification at PETRA

Orbit and optics corrections

- Several corrections steps are required to achieve a well focused beam at the IPs, increasing the dynamic aperture and achieving high machine luminosity.
- Orbit and optics corrections algorithms aim to minimize the lattice errors by correcting the magnet's strength and finding the proper orbit corrector strength values.

Distortion of the horizontal closed orbit due to of 1 µm

Impact of 1 µm alignments and errors of arc magnets on the IR and arc regions (sext on)

Elaf Musa

Correction procedure

• To simulate the FCC-ee optics and corrections we used the Python accelerator toolbox (PyAT)

Elaf Musa

Assumptions:

```
BPMs noise = 0.0
Radiation off
Girders are not included
```


- One orbit corrector and one bpm added next to each quadrupole.
- One skew quadrupole added at each sextuple. (on going).

Correction procedure

- SVD used to invert the response matrix to find the proper orbit correctors kicks θ that satisfy the relation $\Delta x + C\Delta \theta = 0$. Choosing the proper cut of the singular values.
- Fitting tune and chromaticity

fit_tune(ring, QF, QD,nominal_tune)
fit_chrom(ring, DF, SD,nominal_crom)

• LOCO
$$\chi^2 = \sum_{i,j} \frac{(C_{\text{measure},i,j} - \hat{C}_{i,j})^2}{\sigma_i^2}$$

- Calculating the Jacobian matrix: Each column of the Jacobian $J = \sum_{k} \frac{\partial C_{i,j}}{\partial g_k}$ matrix is the derivative of the residual vector over one Fitting Parameter.
- 20 correctors where used.
- Parallel processing in DESY maxwell cluster J (1876, 20, 1876) ~ 15 min
- Non linear least square minimization.

Previous study on V22 $t\bar{t}$ lattice

- Applying horizontal and vertical random alignment errors of **10** μ m and 20 μ m truncated at 2.5 σ and random relative field errors of value 2.e-04 to the lattice arc quadrupoles
- 3 Iteration of LOCO correction, the tune was recorded and ٠ corrected in between

- Nominal

20

-- With error

- - After correction

None	Orbit	LOCO
31.97	15.61	15.63
34.73	2.05	3.5
16.66	3.49	1.18
17.04	11.42	1.39
	None 31.97 34.73 16.66 17.04	None Orbit 31.97 15.61 34.73 2.05 16.66 3.49 17.04 11.42

Table 2: Arc quads subjected to 10 μm alignment errors

Correction	None	Orbit	LOCO
rms orbit x (µm).	57.64	26.83	26.84
rms orbit y (μm).	106.57	6.27	8.38
rms $\Delta \beta_x / \beta_x$.	63.45	4.95	1.56
ms $\Delta \beta_y / \beta_y$	31.26	18.5	2.54

Table 3: Arc guads subjected to 20 µm alignment errors

20 µm alignment errors

Frequency map for the ideal lattice

Used lattice Fcc-ee V22 Z FODO arc lattice

Elaf Musa

K. Oide, June 1, 2023 @ 168th FCC-ee Optics Design Meeting & 39th FCCIS WP2.2 Meeting

Parameter (unit)	E [Gev]	εh (nm)	εv (pm)	Q _x	Q _y	ξx/y	β _∗ at IP x/y (mm)
Value	45.6	0.71	1.4	218.16	222.2	0 / +5	110/0.7

DA of Fcc-ee V22 Z lattice at the IP

Sigma x = 8.84e-06

Sigma y = 3.12e-08

(456) IR quadrbols and (64) IR sextupoles.

(1420) arcs quadrbols and (568) arcs sextupoles.

Misa ele

Impact of alignments errors on arc components

Appling hor & ver displacement and 3 angles rotations randomly distributed via a Gaussian ٠ distribution, truncated at 2.5 sigma to arc quadrupoles, sextuples

Misaligned elements	Hor. And Ver. Shift (µm) tilt (µrad)	Errors (µm) & (µrad)	rms orbit x (µm)	rms orbit y (μm)	∆βx/βx % (sext on)	∆βy/βy % (sext on)	∆ ηx (mm)	∆ ղy (mm)
Quads	10,20	10 (seed1)	1787.184	646.373	0.436	0.626	4388.37	41892.71
Sextuples	10,20	20 (seed1)	1404.5	4018.9	0.863	0.826	5997	127571
		20 (seed2)	1221.6	3502.25	1.168	1.414	3247	121153
		20 (seed3)	2194.0	1422.3	1.12	0.614	5160.	45696
		20 (seed4)	602.86	2090.51	1.7318	1.3597	919.5	65640

Elaf Musa

Correction result with beam beam simulation Lifetrac by Dmitry Shatilov

Errors (μm) & (μrad)	rms orbit x (μm)	rms orbit y (µm)	Δβx/βx % (sext on)	Δβy/βy % (sext on)	∆ ηx (mm)	∆ ηy (mm)	Eh (nm)	Ev (pm)	(lifetrac) Ev (pm) Without Beam Beam	(lifetrac) Ev (pm) Beam Beam	With Radiation and tapering
10 (seed1)	2.69	2.55	0.155	0.325	60.47	7.44	0.721	1.065	0.77	1.52	
20 (seed1)	5.8178	4.917	0.335	0.348	55.71	32.18	0.7177	0.901	0.96	33.4	
20 (seed2)	5.4903	5.663	0.774	1.094	61.08	3.143	0.7172	5.196	3.92	10.8	
20 (seed3)	5.6538	7.205	0.583	1.406	56.26	5.304	0.717	2.0243	2.00	6.29	
20 (seed4)	5.987	4.903	0.323	0.893	61.07	16.59	0.720	1.661	1.44	8.70	

 $\varepsilon_x \approx 0.72$ nm, ε_y should be ~1.4 pm *with beam-beam*, so it should be several times smaller without beam-beam.

Radiation

Elaf Musa

Larger maslignments on arc magnets

- Without radiation.
- Appling hor & ver displacement errors and 3 angles rotations randomly distributed via a Gaussian distribution, truncated at 2.5 sigma to **arc quadrupoles, sextupoles, and to the lattice dipoles.**
- Up to 60 (μm) Hor. & Ver shift errors and Rotations (μrad) to arc magnet while the sextupoles OFF.
- Up to 1 (μm) Hor. & Ver shift errors and Rotations (μrad) to arc magnet while the sextupoles 100% ON.

Misaligned elements	Hor. And Ver. Shift (µm)	Rotation (µrad) (Roll/Pitch/Yaw)
Quadrupoles	10,20,,60	10,20,,60
Sextuples	10,20,,60	10,20,,60
Dipoles	10,20,,60	10,20,,60 (Only Roll)

Impact of alignments errors on arc components and dipoles

• coupling and dispersion were not corrected

<20 seeds> Errors (μm) & (μrad)	rms orbit x (μm)	rms orbit y (µm)	∆βx/βx % (sext on)	∆βy/βy % (sext on)	∆ ηx (mm)	∆ ηy (mm)	Eh (nm)	Ev (pm)
10	1660.64	1852.96	2.868	1.1769	8372.5	95190.9	-	-
Corrected	0.9509	1.215	0.268	0.238	7.829	18.094	0.0026	2.0487
20	2405.49	4668.72	4.199	4.256	9491.0	184837	-	-
Corrected	8.619	11.676	1.420	1.531	21.1526	18.061	0.01497	11.033
30	4499.84	4449.24	7.7149	7.1481	33826.24	348549	-	-
Corrected	17.02	19.53	4.855	4.913	46.799	24.719	0.1341	39.398

Impact of alignments errors on arc components and dipoles

· coupling and dispersion were not corrected

<20 seeds> Errors (µm) & (µrad)	rms orbit x (µm)	rms orbit y (µm)	∆βx/βx % (sext on)	∆βy/βy % (sext on)	∆ ηx (mm)	∆ ηy (mm)	Eh (nm)	Ev (pm)
40	4558.61	9721.86	8.90295	8.38948	32810.6	374301.8	-	-
Corrected	26.984	37.89	5.1846	5.333	60.51	36.53	0.165	50.1196
50	5898.9	9059.81	9.90	9.358	41165.948	709196.7	-	-
Corrected	26.984	41.305	5.606	5.62	163.11	42.28	2.071	127.69
60	8446.4	15690.1	11.533	11.318	66069.7	864452	-	-

Elaf Musa

Emittances after correction

Correction of 20 hor and ver shift errors

Correction of 20 hor and ver shift errors & rotations

14

Possible verification at PETRA

PETRA III at DESY

PETRA history :

- 1979 1986: e+e-collider (up to 23.3 GeV / beam)
- 1988 2007: pre-accelerator for HERA (p @ 40 GeV, e @12 GeV)

Elaf Musa

• Since 2009: Dedicated 3rd generation light source PRTA III one of the brightest storage ring X-ray sources in the world

Parameter	Value
Beam energy [Gev]	6.0
Circumference (m)	2304
Eh (nmrad)	1.2
Ev (pmrad)	12
Current (mA)	100
Qx/Qy	37.128/30.27

Optics correction at PETRA III

(PETRA III-High-Beta Optics p3x_v24)

- The lattice has 246 BPMs, 620 Correctors, 4446 Dipoles, and 417 quadrupoles.
- Measurement was with all corrector magnets of type PKH (41) and PKV(55).
- Optics errors were introduced by changing 4 quadrupoles. BPMs noise included

Elaf Musa

PETRA III measurements test (PETRA III-High-Beta Optics p3x_v24)

• The implemented LOCO was utilized.

 $\Delta \beta_x / \beta_x$

- The results were applied to the model lattice.
- Including the BPMs and correctors calibration errors in the fit.
- Δβx/βx : 7.768%
- Δβy/βy : 2.032%

• The correction has not been implemented in the machine; another measurement will be conducted.

Summary

- Analysis of the Fcc-ee V22 Z Lattice correction has been performed.
- Common code based on PyAT for Fcc-ee and PETRA has been developed. https://github.com/elafmusa/pyat_opics_corrections/tree/main/Examples
- Results have been integrated with beam-beam interactions, highlighting the need for further studies.
- IR misalignments to be further implemented.
- First test at PETRA.

Work ongoing

- Coupling and dispersion correction.
- Larger misalignments, possible additional correction steps.
- HFD lattice

References

[1] J. Safranek, "Experimental determination of storage ring optics using orbit response measurements," Nucl. Inst. And Meth. A388, pp. 27-36, 1997.

[2] atcollab/at: Accelerator Toolbox (github.com)

[3] K.Oide, June 1, 2023 @ 168th FCC-ee Optics Design Meeting & 39th FCCISWP2.

[4] <u>https://github.com/fscarlier/xsequence</u>

[5] K. Balewski, "Commissioning of PETRA III", IPAC'10.

THANK YOU FOR YOUR ATTENTION

BACK UP SLIDES

Linear Optics from Closed Orbits (LOCO) Established at NSLS by J. Safranek, 1996

The response matrix is the shift in orbit at each BPM for a change in strength of each steering magnet.

$$C_{mn} = rac{\sqrt{eta_meta_n}}{2\sin(\pi
u)} {
m cos}(\pi
u-\phi(s)+\phi(s_0)) + rac{\eta_i\eta_j}{lpha_cL_o}$$

The measured data are fitted to a lattice model by adjusting parameters P in iterations

$$\chi^{2} = \sum_{i,j} \frac{(C_{\text{measure},i,j} - \hat{C}_{i,j})^{2}}{\sigma_{i}^{2}} \qquad \Delta \mathbf{C} = \frac{d\Delta C}{dK_{j}} \Delta K_{j} + \frac{d\Delta C}{d\theta_{j}} \Delta \theta_{j} + \frac{d\Delta C}{dG_{j}} \Delta G_{j} + \frac{d\Delta C}{d(\Delta p/p)_{j}} \Delta (\Delta p/p)_{j}$$
$$\boldsymbol{\delta h}_{\text{gn}} = \left[\left[\boldsymbol{J}^{\top} \boldsymbol{W} \boldsymbol{J} \right] \right]^{-1} \boldsymbol{J}^{\top} \boldsymbol{W} (\boldsymbol{C} - \hat{\boldsymbol{C}})$$

Correction procedure

Sext applied Sext coupling	Switch off Sext	Field & Misalignments errors applied	Orbit correction	Switch on Sext	Tune & chromaticity correction + LOCO iterations including coupling
----------------------------	--------------------	--------------------------------------	------------------	-------------------	---

LOCO

• Calculating the Jacobian matrix: $J = \sum_{k} \frac{\partial C_{i,j}}{\partial g_k}$ Each column of the Jacobian matrix is the derivative of the residual vector over one Fitting Parameter.

Reducing Processing Time

- Limiting the number of steering magnets in the response matrix.
 20 Cor used out of 1876
- Parallel processing in DESY maxwell cluster J (1876, 20, 1876) ~ 15 min

Code profiling and optimisation.

$$\Delta g_k = \left(\sum_{ij} \sum_k \frac{\partial C_{i,j}}{\partial g_k}^T W \frac{\partial C_{i,j}}{\partial g_k}\right)^{-1} \qquad \begin{array}{l} \text{a = np.sum(dcx[i], axis=0)} \\ \text{b = np.sum(dcx[j], axis=0)} \\ \text{Ax[i, j] = np.dot(a, b)} \end{array}$$

 A.Franchi S. Liuzzo and Z. Marti, Analytic formulas for the rapid evaluation of the orbit response matrix and chromatic functions from lattice parameters in circular accelerators, https://arxiv.org/abs/1711.06589

Beam Beam studies with 5 seeds

Betatron Tunes and Vertical Emittances at Z

 $\varepsilon_x \approx 0.72$ nm, ε_v should be ~1.4 pm with beam-beam, so it should be several times smaller without beam-beam.

		Seed_1	Seed_2	Seed_3	Seed_4	Seed_5
Radiation OFF	MADX	0.15890 / 0.20077	0.15817 / 0.20148	0.15871 / 0.20030	0.15879 / 0.20151	0.15933 / 0.20075
	Lifetrac	0.15881 / 0.20077	0.15808 / 0.20148	0.15862 / 0.20031	0.15869 / 0.20151	0.15924 / 0.20075
Radiation & tapering	MADX	0.15887 / 0.20049 / 0.62	0.15801/0.20047/0.90	0.15855/0.19928/3.41	0.15864/0.20051/1.68	0.15918 / 0.19975 / 1.04
	Lifetrac	0.15874/0.20073/0.77/ 1.52	0.15800/0.20144/0.96/ 33.4	0.15236/0.21151/3.92/10.8	0.15862/0.20147/2.00/6.29	0.15916 / 0.20070 / 1.44 / 8.70
Radiation	MADX	0.15255/0.21188/0.35	0.15183/0.21252/0.78	0.15236/0.21151/1.64	0.15246 / 0.21247 / 0.86	0.15296 / 0.21181 / 0.72
	Lifetrac	0.15256/0.21276/0.41/8.51	0.15184/0.21339/0.84/35.9	0.15237/0.21240/2.07/ 13.9	0.15247/0.21333/1.08/12.3	0.15297 / 0.21267 / 1.16 / 14.2

$v_x/$	$v_y/$	ε _{γ0} /	Ey	[pm]
--------	--------	-------------------	----	------