Transport of hard probes in the Glasma

by $\int \mathcal{D} \mathcal{A}$ vramescu

T. Lappi, H. Mäntysaari

University of Jyväskylä

A. Ipp, D. Müller TU Wien

V. Greco, M. Ruggieri

University of Catania

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

QCD Master Class 2024

based on PRD 107, 114021

General outline

Introduction Framework • Literature • This study The Glasma Color Glass Condensate • Features of the Glasma fields Hard probes in the Glasma Classical transport • Momentum broadening Observables Two particle correlations • Nuclear modification factor Highlights

Heavy-ion collisions

Stitching together effective theories

Figure credits to S. Schlichting

Heavy-ion collisions

Stitching together effective theories

Figure credits to S. Schlichting

Literature timeline

Heavy quarks in Glasma Highlights: Diffusion, R_{pA}

Literature timeline

Eikonal jets in Glasma Highlights: Lattice simulations Transport coefficient \hat{q}

- τ [fm]

Literature timeline

Literature timeline

Literature timeline

Energy loss in Glasma Highlight: Analytical calculations Medium-induced gluon radiation

Hard probes in Glasma

Classical transport in the very-early stage

Prerequisite: Classical lattice gauge theory $\xrightarrow{\text{solver}}$ Glasma fields

This work: Glasma fields $\xleftarrow{}^{\text{background}}$ test particles $\xleftarrow{}^{\text{solver}}$ colored particle-in-cel

Hard probes in Glasma

Classical transport in the very-early stage

Prerequisite: Classical lattice gauge theory $\xrightarrow{\text{solver}}$ Glasma fields

This work: Glasma fields $\stackrel{\text{background}}{\longleftrightarrow}$ test particles $\stackrel{\text{solver}}{\longleftrightarrow}$ colored particle-in-cell

High energy QCD

Glons as main degrees of freedom

$\mathsf{Small}\text{-}x \text{ limit of QCD} \leftrightarrow \mathsf{evolution}$

Figure credits to T. Ullrich

High energy QCD

4

Glons as main degrees of freedom

High gluon occupation numbers

Figure credits to T. Ullrich

CGC as an EFT for high energy QCD

Classical Yang-Mills fields

 $\begin{array}{l} \mathsf{MV} \text{ model and LC kinematics} \Rightarrow J^{\mu,a}(x) \propto \delta^{\mu+} \ \rho^a \ (x^-, \pmb{x}_\perp) \\ \\ \texttt{large nuclei} \uparrow \qquad \qquad \uparrow \texttt{stochastic variable} \end{array}$

Two-point function $\langle
ho^a
ho^a
angle \propto Q_s^2$ saturation momentum

CGC as an EFT for high energy QCD

Collision of CGC nuclei

Light-cone diagram of the collision

• Unknown Glasma fields in the forward light-cone

 $\begin{array}{l} \text{Milne coordinates } (\tau, \ \eta) \\ \tau = \sqrt{2x^+x^-}, \ \eta = \ln \bigl(x^+/x^-\bigr)/2 \end{array}$

Boost-invariant approximation fields = $indep(\eta)$

Numerical solution of Yang-Mills equations \Rightarrow Glasma

General features

Relevant scale Q_s Fields dilute after $\delta \tau \simeq Q_s^{-1}$, arrange themselves in correlation domains of $\delta x_T \simeq Q_s^{-1}$

Bjorken expansion

 $au=0.01~{
m [fm/T}$ he fields become dilute after $\delta au\simeq Q_s^{-1} au=0.4~{
m [fm/c]}$

Fields dilute after $\delta \tau \simeq Q_s^{-1}$, arrange themselves in correlation domains of $\delta x_T \simeq Q_s^{-1}$

Flux tubes

The fields arrange themselves in correlation domains of $\delta x_T \simeq Q_s^{-1}$

Anisotropy

Particles in Yang-Mills fields

Wong's equations of motion

 $\begin{array}{l} \mbox{Wong's equations} \leftrightarrow \mbox{classical equations of motion for particles } (x^\mu, p^\mu, Q) \\ \mbox{evolving in a Yang-Mills background field } A^\mu \end{array}$

Symplectic numerical solver $\xrightarrow{\text{assures}} Q \in SU(3)$, conservation of Casimir invariants

Particles in Yang-Mills fields

Wong's equations of motion

Wong's equations \leftrightarrow classical equations of motion for particles (x^{μ}, p^{μ}, Q) evolving in a Yang-Mills background field A^{μ}

Symplectic numerical solver $\xrightarrow{assurements}$ Wong's equations ervation of Casimir invariants

Particles in Yang-Mills fields

Vizualizing the trajectories

Quantifying the effect of Glasma

Momentum broadening

Momentum broadening

 $\delta p_i^2(\tau) \equiv p_i^2(\tau) - p_i^2(\tau_{\text{form}})$

Instantaneous transport coefficient

 $\frac{\mathrm{d}}{\mathrm{d}\tau} \langle \delta p_i^2(\tau) \rangle \equiv \begin{cases} \kappa_i(\tau), & \text{heavy quarks} \\ \hat{q}_i(\tau), & \text{jets} \end{cases}$

Anisotropy $\equiv \langle \delta p_L^2 \rangle / \langle \delta p_T^2 \rangle$

Heavy quarks in Glasma

Momentum broadening and κ

Jets in Glasma

Momentum broadening and \hat{q}

Large transport coefficients

Plausible in an EKT framework

Large transport coefficients

Plausible in an EKT framework

Two particle correlations

Quantifying the decorrelation

 $\text{Initial } \mathcal{C}(\tau_{\text{form}}) \propto \delta(\Delta \phi - \pi) \delta(\Delta \eta) \xrightarrow{\Delta \tau \text{ in Glasma}} \mathcal{C}(\tau_{\text{form}} + \Delta \tau) \xrightarrow{\text{extract}} \sigma_{\Delta \phi}(\Delta \tau), \sigma_{\Delta \eta}(\Delta \tau)$

Azimuthal decorrelation width

Effect of heavy quark p_T and Glasma Q_s

Azimuthal decorrelation width

Effect of heavy quark p_{T} and Glasma Q_{s}

Phenomenology implications

Azimuthal angle correlations

First measurement of azimuthal correlations in PbPb from [ATLAS 2308.16652]

Phenomenology implications

Azimuthal angle correlations

First measurement of azimuthal correlations in PbPb from [ATLAS 2308.16652]

Highlights

Framework:

Numerical solver for hard probes in Glasma Anisotropic momentum broadening Large transport coefficients κ and \hat{q}

Phenomenology:

Azimuthal decorrelation of $Q\overline{Q}$ pairs Nuclear modification factor R_{AA} with **nPDFs**

Improvements:

Energy loss

Thank you!

Back-up

Nuclear modification factor

Sketch of p_T spectra in the Glasma

Heavy quarks $\xrightarrow{\text{FONLL}^*}$ initial p_T distribution $\propto d\sigma^{pp/AA}/dp_T(\sqrt{s}, \text{PDF/nPDF})$

* Fixed Order + Next-to-Leading Logarithms, state-of-the-art resummed heavy quark production

Nuclear modification factor

Extraction of R_{AA} in Glasma

R_{AA} in the Glasma

Temporal evolution and ${\cal Q}_s$ dependence

R_{AA} in the Glasma

Temporal evolution and ${\cal Q}_s$ dependence

Cold nuclear matter effects

R_{AA} in the Glasma with nPDFs

Cold nuclear matter effects

Phenomenology implications

 ${\it R}_{AA}$ and v_2 puzzle

D mesons R_{AA} and v_2 from [ALICE 2110.09420] compared to various transport models

Phenomenology implications

 R_{AA} and v_2 puzzle

D mesons R_{AA} and v_2 from [ALICE 2110.09420] compared to various transport models

