Parton form-factors for heavy-light decays at three loops in leading-color

Sudeepan Datta Indian Institute of Science, Bangalore

Three loop QCD corrections to the heavy-light form factors in the color-planar limit 2308.12169 [hep-ph] S. Datta, N. Rana, V. Ravindran, R. Sarkar Journal of High Energy Physics, 2023(12), Dec-2023

QCD MASTER CLASS SAINT-JACUT-de-LA-MER, FRANCE

1. The physics context

- Top physics frontier
- B physics frontier
- Formal aspects
- 2. Three loop results for the UV renormalised HLFF
 - UV renormalisation
 - Universal IR structure

A key object of study at the LHC: m_t

З

A key object of study at the LHC: m_t

Direct measurements

Use pp-collision decay products to reconstruct the top

Indirect measurements

Obtain top's mass from cross-section measurements

A key object of study at the LHC: m_t

Direct measurements

Use pp-collision decay products to reconstruct the top

 $m_t = 171.77 \pm 0.37 \text{ GeV}$

arXiv:2302.01967v2

Indirect measurements

Obtain top's mass from cross-section measurements

 $m_t^{pole} = 170.5 \pm 0.8$ GeV

arXiv:1904.05237v2

A key object of study at the LHC: m_t

Direct measurements

Use pp-collision decay products to reconstruct the top

$m_t = 171.77 \pm 0.37 \, \text{GeV}$

arXiv:2302.01967v2

Systematic interpretation of direct measurements See - <u>Corella (2019)</u>, <u>Hoang (2020)</u>, <u>Myllymäki (2024)</u>

Indirect measurements

Obtain top's mass from cross-section measurements

Important problem

 $m_t^{pole} = 170.5 \pm 0.8 \, \text{GeV}$

arXiv:1904.05237v2

Another important object for LHC: Γ_t

- Computed through the *optical-theorem*: $t \rightarrow Wb \rightarrow t$ • One loop higher due to 'stitching' results in a self-energy (also called 'propagator-type') graph.
- Γ_t suppressed by 9 % at NLO (QCD) - Jezabek, Kuhn (1989), Czarnecki (1990), Li, Oakes, Yuan (1991) and by a further 2 % at NNLO (QCD)

Another important object for LHC: Γ_t

- Gao, Li, Zhu (2013), Brucherseifer, Caola, Melnikov (2013), Chen, Li, Wang, Wang (2022)

8

Another important object for LHC: Γ_t

- Computed through the *optical-theorem*: $t \rightarrow Wb \rightarrow t$ One loop higher due to 'stitching' results in a self-energy (also called 'propagator-type') graph.
- Γ_t suppressed by 9 % at NLO (QCD) - Jezabek, Kuhn (1989), Czarnecki (1990), Li, Oakes, Yuan (1991) and by a further 2 % at NNLO (QCD) - Gao, Li, Zhu (2013), Brucherseifer, Caola, Melnikov (2013), Chen, Li, Wang, Wang (2022)
- State-of-the-art:

Analytic results for N³LO (QCD) leading-color corrections, with numerical estimates of the sub-leading color-factors

- Chen, Li, Li, Wang, Wang, Wu (2023)

High-precision numerical results for N³LO (QCD) full-color corrections

- Chen, Chen, Guan, Ma (2023)

At LHCb: $B \to X_u l \bar{\nu}_l$, $B \to X_c l \bar{\nu}_l$, $B \to X_s \gamma$...

At LHCb: $B \to X_u l \bar{\nu}_l$, $B \to X_c l \bar{\nu}_l$, $B \to X_s \gamma$...

Local OPE

At LHCb: $B \to X_u l \bar{\nu}_l$, $B \to X_c l \bar{\nu}_l$, $B \to X_s \gamma$...

Non-Local OPE

B physics frontier

Local OPE

$$\Gamma(B \to X_u l \bar{\nu}_l) = \Gamma_0 \left[1 + C_F \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi} \right)^n X_n \right] + \mathcal{O}\left(\frac{\Lambda^2_{QCD}}{m_b^2} \right)$$

At LHCb: $B \to X_u l \bar{\nu}_l$, $B \to X_c l \bar{\nu}_l$, $B \to X_s \gamma$...

Non-Local OPE

$d\Gamma(B \to X_u l \bar{\nu}_l) \sim H \cdot J \otimes S + \mathcal{O}\left(\frac{1}{m_b}\right)$

At LHCb:
$$B \to X_u l \bar{\nu}_l$$

Local OPE

$$\Gamma(B \to X_u l \bar{\nu}_l) = \Gamma_0 \left[1 + C_F \sum_{n \ge 1} \left(\frac{\alpha_s}{\pi} \right)^n X_n \right] + \mathcal{O}\left(\frac{\Lambda^2_{QCD}}{m_b^2} \right)$$

State of the art:

Fermionic contributions to X_3 Fael, Usovitsch (2023)

 $B \to X_c l \bar{\nu}_l, \quad B \to X_s \gamma \ldots$

Non-Local OPE

$$d\Gamma(B \to X_{u} l \bar{\nu}_{l}) \sim \Theta \cdot J \otimes S + \mathcal{O}\left(\frac{1}{r}\right)$$

State of the art:

Three-loop hard coefficients recently calculated for QCD-SCET matching for S, PS, V, AV & T currents Fael, Huber, Lange, Müller, Schönwald, Steinhauser (2024)

1	4
---	---

Massless partons

Massive partons (small-mass limit)

Massless partons

Soft and collinear divergences exponentiate order-byorder and exhibit universal behavior.

Massive partons (small-mass limit)

Massless partons

Soft and collinear divergences exponentiate order-byorder and exhibit universal behavior.

Catani (1998) Sterman, Tejeda-Yeomans (2003) Ravindran (2006) Becher, Neubert (2009) Gardi, Magnea (2009)

Massive partons (small-mass limit)

Massless partons

Soft and collinear divergences exponentiate order-byorder and exhibit universal behavior.

Catani (1998) Sterman, Tejeda-Yeomans (2003) Ravindran (2006) Becher, Neubert (2009) Gardi, Magnea (2009)

• • •

Massive partons (small-mass limit)

Massless QCD corrections do exponentiate. Use factorisation theorems in this limit to obtain massive amplitudes from massless ones.

Massless partons

Soft and collinear divergences exponentiate order-byorder and exhibit universal behavior.

Catani (1998) Sterman, Tejeda-Yeomans (2003) Ravindran (2006) Becher, Neubert (2009) Gardi, Magnea (2009)

• • •

Massive partons (small-mass limit)

Massless QCD corrections do exponentiate. Use factorisation theorems in this limit to obtain massive amplitudes from massless ones.

Penin (2005) Miłov, Moch (2006) Becher, Melnikov (2007)

Massless partons

Soft and collinear divergences exponentiate order-byorder and exhibit universal behavior.

Catani (1998) Sterman, Tejeda-Yeomans (2003) Ravindran (2006) Becher, Neubert (2009) Gardi, Magnea (2009)

Massive partons (general scenario)

Massless partons

Soft and collinear divergences exponentiate order-byorder and exhibit universal behavior.

Catani (1998) Sterman, Tejeda-Yeomans (2003) Ravindran (2006) Becher, Neubert (2009) Gardi, Magnea (2009)

• • •

Massive partons (general scenario)

Use SCET and non-Abelian exponentiation to show that IR poles do factorise.

Massless partons

Soft and collinear divergences exponentiate order-byorder and exhibit universal behavior.

Catani (1998) Sterman, Tejeda-Yeomans (2003) Ravindran (2006) Becher, Neubert (2009) Gardi, Magnea (2009)

• • •

Massive partons (general scenario)

Use SCET and non-Abelian exponentiation to show that IR poles do factorise.

Becher, Neubert (2009)

- On the structure of infrared singularities of gauge-theory amplitudes (0903.1126 [hep-ph])

- Infrared singularities of QCD amplitudes with massive partons (0904.1021 [hep-ph])

Massless partons

Massive partons

Massless partons

Integro-differential (K-G) equation:

$$\mu^2 \frac{\partial}{\partial \mu^2} \ln \hat{F}_I \left(\frac{Q^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) = \frac{1}{2} \left[K_I \left(\frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) + G_I \left(\frac{Q^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) \right]$$

Massive partons

Massless partons

Integro-differential (K-G) equation:

$$\mu^2 \frac{\partial}{\partial \mu^2} \ln \hat{F}_I \left(\frac{Q^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) = \frac{1}{2} \left[K_I \left(\frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) + G_I \left(\frac{Q^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) \right]$$

Massive partons

Integro-differential (K-G) equation:

$$\mu^2 \frac{\partial}{\partial \mu^2} \ln \hat{F}_I \left(\frac{Q^2}{\mu^2}, \frac{m_t^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) = \frac{1}{2} \left[K_I \left(\frac{m_t^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) + G_I \left(\frac{Q^2}{\mu^2}, \frac{Q^2}{\mu^2}, \alpha_s, \epsilon \right) \right]$$

Massless partons

Integro-differential (K-G) equation:

$$\mu^2 \frac{\partial}{\partial \mu^2} \ln \hat{F}_I \left(\frac{Q^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) = \frac{1}{2} \left[K_I \left(\frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) + G_I \left(\frac{Q^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) \right]$$

Massive partons

Integro-differential (K-G) equation:

$$\mu^2 \frac{\partial}{\partial \mu^2} \ln \hat{F}_I \left(\frac{Q^2}{\mu^2}, \frac{m_t^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) = \frac{1}{2} \left[K_I \left(\frac{m_t^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon \right) + G_I \left(\frac{Q^2}{\mu^2}, \frac{Q^2}{\mu^2}, \alpha_s, \epsilon \right) \right]$$

- Top physics frontier
- B physics frontier
- Amplitudes and formal studies
- 2. Three loop results for the UV renormalised HLFF
 - UV renormalisation, Ward id
 - IR subtraction

3. Asymptotic behavior of the HLFF

28

- External currents: vector, axial-vector, scalar, pseudo-scalar
- **Process**: top-decay dominant channel, i.e. t(P) –
- **Amplitude**: $\bar{b}_c(p) \Gamma^{\mu}_{cd} t_d(P)$
- Express Γ^{μ}_{cd} in terms of 3 independent form factors

•
$$\Gamma^{\mu}_{cd} = -i \,\delta_{cd} \left[\frac{G_1}{G_1} \gamma^{\mu} (1 - \gamma^5) + \frac{G_2}{2m_t} (1 + \gamma_5) (P^{\mu} + p^{\mu}) + \frac{G_3}{2m_t} (1 + \gamma_5) (P^{\mu} - p^{\mu}) \right]$$

• Goal: Compute G_1 , G_2 and G_3

$$\rightarrow b(p) + W^*(q), q = P - p$$

29

Diagram generation

QGRAF, FeynArts

Color/Dirac/Lorentz algebra

FORM, FeynCalc

• Only a single integral-family suffices:

$$I_{\nu}(d,x) = \int \prod_{i=1}^{3} \frac{d^{d}k_{i}}{(2\pi)^{d}} \prod_{j=1}^{12} \frac{1}{D_{j}^{\nu_{j}}}; \ \nu = \prod_{j=1}^{12} \nu_{j}, \quad x = \int_{j=1}^{12} \nu_{j}, \quad x = \int_{j=1}^{12} \nu_{j} + \frac{1}{(2\pi)^{d}} \prod_{j=1}^{12} \frac{1}{D_{j}^{\nu_{j}}}; \ \nu = \int_{j=1}^{12} \nu_{j}, \quad x = \int_{j=$$

• D_i - s are defined as follows:

$$\{\mathscr{D}_1 - m_t^2, \mathscr{D}_2 - m_t^2, \mathscr{D}_3 - m_t^2, \mathscr{D}_{12}, \mathscr{D}_{23}, \mathscr{D}_{13}, where, \\ \mathscr{D}_i = k_i^2, \mathscr{D}_{ij} = (k_i - k_j)^2, \mathscr{D}_{i;1} = (k_i - P)^2, \mathscr{D}_{i;1} \}$$

• After reduction to MIs - 70 MIs obtained.

 $=\frac{q^2}{m_t^2}$

$\mathcal{D}_{1;1}, \mathcal{D}_{2;1}, \mathcal{D}_{3;1}, \mathcal{D}_{1;12}, \mathcal{D}_{2;12}, \mathcal{D}_{3;12} \}$

 $_{;12} = (k_i - P + p)^2$

#	sector	master integrals		
3	7	$I_{111000000000}$		
4	29	$I_{101110000000}$		
	78	$I_{011100100000}$		
	92	$I_{001110100000}$		
	519	$I_{111000000100}$		
	526	$I_{011100000100}, I_{(-1)11100000100}$		
	540	$I_{001110000100}, I_{(-1)01110000100}$		
5	110	$I_{011101100000}$		
	244	$I_{001011110000}$		
	247	$I_{111011110000}$		
	541	$I_{101110000100}$		
	558	$I_{011101000100}, I_{(-1)11101000100}$		
	653	$I_{101100010100}$		
	661	$I_{101010010100}$		
	668	$I_{001110010100}$		
	684	$I_{001101010100}, I_{(-1)01101010100}$		
	689	$I_{100011010100}$		
	692	$I_{00101101000}, I_{(-1)01011010100}$		
	1543	$I_{111000000110}$		
	1557	$I_{101010000110}, I_{1(-1)1010000110}$		
	1588	$I_{001011000110}, I_{(-1)01011000110}$		
8				
9	1918	$I_{011111101110}, I_{(-1)11111101110}$		

Table 1. List of the master integrals. # indicates the number of propagators.

#	sector	master integrals		
6	655	$I_{111100010100}, I_{111100(-1)10100}$		
	669	$I_{101110010100}, I_{1(-1)1110010100},$		
		$I_{10111(-1)010100}, I_{101110(-1)10100},$		
		$I_{1011100101(-1)0}$		
	686	$I_{011101010100}, I_{(-1)11101010100},$		
		$I_{0111(-1)1010100}, I_{011101(-1)10100}$		
	691	$I_{11001101000}, I_{11(-1)011010100}$		
	693	$I_{10101101000}, I_{1(-1)1011010100}$		
	694	$I_{01101101000}, I_{(-1)11011010100}$		
	700	$I_{001111010100}, I_{(-1)01111010100}$		
	937	$I_{100101011100}$		
	1587	$I_{110011000110}$		
	1811	$I_{110010001110}$		
	1841	$I_{100011001110}$		
	3591	$I_{111000000111}$		
$\boxed{7}$	695	$I_{11101101000}, I_{111(-1)11010100},$		
		$I_{111011(-1)10100}, I_{1110110101(-1)0}$		
	939	$I_{110101011100}, I_{11(-1)101011100}$		
	1591	$I_{111011000110}, I_{111(-1)11000110}$		
	1654	$I_{011011100110}, I_{011(-1)11100110}$		
	1815	$I_{111010001110}, I_{11101(-1)001110}$		
	1821	$I_{101110001110}, I_{10111(-1)001110}$		
	1845	$I_{101011001110}, I_{1(-1)1011001110}$		

E E E \mathbb{N} $\widehat{\mathbb{N}}$ \bigcirc N

32

• Canonical bases not used - make use of factorisation to first order for the univariate system to solve analytically

•
$$\partial_x \vec{I} = M_{70 \times 70} \vec{I}$$
, arrange *M* in upper block-trian

- Compute MIs block-wise starting from the last (easiest) one. Successive order-by-order solution in ϵ for each block starting with the leading singular term.
- The spanning alphabet: $\left\{\frac{1}{r}, \frac{1}{1-r}, \frac{1}{1+r}, \frac{1}{2-r}\right\}$
- Function space: HPLs and generalised HPLs

ngular form.

Differential Equations

Sigma, OreSys, HarmonicSums, PolyLogTools

Boundary Conditions

Analytic: AMBRE2.1.1, MBConicHulls, HypExp2

Numeric: AMFlow, FIESTA, PSLQ

0 0 0 0 \bullet $\bullet \circ \bullet$ $\bigcirc \bullet \circ \circ \circ \circ$ $\circ \circ \circ \circ \bullet \bullet$ $\bullet \bullet \bullet \circ \circ \circ$ \circ \circ

Let the leading singularity be at e^{-p} , then, expanding in e:

$$J_n(x,\epsilon) = \sum_{k=-p}^{\infty} J_n^{(k)}(x) \epsilon^k$$

$$\mathscr{C}_n(x,\epsilon) = \sum_{k=0}^{\infty} \mathscr{C}_n^{(k)}(x) \,\epsilon^k$$

$$\mathcal{R}_n(x,\epsilon) = \sum_{k=-p}^{\infty} \mathcal{R}_n^{(k)}(x) \,\epsilon^k$$

$$\partial_x J_n^{(k)}(x) = \mathscr{C}_{nm}^{(0)}(x) J_m^{(k)}(x) + \sum_{j=1}^{k+p} \mathscr{C}_{nm}^{(p)}(x) J_m^{(k-j)}(x) + \mathcal{G}_{nm}^{(k-j)}(x) + \mathcal{G}_{nm}^{(k)}(x) + \mathcal{$$

- No canonical bases used **no** uniform transcendentality.
- But since the DE system is first-order factorisable, no complicated higher transcendental constants such as eMZVs.
- PSLQ needs the full set of transcendental constants **till** weight 2L + k to obtain the ϵ^k -coefficient for the boundary integrals in terms of these constants. However, watch out for *ugly* fractions, and prune the set if necessary.
- Also watch out for unstable behaviour relative to the numerical precision used for the fitting.
- Else, require higher precision for the numerical result.

35

UV renormalisation

- can be expanded in α_s : $Z_i = \sum_{i=1}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n Z_i^{(n)}$. n=0
- Relevant results for Z_i -s mostly available in literature.
- CT-contributions from lower orders in α_s .

• Dim-reg to regularise the bare form factors - γ_5 treated using **CDR-scheme**, i.e. { γ_{μ}, γ_5 } = 0 and $\gamma_5^2 = 1$. • UV renormalisation in mixed scheme: Z_m , $Z_{2,t}$, $Z_{2,b}$ in **OS** scheme; Z_{α_s} in **MS** scheme ($n_h \neq 0$). All Z_i -s

• Relate renormalised form factors G_i to bare \hat{G}_i -s: $G_i = Z_{2,t}^{\frac{1}{2}} Z_{2,b}^{\frac{1}{2}} (\hat{G}_i + \hat{G}_{ct,i}); \hat{G}_{ct,i}$ denotes appropriate

- $t \rightarrow b\omega^{-}, \omega^{-}$ is the negatively charged pseudo-Goldstone boson.
- Can further express Γ_{PS} using a form factor S:
- *S* is computed till 3-loops and renormalised as well.
- At the level of form factors, the Ward identity takes the following form: $2G_1^{(n)} + G_2^{(n)} + xG_3^{(n)} - 2S^{(n)} = 0.$
- Our results for n = 3 satisfy the above identity very important self-consistency check!

• The following Ward-identity holds: $q_{\mu}\Gamma^{\mu} - m_{W}\Gamma_{PS} = 0$; Γ_{PS} denotes the scattering amplitude for

$$\Gamma_{PS} = \frac{m_t}{m_W} S (1 + \gamma_5).$$

37

The IR divergences factorise. Becher, Neubert (2009)

 $G_i(\alpha_s, x, \epsilon) = Z(\alpha_s, x, \epsilon, \bar{\mu}) G_i^{\text{fin}}(\alpha_s, x, \epsilon, \bar{\mu})$ where, $G_i^{\text{fin}}(\bar{\mu})$ is finite as $\epsilon \to 0$; $\bar{\mu}$: scale for this IR factorisation. Z is process-independent.

38

The IR divergences factorise. Becher, Neubert (2009)

 $G_i(\alpha_s, x, \epsilon) = Z(\alpha_s, x, \epsilon, \bar{\mu}) G_i^{\text{fin}}(\alpha_s, x, \epsilon, \bar{\mu})$ where, $G_i^{\text{fin}}(\bar{\mu})$ is finite as $\epsilon \to 0$; $\bar{\mu}$: scale for this IR factorisation. Z is process-independent.

- 1. We need an RGE governing $Z(\bar{\mu})$.
- 2. The anomalous dimensions are computed in massless QCD (n_1 flavors).

39

The IR divergences factorise. Becher, Neubert (2009)

 $G_i(\alpha_s, x, \epsilon) = Z(\alpha_s, x, \epsilon, \bar{\mu}) G_i^{\text{fin}}(\alpha_s, x, \epsilon, \bar{\mu})$ where, $G_i^{\text{fin}}(\bar{\mu})$ is finite as $\epsilon \to 0$; $\bar{\mu}$: scale for this IR factorisation. Z is process-independent.

- 1. We need an RGE governing $Z(\bar{\mu})$.
- 2. The anomalous dimensions are computed in massless QCD (n_1 flavors).

Problem: The form-factors are considered in full-QCD ($n_f = n_l + n_h = n_l + 1$ flavors).

40

IR subtraction

Problem: The form-factors are considered in full-QCD ($n_f = n_l + n_h = n_l + 1$ flavors).

Solution: Use **QCD** decoupling relations.

Now let's put everything together.

- 1. Write an RGE for \bar{Z} , the n_l counterpart for what Z in the full (n_f) theory: $\frac{d}{d \ln \bar{\mu}} \ln \bar{Z}(\alpha_s, x, \epsilon, \bar{\mu}) = -\Gamma(\alpha_s, x, \bar{\mu})$
- 2. Expand both \overline{Z} and Γ in α_s :

$$\bar{Z} = \sum_{n=0}^{\infty} \left(\frac{\bar{\alpha}_s}{4\pi}\right)^n \bar{Z}^{(n)}, \quad \Gamma = \sum_{n=0}^{\infty} \left(\frac{\bar{\alpha}_s}{4\pi}\right)^{n+1} \Gamma_n$$

IR subtraction

The anomalous dimension for the HLFF:

$$\Gamma = \gamma^t(\bar{\alpha}_s) + \gamma^b(\bar{\alpha}_s) - \gamma^{\text{cusp}}(\bar{\alpha}_s) \ln\left(\frac{\bar{\mu}}{m_t(1-x)}\right)$$

- 1. γ^t known till 3-loops: Korchemsky, Radyushkin ('87, '92); Kidonakis ('09); Grozin et al.('15); ...
- 2. γ^b known till 4-loops: Moch et al.('05); Baikov et al.('09); Manteuffel et al. ('20); Agarwal et al. ('21) ...
- 3. γ^{cusp} known till 4-loops: Henn et al. ('20); ...

42

IR subtraction

Finally,

$$\ln \bar{Z} = \left(\frac{\bar{\alpha}_s}{4\pi}\right) \left[\frac{\Gamma_0'}{4\epsilon^2} + \frac{\Gamma_0}{2\epsilon}\right] + \left(\frac{\bar{\alpha}_s}{4\pi}\right)^2 \left[-\frac{3\beta_0\Gamma_0'}{16\epsilon^3} + \frac{\Gamma_1' - 4\beta_0\Gamma_0}{16\epsilon^2} + \frac{\Gamma_1}{4\epsilon}\right] \\ + \left(\frac{\bar{\alpha}_s}{4\pi}\right)^3 \left[\frac{11\beta_0^2\Gamma_0'}{72\epsilon^4} - \frac{5\beta_0\Gamma_1' + 8\beta_1\Gamma_0' - 12\beta_0^2\Gamma_0}{72\epsilon^3} + \frac{\Gamma_2' - 6\beta_0\Gamma_1 - 6\beta_1\Gamma_0}{36\epsilon^2} + \frac{\Gamma_2}{6\epsilon}\right] + \mathcal{O}(\alpha_s^4)$$
where, $\Gamma_n' = \frac{\partial}{\partial\bar{\mu}}\Gamma_n$

Now, use the decoupling relation to obtain Z from \overline{Z} : $\overline{\alpha}_s = \zeta_{\alpha_s} \alpha_s$

where, the decoupling constant ζ_{α_s} is known till 4-loops. Schröder, Steinhauser ('05)

43

- Top physics frontier
- B physics frontier
- Amplitudes and formal studies
- 2. Three loop results for the UV renormalised HLFF
 - UV renormalisation, Ward id
 - Universal IR behavior

3. Asymptotic behavior of the HLFF

44

Typically, factorisation theorems \rightarrow evolution equations \rightarrow resummation of *something*

eg.,

- 1. factorisation of singular cutoff dependence into equations \rightarrow resummation of logs in μ_R ,
- 2. collinear factorisation for hadronic collisions collinear logs, ...
 - generalisable to a *soft-collinear* factorisation of scattering amplitudes
 - leads to the K-G evolution equations shown earlier
 - resummation of Sudakov logs and IR divergences

1. factorisation of singular cutoff dependence into universal Z-factors \rightarrow Callan-Symanzik evolution

2. collinear factorisation for hadronic collisions \rightarrow DGLAP evolution equations \rightarrow resummation of

of scattering amplitudes earlier

45

Typically, factorisation theorems \rightarrow evolution equations \rightarrow resummation of *something*

eg.,

- equations \rightarrow resummation of logs in μ_R ,
- collinear logs, ...
 - generalisable to a *soft-collinear* factorisation of scattering amplitudes
 - leads to the K-G evolution equations shown earlier
 - resummation of Sudakov logs and IR divergences

1. factorisation of singular cutoff dependence into universal Z-factors \rightarrow Callan-Symanzik evolution

2. collinear factorisation for hadronic collisions \rightarrow DGLAP evolution equations \rightarrow resummation of

46

Typically, factorisation theorems \rightarrow evolution equations \rightarrow resummation of *something*

eg.,

- 1. factorisation of singular cutoff dependence into universal Z-factors \rightarrow Callan-Symanzik evolution equations \rightarrow resummation of logs in μ_R ,
- 2. collinear factorisation for hadronic collisions \rightarrow DGLAP evolution equations \rightarrow resummation of collinear logs, ...

 - generalisable to a *soft-collinear* factorisation of scattering amplitudes - leads to the K-G evolution equations shown earlier - resummation of Sudakov logs and IR divergences

The K-G equation for form-factors with massive-partons:

$$\mu^2 \frac{\partial}{\partial \mu^2} \ln \hat{F}_I\left(\frac{Q^2}{\mu^2}, \frac{m_t^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon\right) = \frac{1}{2} \left[K_I\left(\frac{m_t^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon\right) + G_I\left(\frac{Q^2}{\mu^2}, \frac{\mu_R^2}{\mu^2}, \alpha_s, \epsilon\right)\right]$$

- *I* labels the external current coupling to the heavy-light fermion pair
- \hat{F}_I has contributions from universal logs and IR structures
- K_I is process-independent; has mass-dependence
- G_I has the process-dependence through the hard-scale Q^2

48

$$\mu^2 \frac{d}{d\mu^2} G_I\left(\frac{Q^2}{\mu^2}, \alpha_s, \epsilon\right) = -\lim_{m_t \to 0} \mu^2 \frac{d}{d\mu^2} K_I\left(\frac{m_t^2}{\mu^2}, \alpha_s, \epsilon\right) = \gamma^{\text{cusp}}(\alpha_s)$$

- where we have set the soft-collinear factorisation - with boundary conditions set at $K_I(\alpha_s(m_t^2), 1, \epsilon)$

$$K_{I} = \mathcal{K}_{I} - \int_{\frac{m_{I}^{2}}{\mu^{2}}}^{1} \frac{d\lambda}{\lambda} \gamma^{\operatorname{cusp}}(\alpha_{s}(\lambda\mu^{2})); G_{I} = \mathcal{G}_{I} + \int_{\frac{Q^{2}}{\mu^{2}}}^{1} \frac{d\lambda}{\lambda} \gamma^{\operatorname{cusp}}(\alpha_{s}(\lambda\mu^{2}))$$

For the HQFF $@O(\alpha_s^3)$, the solutions for \hat{F}_I have been computed. Blümlein, Marquard, Rana ('18) **NOTE**: these solutions are devoid of massive internal fermion-loops.

Solutions for the HLFF($aO(\alpha_s^3)$) should be same as the HQFF($aO(\alpha_s^3)$), upto a reinterpretation of \mathcal{X}_I

scale
$$\mu = \mu_R$$

 $\equiv \mathscr{K}_I$ and $G_I(\alpha_s(Q^2), 1, \epsilon) \equiv \mathscr{G}_I$

49

Solutions for the HLFF(a) $O(\alpha_s^3)$ should be same as the HQFF(a) $O(\alpha_s^3)$, upto a reinterpretation of \mathcal{X}_I

counterparts for the purely massless and massive form-factors:

$$\mathscr{K}_{I} = \frac{1}{2} (\mathscr{K}_{I,0} + \mathscr{K}_{I,m_{t}})$$

 \hat{F}_I -s are related to \tilde{F}_I -s (asymptotic limits of F_I -s) through matching-coefficients \mathscr{C}_I -s

$$\tilde{F}_{I}\left(\frac{Q^{2}}{\mu^{2}},\frac{m_{t}^{2}}{\mu^{2}},\alpha_{s},\epsilon\right) = \mathscr{C}_{I}\hat{F}_{I}\left(\frac{Q^{2}}{\mu^{2}},\frac{m_{t}^{2}}{\mu^{2}},\alpha_{s},\epsilon\right)$$

Since \mathcal{X}_I encodes the universality of the IR singularities, we expect it to have equal contributions from its

- In summary, everything available in literature to compute the HLFF matching coefficients \mathscr{C}_I -s

50

With all these, we have successfully predicted the following quantities:

- 1. For the 3-loop HLFF, complete log-contributions (ser (eg., $\tilde{G}_1^{(3,0)}$ and $S^{(3,0)}$).
- 2. For the 4-loop HLFF:
 - e^{-3} at full-color
 - e^{-2} for full- n_l
 - e^{-1} with all orders in L
 - Finite term till L^2

tries in
$$L = \ln\left(-\frac{q^2}{m_t^2}\right)$$
) to the finite part, in the asymptotic limit

- these color-structures.
- our results in the large-*x* limit.

Thus, yet another strong **consistency-check**!

1. As discussed earlier, the matching coefficients \mathscr{C}_I are known only partially - the full n_I and color-planar contributions. Non-log contributions to the finite HLFF-s in the asymptotic limit have been obtained for

2. We have found perfect agreement between the color-planar predictions and our results, after expanding

52

- 1. Computed HLFF $(\alpha \mathcal{O}(\alpha_s^3))$ in the color-planar limit.
- 2. Multiple consistency checks analytic vs numeric, Ward, asymptotic limit ...
- 3. Essential for phenomenology, particularly B-physics.
- 4. Results have been independently confirmed in Fael, Huber, Lange, Müller, Schönwald, Steinhauser (2024).
- 5. Next steps: completing calculations for other color-structures (in-progress)...

53

Thanks!

54

Backup makerial

55

• Example 1:

 ϵ -coefficient for boundary integral J_2 : number with 100 digits precision.

For this case, the naive choice for the PSLQ basis works -

 $\{1, \zeta_2, \zeta_3, \zeta_2^2, \zeta_2\zeta_3, \zeta_5, \zeta_2^3, \zeta_2^2, \zeta_2^2\zeta_3, \zeta_2\zeta_5, \zeta_7\}$

result -

 $\frac{48}{5}\zeta_2^2 + \frac{2122}{35}\zeta_2^3 + 32\zeta_2\zeta_3 + \frac{681}{10}\zeta_2^2\zeta_3 + 12\zeta_3^2 + 8\zeta_5 - \frac{67}{2}\zeta_2\zeta_5 + \frac{8529}{16}\zeta_7$

56

• Example 2:

 ϵ -coefficient for boundary integral J_1 : number with 100 digits precision. For this case, the naive choice for the PSLQ basis does not work. *incorrect* result (at 83 to 94 digits of fitting-precision) -

$$\frac{169638071}{2242112} + \frac{3794333 \,\pi^2}{4484224} + \frac{35759009 \,\pi^4}{40358016} - \frac{3328583 \,\pi^6}{242148096} +$$

incorrect result (at 98 and 99 digits of fitting-precision) -

157188793	4722082655 π^2	$477444277 \pi^4$	1100756
53038334	318230004	1909380024	38187

 $4080315 \zeta_3$ + ... 2242112

572414197 ζ_3 $6927 \pi^6$ + ... 53038334 60048

57

• Example 2:

 ϵ -coefficient for boundary integral J_1 : number with 100 digits precision.

Prune the PSLQ basis -

 $\{1, \zeta_2, \zeta_3, \zeta_2^2, \zeta_2\zeta_3, \zeta_5, \zeta_2^3, \zeta_2^2, \zeta_2^2\zeta_3, \zeta_2\zeta_5, \zeta_7\}$

correct result -

 $\frac{39151}{90} + \frac{1211}{10}\zeta_2 + \frac{80939}{1440}\zeta_2^2 + \frac{71737}{720}\zeta_3 + \frac{20587}{1440}\zeta_2\zeta_3 + \frac{93589}{1200}\zeta_5$

58