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Heavy-ion collisions and the quark-gluon plasma

Study high-temperature
properties of the strong
interaction

Collision of atomic nuclei at
LHC or RHIC

Creates high-temperature
QCD matter =
Quark-Gluon plasma (QGP) [Alberica Toia 2013, CERN COURIER]
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Time-evolution of the QGP in heavy-ion collisions

before collision Glasma Pre-equilibrium local thermal equilibrium QGP

0.1 fm/c 1 fm/c 10 fm/c
Classical
Yang-Mills

QCD
kinetic theory Hydrodynamics Transport models

freeze-out

Interested in pre-equilibrium stages (“Initial stages”)
→ QCD out of equilibrium

(sign problem in lattice QCD)

[Rev.Mod.Phys. 93 (2021) [Berges, Heller, Mazeliauskas, Venugopalan]]
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How can we study the initial stages?

To study initial stages
→ very energetic or heavy probes
(must be created early)

Here depicted: jets

Highly energetic partons
created in initial collision
Splits into many particles
→ then measured in the detectors
Imprints of medium interactions

P

QK

z x

y

K'

P'
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Jet energy loss through medium-induced radiation

Very many works on energy loss of
energetic parton

Difficulties:
Including the LPM effect P

QK
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y

K'

P'

Florian Lindenbauer Hard probes during the initial stages in heavy-ion collisions 6 / 19



Jet energy loss through medium-induced radiation

Very many works on energy loss of
energetic parton

Difficulties:
Including the LPM effect

Harmonic approximation:
Depend on single
medium parameter q̂
“Jet quenching parameter”

Quantifies momentum broadening

q̂ =
d⟨p2⊥⟩
dL

=
d⟨p2⊥⟩
dt

=

∫
d2q⊥ q2⊥

dΓel

d2q⊥

P

QK

z x

y

K'

P'

Florian Lindenbauer Hard probes during the initial stages in heavy-ion collisions 6 / 19



Jet energy loss through medium-induced radiation

Very many works on energy loss of
energetic parton

Difficulties:
Including the LPM effect

Harmonic approximation:
Depend on single
medium parameter q̂
“Jet quenching parameter”

Quantifies momentum broadening

q̂ =
d⟨p2⊥⟩
dL

=
d⟨p2⊥⟩
dt

=

∫
d2q⊥ q2⊥

dΓel

d2q⊥

P

QK

z x

y

K'

P'

Florian Lindenbauer Hard probes during the initial stages in heavy-ion collisions 6 / 19



Estimates of q̂
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Estimates of q̂
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Estimates of q̂

q̂ in the glasma using τ expansion
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Estimates of q̂

q̂ in the glasma using classical
statistical simulations
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Goal of our work

Mostly considered in equilibrium
or hydrodynamics

Recently also considered in Glasma1

Goal: q̂ during thermalization
→ between Glasma and hydro

Question:
Supports large Glasma values?

Schematic overview of q̂ evolution

?
Glasma

Hydrodynamics

Kinetic
theory

1
[Phys.Lett.B 810 (2020) [Ipp, Müller, Schuh], Phys.Rev.C 105 (2022) [Carrington, Czajka, Mrowczynski], Phys.Rev.D 107 (2023)

[Avramescu, Baran, Greco, Ipp, Müller, Ruggieri]]
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Effective kinetic theory description of the QGP

Plasma without quarks

L = −1

4
F i
µνF

µν
i +ψ̄(i /D −m)ψ

Gluons with distribution function f (t,p)

Time evolution described by Boltzmann equation at leading-order2

2[JHEP 01 (2003) [Arnold, Moore, Yaffe], Int.J.Mod.Phys.E 16 (2007) [Arnold]]
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Effective kinetic theory description of the QGP

Plasma without quarks

Gluons with distribution function f (t,p)

Time evolution described by Boltzmann equation at leading-order2

Azimuthal symmetry around beam axis ẑ ,
Bjorken expansion, homogeneous in transverse plane

2[JHEP 01 (2003) [Arnold, Moore, Yaffe], Int.J.Mod.Phys.E 16 (2007) [Arnold]]
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Bottom-up thermalization in heavy-ion collisions

Initial condition3, with λ = g2NC

f (p⊥, pz) =
2A
λ

⟨pT ⟩√
p2⊥+ξ2p2z

× exp
(

−2
3⟨pT ⟩2

(
p2⊥ + ξ2p2z

))

ξ ∼ anisotropy, ⟨pT ⟩ = 1.8Qs ,
Qs ∼ saturation scale

Phase 1: Anisotropy increases
Phase 2: Occupancy decreases
Phase 3: System thermalizes at

time4 τBMSS =
(

λ
12π

)−13/5
/Qs

Markers represent different stages
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Time evolution of a purely gluonic plasma

3
[Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu]]

4
[Phys.Lett.B 502 (2001) [Baier, Mueller, Schiff, Son]]
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Generalization of q̂ → q̂ij for anisotropic systems

Previously (isotropic definition):

q̂ =
d⟨p2⊥⟩
dL

=
d⟨p2⊥⟩
dt

=

∫
d2q⊥ q2⊥

dΓel

d2q⊥

with elastic scattering rate Γel

To take into account anisotropies:
Define matrix

q̂ij =

∫
d2q⊥ qi⊥q

j
⊥
dΓel

d2q⊥

Thus q̂ = q̂yy + q̂zz (and q̂yz = 0)
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Jet quenching parameter in kinetic theory

Provided we know f (k):

q̂ij =

∫

q⊥<Λ⊥
p→∞

dΓPS q
iqj |M|2 f (k)

(
1 + f (k ′)

)

appropriate phase-space measure

Matrix element

with medium corrections (self-energy)

Incoming plasma particles

with momentum k

Outgoing plasma particle

P P+Q

K-QK

Medium modifications
(screening)

Matrix element

Leading jet parton Outgoing jet parton

Plasma particle
(quark, gluon)
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Making sense of the cutoff

Cutoff Λ⊥ restricts transverse momentum transfer q⊥ < Λ⊥
(needed in eikonal limit p → ∞)

q̂ ∼
∫

d2q⊥ q2⊥
dΓel

d2q⊥︸ ︷︷ ︸
1/q4⊥for large q⊥

∼
∫

dq⊥
q⊥

Cutoff somehow grow with jet energy

kinematic cutoff Λkin
⊥ (E ,T ) = ζking(ET )1/2

obtained from comparing leading log behavior for large p and Λ⊥

LPM cutoff ΛLPM
⊥ (E ,T ) = ζLPMg(ET 3)1/4

Estimate for momentum broadening during LPM ‘formation time’:
Q2

⊥ ∼ q̂t form, t form ∼
√
E/q̂, approximately q̂ ∼ g4T 3

[arXiv:2312.00447 [Boguslavski, Kurkela, Lappi, FL, Peuron]]Florian Lindenbauer Hard probes during the initial stages in heavy-ion collisions 13 / 19
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Results for q̂

Use cutoffs

ΛLPM
⊥ (E ,Tε) = ζLPMg(ET 3

ε )
1/4

Λkin
⊥ (E ,Tε) = ζking(ETε)

1/2
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[2303.12595 [Boguslavski, Kurkela, Lappi, FL, Peuron]]
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ΛLPM
⊥ (E ,Tε) = ζLPMg(ET 3

ε )
1/4

Λkin
⊥ (E ,Tε) = ζking(ETε)

1/2

Fix ζ i at triangle marker to match
with JETSCAPE5 for λ = 10, use
jet energy E = 100GeV and
Qs = 1.4GeV.

Obtain q̂ for multiple fixed Λ⊥.

Interpolate, using6

q̂xx(Λ⊥ ≫ Tε) ≃ ax ln
Λ⊥
Qs

+ bx
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[2303.12595 [Boguslavski, Kurkela, Lappi, FL, Peuron]]

5
[Phys.Rev.C 104 (2021) [JETSCAPE]]

6
[Values available at https://zenodo.org/records/10419537]
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Results for q̂

Use cutoffs

ΛLPM
⊥ (E ,Tε) = ζLPMg(ET 3

ε )
1/4

Λkin
⊥ (E ,Tε) = ζking(ETε)

1/2

Fix ζ i at triangle marker to match
with JETSCAPE5 for λ = 10, use
jet energy E = 100GeV and
Qs = 1.4GeV.

Obtain q̂ for multiple fixed Λ⊥.

Interpolate, using6

q̂xx(Λ⊥ ≫ Tε) ≃ ax ln
Λ⊥
Qs

+ bx
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Time evolution of jet quenching parameter

Model cutoff variation for fixed jet
energy

Dependence on initial conditions
and cutoff (bands)

Little jet energy dependence

Connects large values from
Glasma5 and lower values in
hydrodynamic stage
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Similar in spirit: Heavy quark diffusion κ

To study initial stages
→ very energetic or heavy probes
(must be created early)

Here depicted: jets

Highly energetic partons
created in initial collision
Splits into many particles
→ then measured in the detectors
Imprints of medium interactions

From jets to heavy quarks:

Jets: v → c , m → 0
Heavy quarks: v → 0, m → ∞

P

QK

z x

y

K'

P'
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Heavy quark diffusion coefficient κ

Similar idea as q̂: Study κ during
bottom-up thermalization

κ measures average momentum
transfer to heavy quark

κ =

∫
dΓP̃S q

2 |Mκ|2 f (k)
(
1 + f (k ′)

)

Mostly: more momentum
transfer in beam direction,
similar to q̂

[PoS HardProbes2023 (2024) [Avramescu, Băran, Greco, Ipp, Müller,

Ruggieri]]

[Phys.Rev.D 107 (2023) [Brambilla, Leino, Mayer-Steudte, Petreczky]]
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Anisotropies fall on universal curve . . .
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Approach to universal curve when scaled with τBMSS = α−13/5/Qs

Many quantities plotted as function of different time . . .

[Phys.Lett.B 852 (2024)]

[Boguslavski, Kurkela, Lappi, FL, Peuron]
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Conclusions and outlook

Studied momentum broadening of jets and heavy-quarks
during initial stages in heavy-ion collisions

Values of q̂ and κ within 30% of thermal estimate

q̂ connects to Glasma, κ shows larger deviations

More momentum broadening along the beam axis (q̂zz > q̂yy )

Outlook

Accelerating EKT simulations using machine learning

Revisit approximations in EKT simulations (HTL-screening)

Obtain gluon emission spectrum from pre-equilibrium q̂

[Code and data: https://zenodo.org/records/10419537, https://zenodo.org/records/10409474]
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Bottom-up vs. hydrodynamic attractor

Often universal behavior in τ/τR ,

τR =
4πη/s

T
.
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Bottom-up vs. hydrodynamic attractor

Often universal behavior in τ/τR ,

τR =
4πη/s

T
.

Conformal (first order) relativistic hydrodynamics 6:

PL

PT
= 1− 8

η/s

τT︸︷︷︸
∼τR/τ

6
[[Romatschke, Romatschke] (2019)]
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Bottom-up vs. hydrodynamic attractor

Often universal behavior in τ/τR ,

τR =
4πη/s

T
.

Two different pictures emerge:

Bottom-up expects thermalization around τBMSS = α
−13/5
s /Qs

Hydrodynamics expects thermalization around τR = 4πη/s
T

How to reconcile these different time scales?

Florian Lindenbauer Hard probes during the initial stages in heavy-ion collisions 1 / 14



Pressure ratio

Kinetic theory simulations for different couplings 0.5 ≤ λ ≤ 20 and
initial conditions.
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Curves approach limiting attractors after •
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T , τBMSS = α

−13/5
s /Qs
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Extrapolation to limiting attractors

Obtain limiting attractors by
extrapolating at fixed τ/τR or
τ/τBMSS

Bottom-up attractor: Linear
extrapolation to λ→ 0

Hydro attractor: Linear
extrapolation to 1/λ→ 0 0 2 4 6 8 10 12
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)
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s /Qs
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q̂ and the limiting attractors
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Approach to weak coupling attractor even at moderate couplings

[Phys.Lett.B 852 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron]]
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κ and the limiting attractors
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Similar to q̂: Approach to weak coupling attractor even at moderate λ

[Phys.Lett.B 852 (2024) [Boguslavski, Kurkela, Lappi, FL, Peuron]]
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Bose-enhanced terms

q̂ for fixed coupling λ = 2 and
varying cutoffs Λ⊥

2D distribution

f (k) ∼ δ(kz)

Leads to q̂zzff = 0

Reason for different ordering:
Bose-enhanced part q̂ff = term
quadratic in f (k)
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q̂ and the limiting attractors
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Approach to weak coupling attractor even at moderate couplings
Fit for bottom-up attractor:
q̂yy

q̂zz (τ) ≈ 1 + c1 ln
(
1− e−c2τ/tauBMSS

)
with c1 = 0.12, c2 = 3.45.
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Screening in the matrix element of q̂

Scattering matrix element includes in-medium
propagator

Receives self-energy corrections

Anisotropic hard thermal loop (HTL) self-energy →
unstable modes6

Approximation: Use isotropic HTL matrix
element
Similar approximation also in EKT implementations7

P P+Q

K-QK

Medium modifications
(screening)

Matrix element

Leading jet parton Outgoing jet parton

Plasma particle
(quark, gluon)

6[Phys.Rev.D 68 (2003) [Romatschke, Strickland]]
7[Phys.Rev.Lett. 115 (2015) [Kurkela, Zhu]; Phys.Rev.Lett. 122 (2019) [Kurkela, Mazeliauskas];

Phys.Rev.D 104 (2021) [Du, Schlichting]]
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Screening approximation to the matrix element

Compare with simple screening
approximation

(s − u)2

t2
→ (s − u)2

t2
q4

(q2 + ξ2Tm
2
D)

2

Longitudinal8 ξL = e5/6/
√
8

Transverse broadening:
ξT = e1/3/2

Good agreement
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s, u, t: Mandelstam variables
8[Phys.Rev.D 89 (2014) [York, Kurkela, Lu, Moore]]
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What about momentum broadening?

Per definition, q̂ =
d⟨p2⊥⟩
dτ

Näıvely ∆p2⊥ =
∫
dτ q̂(τ) over

lifetime of jet

But: only true if no splittings occur.

Think of q̂ as medium parameter. 10−1 100 101
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Toy model for underoccupation

Scaled thermal distribution

f (k ;T ) =
N+

exp(k/T )− 1

Explains ordering q̂therm ≶ q̂ for
underoccupancy

[arXiv:2312.00447 [Boguslavski, Kurkela, Lappi, FL, Peuron]]

Scaled thermal distribution
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Time evolution of q̂

Landau matching
εeq(Tε) = εsim

Obtain q̂ii for a fixed cutoff Λ⊥

For coupling

s

λ = 0.5

Mostly q̂zz > q̂yy →
Momentum broadening
along beam axis enhanced

Weak dependence on initial
anisotropy ξ
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Ratio of q̂yy/q̂zz

Ratio q̂yy/q̂zz follows attractor in
thermalization time τBMSS

→ “bottom-up limiting attractor”9
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λ→ 0 fit

9[arXiv:2312.11252 [Boguslavski, Kurkela, Lappi, FL, Peuron]]
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Cutoff dependence and comparison with equilibrium

q̂ for fixed coupling λ = 2

and
varying cutoffs Λ⊥

Ordering q̂yy ≶ q̂zz depends
on cutoff
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Cutoff dependence and comparison with equilibrium

q̂ for fixed coupling λ = 2 and
varying cutoffs Λ⊥

Ordering q̂yy ≶ q̂zz depends
on cutoff

Compare with energy-density
matched thermal equilibrium
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