The distribution amplitude of the η_c -meson at leading twist from Lattice QCD

Teseo San José

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

QCD Master Class 2024 *Saint-Jacut-de-la-Mer* 24 June to 5 July arXiv:2406.04668 In collaboration with B. Blossier M. Mangin-Brinet J.M. Morgado

Introduction

The factorization theorem helps us to compute complicated amplitudes,

$$\mathcal{A} = \mathcal{H} \otimes \mathcal{S}$$

Distribution amplitudes (DAs) are necessary in decays, annihilations, and DVMP

$$z^{\alpha} = (z^+, z^-, z^\perp) \quad z^2 = 0$$
$$\nu \equiv pz = p^+ z^- \qquad x = q^+/p^+$$

We study the DA of the $\eta_{\rm c}\text{-meson,}$

$$2\pi\phi(x) = \int \mathrm{d}z^- \, e^{\mathrm{i}(x-1/2)\nu} M^+(\nu)$$

where the loffe-time DA is (see yesterday's talk by Leonid)

$$M^{+}(\nu) = \left. \left\langle \eta_{c}(p) \middle| \bar{c}(-z/2) \gamma^{+} \gamma_{5} W(-z/2, z/2) c(z/2) \middle| 0 \right\rangle \right|_{z^{+}, z^{\perp} = 0}$$

Short distance factorization

Move to Euclidean space Problem

We can only compute $z_{\alpha} = (z_{\perp}, z_3, z_4) = (0, 0, 0)$ Solution [6, 10, 13]

• Generalize $M_lpha(p,z)$ for $z^2>0$ and take $z^2
ightarrow 0$

$$M_{\alpha}(p,z) = e^{-i\nu/2} \left\langle \eta_{c}(p) \big| \bar{c}(0) \gamma_{\alpha} \gamma_{5} W(0,z) c(z) \big| 0 \right\rangle \Big|_{z_{\perp}=0, z_{4}=0}$$

$$M_{lpha}(p,z) = 2p_{lpha}\mathcal{M} + z_{lpha}\mathcal{M}'$$

- Set $p_{\alpha} = (0, p_3, E), z_{\alpha} = (0, z_3, 0)$
- Choose $\alpha =$ 4 to isolate $\mathcal{M}(\nu, z^2)$

ı.

Short distance factorization

Form the renormalized quantity [1, 9, 11]

$$\frac{\mathcal{M}(\textit{p},z)\mathcal{M}(0,0)}{\mathcal{M}(0,z)\mathcal{M}(\textit{p},0)} = \tilde{\phi}(\nu,z^2) + z^2 \times \text{higher twist}$$

Match to the $\overline{\text{MS}}$ light-cone quantity at $\mu = 3 \text{ GeV}$ [13]

$$\tilde{\phi}(\nu, z^2) = \int_0^1 \mathrm{d}w \ C(w, \nu, z\mu) \ \int_0^1 \mathrm{d}x \cos\left[w\nu\left(x - 1/2\right)\right] \phi(x, \mu)$$

The kernel *C* takes care of $\log\left(z^2\right) \to 0$

Parameterizing the DA

Expand the DA in a series of Gegenbauer polynomials [14]

$$\phi(x,\mu) = (1-x)^{\lambda-1/2} x^{\lambda-1/2} \sum_{n=0}^{\infty} d_{2n}^{(\lambda)} \tilde{G}_{2n}^{(\lambda)}(x), \text{ note } \lambda(\mu)$$

This expansion allows to rewrite the matching [13]

$$\tilde{\phi}(\nu,z^2) = \int_0^1 \mathrm{d}w \ C(w,\nu,z\mu) \ \int_0^1 \mathrm{d}x \cos\left(w\nu x - w\nu/2\right) \phi(x,\mu)$$

as

The CLS lattice ensembles

 $N_f = 2$ Coordinated Lattice Simulations [5, 7]

- Wilson gauge action
- $\mathcal{O}(a)$ -improved Wilson quarks
- $\kappa_u = \kappa_d := \kappa_\ell$
- No electromagnetism
- No Symanzik program for $M_lpha(p,z) o \mathcal{O}(a)$ lattice artifacts
- Between 1000 and 2000 measurements per ensemble

The CLS lattice ensembles

Symanzik studied the corrections to the continuum limit [2, 3, 4]

$$A[U] =_{a \to 0} a^{4} \sum_{n \in \Lambda} \left(L^{(0)}(n) + a L^{(1)}(n) + a^{2} L^{(2)}(n) \dots \right)$$

The Wilson gauge action is

It recovers the Yang-Mills action,

$$A_{G}[U] \underset{a \to 0}{=} \frac{\beta}{12} a^{4} \sum_{n \in \Lambda} \sum_{\mu, \nu} \operatorname{tr} \left[F_{\mu\nu}(n)^{2} \right] + \mathcal{O}(a^{2})$$

For the fermion action, we take its naive discretization and...

Remove extra poles (doublers) adding the Wilson term Remove O(a) lattice artifacts adding the clover term

n

 $n + \hat{\mu}$

Building an interpolator for η_c

Consider pseudo-scalar bilinear operators

$$O_{s}(n) = \bar{c}(n)\gamma_{5}\sum_{m} \left(\delta_{nm} + \kappa_{\mathsf{G}}\mathsf{H}(n,m)\right)^{s} c(m)$$

Form an $N \times N$ correlation matrix

$$C_{ij}(n_4) = \sum_{k=1}^{N} e^{-n_4 E_k} \langle 0|O_i|k \rangle \langle k|O_j^{\dagger}|0 \rangle$$

Consider the optimization problem

$$\begin{array}{ll} \underset{\{V_{\alpha}\}}{\text{maximize}} & \operatorname{tr}\left(V^{\dagger}C(n_{4})V\right)\\ \text{subject to} & V^{\dagger}C(m_{4})V = \rho\\ \end{array}$$
The solution is the GEVP

$$C(n_4)V_{\alpha} = C(m_4)V_{\alpha}\lambda_{\alpha}(n_4,m_4)$$

The lattice data

Ensemble G8

Entire dataset

Continuum extrapolation

Make all terms dimensionless with $\Lambda_{QCD}^{(2)}$

$$\begin{split} \tilde{\phi}_{e}(\nu, z^{2}) &= \tilde{\phi}(\nu, z^{2}) + z^{2} C_{1}(\nu) + aB_{1}(\nu) + \frac{a}{|z|} A_{1}(\nu) \\ &+ \frac{a}{|z|} \Big(\left(m_{\eta_{c}} - m_{\eta_{c}, \mathsf{phy}} \right) D_{1}(\nu) + \left(m_{\pi}^{2} - m_{\pi, \mathsf{phy}}^{2} \right) E_{1}(\nu) \Big) \end{split}$$

- The main ingredients are the
 - continuum $\tilde{\phi}(\nu, z^2)$

$$\tilde{\phi}(\nu, z^2) = \frac{4^{\lambda} \sigma_0^{(\lambda)}(\nu, z^2)}{B\left(\frac{1}{2}, \frac{1}{2} + \lambda\right)}$$

- higher-twist continuum C₁
- z-dependent A_1 , and global B_1 lattice artifacts
- mass-dependent corrections D_1 and E_1

Results on the light cone

We compare to alternative determinations [8, 12]

	This work	Dyson-Schwinger	NRQCD
$\langle \xi^2 \rangle$	0.134(6)	0.118(18)	0.171(23)
$\langle \xi^4 \rangle$	0.043(4)	0.036(9)	0.018808(19)

where $\xi \equiv -1 + 2x$

Conclusions and outlook

We compute the η_c DA with $N_f = 2$ CLS ensembles and obtain

$$\phi(x,\mu) = \frac{4^{\lambda}(1-x)^{\lambda-1/2}x^{\lambda-1/2}}{B(1/2,1/2+\lambda)}$$

defined at $\mu=3\,{\rm GeV}$ and

$$\lambda = 2.73 \pm 0.12 \pm 0.12 \pm 0.06$$

In this analysis, we have seen that

- The comparison with Dyson-Schwinger is good
- Analysis choices yield sizable systematic uncertainties
- Finite-size effects are negligible

In the future, we will tackle

• Missing sea-quarks with $N_f = 2 + 1 + 1$ ensembles

id	β	<i>a</i> [fm]	L/a	$m_\pi~[{ m MeV}]$	κ_ℓ	κ_{c}
A5	5.2	0.0755(9)(7)	32	331	0.13594	0.12531
B6			48	281	0.13597	0.12529
D5	5.3	0.0658(7)(7)	24	450	0.13625	0.12724
E5			32	437	0.13625	0.12724
F6			48	311	0.13635	0.12713
F7			48	265	0.13638	0.12713
G8			64	185	0.136417	0.12710
N6	5.5	0.0486(4)(5)	48	340	0.13667	0.13026
07			64	268	0.13671	0.13022

Objective: Compute the matching integrals

$$\tilde{\phi}(\nu,z) = \int_0^1 \mathrm{d}w \ C(w,\nu,z\mu) \int_0^1 \mathrm{d}x \cos\left[w\nu\left(x-1/2\right)\right] \phi(x,\mu)$$

Definitions: The DA matching kernel is [13]

$$C(w,\nu,z\mu) = \delta(w-1) - \frac{\alpha_{s}C_{F}}{2\pi} \left[\log\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right) B(w,\nu) + L(w,\nu) \right]$$

where the scale μ_0 contains the z^2 dependence

$$rac{1}{\mu_0^2} \equiv rac{z^2 \ e^{2\gamma_{\mathsf{E}}+1}}{4}$$

we take $\mu = 3 \,\mathrm{GeV}$

The contribution $B(w, \nu)$ is [13]

$$B(w,\nu) = \left[\frac{2w}{1-w}\right]_+ \cos\left(\frac{(1-w)\nu}{2}\right) + \frac{2}{\nu}\sin\left(\frac{(1-w)\nu}{2}\right) - \frac{1}{2}\delta(w-1)$$

And the contribution $L(w, \nu)$ is [13]

$$L(w,\nu) = 4 \left[\frac{\log(1-w)}{1-w} \right]_{+} \cos\left(\frac{(1-w)\nu}{2}\right)$$
$$- 2 \left(\frac{2}{\nu} \sin\left(\frac{(1-w)\nu}{2}\right) - \frac{1}{2}\delta(w-1)\right)$$

Given two functions f(x) and g(x) defined in a certain domain, the plus prescription is

$$\left[\frac{f(x)}{1-x}\right]_{+}g(x) = \frac{f(x)}{1-x}(g(x) - g(1))$$

Method: Rewrite the relation between $\tilde{\phi}(\nu, z)$ and $\phi(x, \mu)$

$$\tilde{\phi}(\nu, z) = \int_0^1 \mathrm{d}x \, K(x, \nu, \mu z) \phi(x, \mu)$$

write the kernel as a series of Gegenbauer polynomials

$$\mathcal{K}(x,\nu,\mu z) = \sum_{n=0}^{\infty} \frac{\sigma_{2n}^{(\lambda)}(\nu,z\mu)}{A_{2n}^{(\lambda)}} \tilde{G}_{2n}^{(\lambda)}(x)$$

and every coefficient in the series is given by

$$\sigma_n^{(\lambda)}(\nu, z\mu) = \sum_{k=0}^{\infty} \left(-\frac{\nu^2}{4}\right)^k \frac{c_{2k}(\nu, z\mu)}{\Gamma(2k+1)} I(n, k, \lambda)$$

See [14] for a similar analysis of PDFs

The $\lambda\text{-dependent}$ function is the Mellin transform of the Gegenbauer polynomials

$$I(n,k,\lambda) \equiv \int_{-1}^{+1} \mathrm{d}g \, g^{2k} (1-g^2)^{\lambda-1/2} G_n^{(\lambda)}(g)$$
$$= \frac{2\pi}{4^{\lambda+k} n!} \frac{\Gamma(1+2k)\Gamma(n+2\lambda)}{\Gamma(\lambda)\Gamma\left(\lambda+\frac{n+2k+2}{2}\right)\Gamma\left(1+k-\frac{n}{2}\right)}$$

The n-th moment of the kernel is given by

$$c_n(\nu, z\mu) = \int_0^1 \mathrm{d}w \ C(w, \nu, z\mu)w^n$$
$$= 1 - \frac{\alpha_{\mathsf{s}} C_{\mathsf{F}}}{2\pi} \left[\log\left(\frac{\mu^2}{\mu_0^2}\right) b_n(\nu) + I_n(\nu) \right]$$

$$I(0, k, \lambda) = B(\lambda + \frac{1}{2}, k + \frac{1}{2})$$

$$I(2, k, \lambda) = 2\lambda k B(\lambda + \frac{3}{2}, k + \frac{1}{2})$$

$$I(4, k, \lambda) = \frac{2}{3}(\lambda + 1)\lambda k(k - 1)B(\lambda + \frac{5}{2}, k + \frac{1}{2})$$

$$I(6, k, \lambda) = \frac{4}{45}(2 + \lambda)(1 + \lambda)\lambda k(k - 1)(k - 2)B(\lambda + \frac{7}{2}, k + \frac{1}{2})$$

$$I(8, k, \lambda) = \frac{2}{315}(3 + \lambda)(2 + \lambda)(1 + \lambda)\lambda k(k - 1)(k - 2)(k - 3)$$

$$B(\lambda + \frac{9}{2}, k + \frac{1}{2})$$

The moments of B(w) are given by

$$\begin{split} b_n(\nu) &= -\sum_{j=0}^{n-1} \frac{2}{j+2} {}_1F_2\left(1, \frac{j+3}{2}, \frac{j+4}{2}, -\frac{\nu^2}{16}\right) \\ &- \frac{\nu^2}{24} {}_2F_3\left(1, 1, 2, 2, 5/2, -\frac{\nu^2}{16}\right) \\ &- \frac{1}{2} + \frac{1}{(n+2)(n+1)} {}_1F_2\left(1, \frac{n+3}{2}, \frac{n+4}{2}, -\frac{\nu^2}{16}\right) \end{split}$$

Note all hypergeometric functions ${}_{p}F_{q}$ have $p \leq q \leftrightarrow$ Converge for all ν values [15]

The moments of L(w) are given by

$$\begin{split} I_n(\nu) &= 4 \sum_{j=0}^{n-1} \binom{n}{j+1} \frac{(-1)^j}{(j+1)^2} F_3\left(\frac{j+1}{2}, \frac{j+1}{2}, \frac{1}{2}, \frac{j+3}{2}, \frac{j+3}{2}, -\frac{\nu^2}{16}\right) \\ &+ \frac{\nu^2}{8} F_4\left(1, 1, 1, \frac{3}{2}, 2, 2, 2, -\frac{\nu^2}{16}\right) \\ &+ 1 - \frac{2}{(n+2)(n+1)} F_2\left(1, \frac{n+3}{2}, \frac{n+4}{2}, -\frac{\nu^2}{16}\right) \end{split}$$

Note all hypergeometric functions ${}_{p}F_{q}$ have $p \leq q \leftrightarrow$ Converge for all ν values [15]

Nuisance functions

The nuisance functions are parametrized just like $\phi(x, \mu)$

$$A_r^{(\lambda)}(x) = (1-x)^{\lambda-1/2} x^{\lambda-1/2} \sum_{s=0}^{S_{a,r}} a_{r,2s}^{(\lambda)} \tilde{G}_{2s}^{(\lambda)}(x)$$

Fourier transform to ν space,

$$A_{r}^{(\lambda)}(\nu) = \int_{0}^{1} \mathrm{d}x \, A_{r}^{(\lambda)}(x) \cos(x\nu - \nu/2) = \sum_{s=0}^{S_{A,r}} a_{r,2s}^{(\lambda)} \sigma_{\mathsf{LO},2s}^{(\lambda)}(\nu)$$

Nuisance effects vanish at $\nu = 0$

$$a_{r,0}^{(\lambda)}=0 \hspace{0.1cm} \longleftrightarrow \hspace{0.1cm} ilde{\phi}(
u=0,z)=1$$

Enough to consider $S_{A_r} = 1$ $a_{1,2}, b_{1,2}, c_{1,2}, d_{1,2}, e_{1,2}$

Pion mass dependence

References I

- N. S. Craigie and Harald Dorn. "On the Renormalization and Short Distance Properties of Hadronic Operators in QCD". In: *Nucl. Phys. B* 185 (1981), pp. 204–220. DOI: 10.1016/0550-3213(81)90372-2.
- [2] K. Symanzik. "Continuum Limit and Improved Action in Lattice Theories. 1. Principles and φ^4 Theory". In: *Nucl. Phys. B* 226 (1983), pp. 187–204. DOI: 10.1016/0550-3213(83)90468-6.
- K. Symanzik. "Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Nonlinear Sigma Model in Perturbation Theory". In: *Nucl. Phys. B* 226 (1983), pp. 205–227. DOI: 10.1016/0550-3213(83)90469-8.

References II

- M. Luscher and P. Weisz. "On-Shell Improved Lattice Gauge Theories". In: Commun. Math. Phys. 97 (1985). [Erratum: Commun.Math.Phys. 98, 433 (1985)], p. 59. DOI: 10.1007/BF01206178.
- [5] Patrick Fritzsch et al. "The strange quark mass and Lambda parameter of two flavor QCD". In: Nucl. Phys. B 865 (2012), pp. 397-429. DOI: 10.1016/j.nuclphysb.2012.07.026. arXiv: 1205.5380 [hep-lat].
- [6] Xiangdong Ji. "Parton Physics on a Euclidean Lattice". In: Phys. Rev. Lett. 110 (2013), p. 262002. DOI: 10.1103/PhysRevLett.110.262002. arXiv: 1305.1539 [hep-ph].

- Jochen Heitger et al. "Charm quark mass and D-meson decay constants from two-flavour lattice QCD". In: *PoS* LATTICE2013 (2014), p. 475. DOI: 10.22323/1.187.0475. arXiv: 1312.7693 [hep-lat].
- [8] Minghui Ding et al. "Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia". In: *Phys. Lett. B* 753 (2016), pp. 330–335. DOI: 10.1016/j.physletb.2015.11.075. arXiv: 1511.04943 [nucl-th].
- [9] Orginos et al. "Lattice QCD exploration of parton pseudo-distribution functions". In: *Phys. Rev. D* 96.9 (2017), p. 094503. DOI: 10.1103/PhysRevD.96.094503.

- [10] A. V. Radyushkin. "Quasi-parton distribution functions, momentum distributions, and pseudo-parton distribution functions". In: *Phys. Rev. D* 96.3 (2017), p. 034025. DOI: 10.1103/PhysRevD.96.034025. arXiv: 1705.01488 [hep-ph].
- Karpie, Orginos, and Zafeiropoulos. "Moments of loffe time parton distribution functions from non-local matrix elements". In: *JHEP* 11 (2018), p. 178. DOI: 10.1007/JHEP11(2018)178.
- [12] Hee Sok Chung et al. "Pseudoscalar Quarkonium+gamma Production at NLL+NLO accuracy". In: JHEP 10 (2019), p. 162. DOI: 10.1007/JHEP10(2019)162. arXiv: 1906.03275 [hep-ph].

References V

- Anatoly V. Radyushkin. "Generalized parton distributions and pseudodistributions". In: *Phys. Rev. D* 100.11 (2019), p. 116011. DOI: 10.1103/PhysRevD.100.116011. arXiv: 1909.08474 [hep-ph].
- [14] Joseph Karpie et al. "The continuum and leading twist limits of parton distribution functions in lattice QCD". In: JHEP 11 (2021), p. 024. DOI: 10.1007/JHEP11(2021)024. arXiv: 2105.13313 [hep-lat].
- [15] NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release 1.1.10 of 2023-06-15.
 F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. URL: https://dlmf.nist.gov/.