Forward inclusive hadron/jet productions in pA collisions

QCD MASTER CLASS Saint-Jacut-de-Ia-Mer, France

Collaborators: Lin Chen, Yu Shi, Zhan Gao, Shu-yi Wei, Bo-wen Xiao

Outline

- Introduction
- Precision study for forward hadron productions
- Forward single inclusive jet productions
- summary \& outlook

Color Glass Condensate

Deep inelastic scattering

$$
Q^{2} \equiv-q^{2},
$$

$$
x_{B j} \equiv \frac{Q^{2}}{2 P \cdot q},
$$

$$
x_{B j}=\frac{Q^{2}}{\hat{s}+Q^{2}-m^{2}}=\frac{Q^{2}}{2 m v},
$$

$$
y \equiv \frac{P \cdot q}{P \cdot p}
$$

$\nu \equiv \frac{P \cdot q}{m}=E-E^{\prime}$,
High energy=small x

Infinite momentum frame or Bjorken frame

linear evolution
(BFKL)

Three gluon vertex

Non-linear dynamics (BK/JIMWLK)

Color Glass Condensate

The proton wave function is determined
by x and Q

High number of gluons populate the transverse extend of the proton or nucleus, leading to a very dense saturated wave function. Color Glass Condensate (CGC) is the effective theory to study this kind of dense gluon system.

Color Glass Condensate

H1 and ZEUS

High energy QCD map

Partons in the low-x region is dominated by gluons
Collinear evolution: BFKL
Low Q^{2} and low x region \Rightarrow Non-linear evolution: BK/JIMWLK
Saturation momentum: $Q_{S}(Y)$

$$
Q_{s}^{2} \sim A^{1 / 3} x^{-\lambda} \text {. For EIC, } A \simeq 200, \lambda \simeq 0.2, Q_{s}^{2} \simeq 1 \sim 2 G e v^{2}
$$

Color Glass Condensate

We use Wilson line to represent the multiple scattering between the fast moving parton and target background fields!

Fundamental representation-multiple scattering between fast moving quark and target dense gluons

Wilson Line

$$
\begin{aligned}
& U\left(x_{\perp}\right)=P \exp \left\{-i g_{S} \int_{-\infty}^{+\infty} \mathrm{d} x^{+} A_{a}^{-}\left(x^{+}, x_{\perp}\right) t^{a}\right\} \\
& W^{a b}\left(x_{\perp}\right)=2 \operatorname{Tr}\left[t^{a} U\left(x_{\perp}\right) t^{b} U^{\dagger}\left(x_{\perp}\right)\right]
\end{aligned}
$$

x_{\perp} 180gororrop00000000

The color dipole in McLerran-Venugopalan model

$$
\begin{aligned}
& S\left(x_{\perp}-y_{\perp}\right)=\frac{1}{N_{c}} \operatorname{Tr}\left\langle U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\rangle=e^{-\frac{Q_{c}^{2}\left(x_{\perp}-y_{\perp}\right)^{2}}{4}} \\
& \mathcal{F}\left(k_{\perp}\right) \equiv \frac{d N}{d^{2} k_{\perp}}=\int \frac{d^{2} x_{\perp} d^{2} y_{\perp}}{(2 \pi)^{2}} e^{-i k_{\perp} \cdot\left(x_{\perp}-y_{\perp}\right)} \frac{1}{N_{c}}\left\langle\operatorname{Tr} U\left(x_{\perp}\right) U^{\dagger}\left(y_{\perp}\right)\right\rangle
\end{aligned}
$$

y_{\perp}

Proton-nucleus collisions

Searching for Parton saturation in dilute-dense scatterings: ep \& eA \& pA.
Single inclusive hadron productions in pA collisions

LO calculation

$$
\begin{aligned}
& \frac{d \sigma_{\mathrm{LO}}^{p A} \rightarrow}{d^{2} p_{\perp} d y_{h}}=\int_{\tau}^{1} \frac{d z}{z^{2}} \sum_{f} x_{p} q_{f}\left(x_{p}\right) F\left(k_{\perp}\right) D_{h / q}(z) \\
& F\left(k_{\perp}\right)=\int \frac{d^{2} x_{\perp} d^{2} y_{\perp}}{(2 \pi)^{2}} e^{-i k_{\perp} \cdot\left(x_{\perp}-y_{\perp} \perp\right.} S_{Y}^{(2)}\left(x_{\perp}, y_{\perp}\right)
\end{aligned}
$$

Proton-nucleus collisions

LO calculation

They both used the K factor!

Higher order calculations are needed!

- Incuding higher order corrections may give more accurate answers.
- Going to higher orders can open new channels and can sometimes result in large corrections.
- Going to higher orders cancels some but not all of factorization scale dependence.

Proton-nucleus collisions

NLO diagrams in the $q \rightarrow q$ channel

Dumitru, Hayashigakia and Jalilian-Marianb,
Altinoluk and Kovner, PRD, 2011 Chirilli, Xiao and Yuan, PRL, 2011 Chirilli, Xiao and Yuan, PRD, 2012 Kang, Vitev, Xing, PRL, 2014

1. Both real and virtual diagrams should be considered!
2. Grey blobs indicates the multiple interactions!
3. Integrate over gluon phase space \Rightarrow divergences!

Proton-nucleus collisions

Three kinds of divergences:

Rapidity Divergence

Collinear Divergence (P)

Collinear Divergence (F)

1. Collinear to the target nucleus $\Rightarrow \mathrm{BK}$ evolution equation!
2. Collinear to the initial state quark \Rightarrow DGLAP evolution of PDFs!
3. Collinear to the final state quark \Rightarrow DGLAP evolution of FFs!

Proton-nucleus collisions

For the $q \rightarrow q$ channel, the factorization formula can be written as

$$
\begin{aligned}
& \frac{d^{3} \sigma^{p+A \rightarrow h+X}}{d y d^{2} p_{\perp}}=\int \frac{d z}{z^{2}} \frac{d x}{x} \xi x q(x, \mu) D_{h / q}(z, \mu) \int \frac{d^{2} x_{\perp} d^{2} y_{\perp}}{(2 \pi)^{2}}\left\{S_{Y}^{(2)}\left(x_{\perp}, y_{\perp}\right)\left[\mathcal{H}_{2 q q}^{(0)}+\frac{\alpha_{s}}{2 \pi} \mathcal{H}_{2 q q}^{(1)}\right]\right. \\
& \left.+\int \frac{d^{2} b_{\perp}}{(2 \pi)^{2}} S_{Y}^{(4)}\left(x_{\perp}, b_{\perp}, y_{\perp}\right) \frac{\alpha_{s}}{2 \pi} \mathcal{H}_{4 q q}^{(1)}\right\} \\
& \text { with } \mathcal{H}_{2 q q}^{(0)}=e^{-i k^{\prime}} \cdot^{\cdot r} \perp \delta(1-\xi) \text { and } \\
& \mathcal{H}_{2 q q}^{(1)}=\quad C_{F} \mathcal{P}_{q q}(\xi) \ln \frac{c_{0}^{2}}{r_{\perp}^{2} \mu^{2}}\left(e^{-i k_{\perp} \cdot r_{\perp}}+\frac{1}{\xi^{2}} e^{-i \frac{k}{\xi} \cdot r_{\perp}}\right)-3 C_{F} \delta(1-\xi) e^{-i k_{\perp} \cdot r_{\perp}} \ln \frac{c_{0}^{2}}{r_{\perp}^{2} k_{\perp}^{2}} \\
& g \rightarrow g g \\
& -\left(2 C_{F}-N_{C}\right) e^{-i k_{\perp} \cdot r_{\perp}}\left[\frac{1+\xi^{2}}{(1-\xi)_{+}} \widetilde{I}_{21}-\left(\frac{\left(1+\xi^{2}\right) \ln (1-\xi)^{2}}{1-\xi}\right)_{+}\right] \\
& \mathcal{H}_{4 q q}^{(1)}=-4 \pi N_{C} e^{-i k_{\perp} \cdot r_{\perp}}\left\{e^{-i \frac{1-\xi_{k}}{\xi} k_{\perp} \cdot\left(x_{\perp}-b_{\perp}\right)} \frac{1+\xi^{2}}{(1-\xi)_{+}} \frac{1}{\xi} \frac{x_{\perp}-b_{\perp}}{\left(x_{\perp}-b_{\perp}\right)^{2}} \cdot \frac{y_{\perp}-b_{\perp}}{\left(y_{\perp}-b_{\perp}\right)^{2}}\right. \\
& \left.-\delta(1-\xi) \int_{0}^{1} d \xi^{\prime} \frac{1+\xi^{\prime 2}}{\left(1-\xi^{\prime}\right)_{+}}\left[\frac{e^{-i\left(1-\xi^{\prime}\right) k_{\perp} \cdot\left(y_{\perp}-b_{\perp}\right)}}{\left(b_{\perp}-y_{\perp}\right)^{2}}-\delta^{(2)}\left(b_{\perp}-y_{\perp}\right) \int d^{2} r_{\perp}^{\prime} \frac{e^{i k} \perp \cdot r_{\perp}^{\prime}}{r_{\perp}^{\prime 2}}\right]\right\} \\
& \text { where } \\
& \widetilde{I}_{21}=\int \frac{d^{2} b_{\perp}}{\pi}\left\{e^{-i(1-\xi) k_{\perp} \cdot b_{\perp}}\left[\frac{b_{\perp} \cdot\left(\xi b_{\perp}-r_{\perp}\right)}{b_{\perp}^{2}\left(\xi b_{\perp}-r_{\perp}\right)^{2}}-\frac{1}{b_{\perp}^{2}}\right]+e^{-i k_{\perp} \cdot b_{\perp}} \frac{1}{b_{\perp}^{2}}\right\}
\end{aligned}
$$

Proton-nucleus collisions

Numerical calculations for NLO from SOLO (Saturation physics at One Loop Order)
BRAHMS $\eta=2.2,3.2$

1.Perfect description at low p_{T},
2. There is no K factor.
2.Cross-section turns negative at high p_{T}

Our motivation!

Stasto, Xiao and Zaslavsky, PRL, 2013

Proton-nucleus collisions

Lots of contributions for solving the negative puzzle

Watanabe, Xiao, Yuan and Zaslavsky, PRD, 2015

Watanabe, Xiao, Yuan and Zaslavsky, PRD, 2015
Altinoluk, et al, PRD, 2015
Iancu, et al, JHEP, 2016

$$
\ln \frac{1}{+\ln \xrightarrow[\perp]{k_{\perp}^{2}} \Rightarrow \quad \text { Ducloué, Lappi, Zhu, PRD, 2016, } 2017}
$$

Ducloué, et al, PRD, 2018
Xiao, Yuan, PLB, 2019 Liu, Ma, Chao, PRD, 2019 Liu, Kang, Liu, PRD, 2020 Liu, Liu, Shi, Zheng, Zhou, 20ఓఓ
factorization scheme; kinematic constraint; running coupling effect;
Our approach! « Threshold resummation

The origin of the negativity

Where is the negativity from?

$$
H_{a b} \sim P_{q q}(\xi)=\frac{1+\xi^{2}}{(1-\xi)_{+}}+\frac{3}{2} \delta(1-\xi)
$$

$$
P_{g g}(\xi)=2\left[\frac{\xi}{(1-\xi)_{+}}+\frac{1-\xi}{\xi}+\xi(1-\xi)\right]+\left(\frac{11}{6}-\frac{2 N_{f} T_{R}}{3 N_{C}}\right) \delta(1-\xi)
$$

$$
\tau=x z \xi=P_{T} e^{y} / \sqrt{s}
$$

$$
\int_{\tau}^{1} d \xi \frac{1}{(1-\xi)_{+}} f(\xi)=\int_{\tau}^{1} d \xi \frac{f(\xi)-f(1)}{1-\xi}+f(1) \ln (1-\tau)
$$

The origin of the negativity

The plots of τ as a function of rapidity and transverse momemtum

- The upper-most solid line $z=1$.
- The lower-most solid line is corresponding to the boundary given by $x_{g}=0.01$.
- The region in the red and yellow indicates where the threshold resummation becomes important.

Fourier transform

It is impossible to do the numerical calculation in the coordinate space!

$$
\frac{d \sigma}{d \mathcal{P . S}} \propto \int \frac{d^{2} r_{\perp}}{(2 \pi)^{2}} \exp \left[-i \vec{k}_{T} \cdot \vec{r}_{\perp}\right] \quad \text { numerical FT becomes unstable at large } k_{T}
$$

Fourier transform

Fourier transform cross-section into the momentum space

$$
\begin{aligned}
\int \frac{\mathrm{d}^{2} r_{\perp}}{(2 \pi)^{2}} e^{-i k_{\perp} \cdot r_{\perp}} S^{(2)}\left(r_{\perp}\right) \ln \frac{c_{0}^{2}}{r_{\perp}^{2} \mu^{2}} & =\frac{1}{\pi} \int \frac{\mathrm{~d}^{2} l_{\perp}}{l_{\perp}^{2}}\left[F\left(k_{\perp}-l_{\perp}\right)-J_{0}\left(\frac{c_{0}}{\mu}\left|l_{\perp}\right|\right) F\left(k_{\perp}\right)\right] \\
& =\frac{1}{\pi} \int \frac{\mathrm{~d}^{2} l_{\perp}}{l_{\perp}^{\perp}}\left[F\left(k_{\perp}-l_{\perp}\right)-\frac{\Lambda^{2}}{\Lambda^{2}+l_{\perp}^{2}} F\left(k_{\perp}\right)\right]+F\left(k_{\perp}\right) \ln \frac{\Lambda^{2}}{\mu^{2}}
\end{aligned}
$$

coordinate space

$$
P(\xi) \otimes \ln \frac{\mu^{2}}{\mu_{r}^{2}}
$$

$$
\sigma_{0} \otimes \ln \frac{k_{T}^{2}}{\mu_{r}^{2}}
$$

$$
\sigma_{0} \otimes \ln ^{2} \frac{k_{T}^{2}}{\mu_{r}^{2}}
$$

collinear logarithm

$$
\sigma_{0} \otimes\left[\ln \frac{k_{T}^{2}}{\Lambda^{2}}+I_{1}(\Lambda)\right]
$$

$$
\sigma_{0} \otimes\left[\ln ^{2} \frac{k_{T}^{2}}{\Lambda^{2}}+I_{2}(\Lambda)\right]
$$

soft logarithm

Threshold resummation

Two kinds of methods to resum the collinear logarithms

1. Reverse-evolution approach DGLAP

$$
\left[\begin{array}{l}
q\left(x_{p}, \mu\right) \\
g\left(x_{p}, \mu\right)
\end{array}\right]+\frac{\alpha_{s}}{2 \pi} \ln \frac{\Lambda^{2}}{\mu^{2}} \int_{x_{p}}^{1} \frac{\mathrm{~d} \xi}{\xi}\left[\begin{array}{ll}
C_{F} \mathcal{P}_{q q}(\xi) & T_{R} \mathcal{P}_{q g}(\xi) \\
C_{F} \mathcal{P}_{g q}(\xi) & N_{C} \mathcal{P}_{g g}(\xi)
\end{array}\right]\left[\begin{array}{l}
q\left(x_{p} / \xi, \mu\right) \\
g\left(x_{p} / \xi, \mu\right)
\end{array}\right] \Rightarrow\left[\begin{array}{l}
q\left(x_{p}, \Lambda\right) \\
g\left(x_{p}, \Lambda\right)
\end{array}\right]
$$

2. Renormalization group equation approach

$$
\begin{aligned}
& P_{q q}(N)=\int_{0}^{1} \mathrm{~d} \xi \xi^{N-1} P_{q q}(\xi)=-2 \gamma_{E}-2 \ln N+\frac{3}{2}+\mathcal{O}\left(\frac{1}{N}\right) \\
& q^{\mathrm{res}}(N)=q(N) \exp \left[-\frac{\alpha_{s}}{\pi} C_{F} \ln \frac{\Lambda^{2}}{\mu^{2}}\left(\gamma_{E}-\frac{3}{4}+\ln N\right)\right]
\end{aligned}
$$

$$
\Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega\right)=\frac{e^{-\gamma_{\Lambda, \mu}^{q}\left(\gamma_{E}-\frac{3}{4}\right)}}{\Gamma\left(\gamma_{\Lambda, \mu}^{q}\right)} \omega^{\gamma_{\Lambda, \mu}^{q},-1}, \quad \omega \equiv \ln \frac{1}{\xi}, \quad \gamma_{\Lambda, \mu}^{q}=C_{F} \int_{\mu^{2}}^{\Lambda^{2}} \frac{\mathrm{~d} \mu^{\prime 2}}{\mu^{\prime 2}} \frac{\alpha_{s}\left(\mu^{\prime 2}\right)}{\pi}
$$

Two approaches are numerically equivalent!

$$
\frac{\mathrm{d} \Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega\right)}{\mathrm{d} \ln \mu^{2}}=-\frac{\alpha_{s} C_{F}}{\pi}\left[\ln \omega+\frac{3}{4}\right] \Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega\right)+\frac{\alpha_{s} C_{F}}{\pi} \int_{0}^{\omega} \mathrm{d} \omega^{\prime} \frac{\Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega\right)-\Delta^{q}\left(\Lambda^{2}, \mu^{2}, \omega^{\prime}\right)}{\omega-\omega^{\prime}}
$$

Threshold resummation

Resummation of the soft/Sudakov logarithms

$$
\begin{array}{ll}
\text { fixed coupling: } & S_{\text {Sud }}^{q q}=-\frac{\alpha_{s}}{2 \pi} C_{F} \ln ^{2} \frac{k_{\perp}^{2}}{\Lambda^{2}}+3 \frac{\alpha_{s}}{2 \pi} C_{F} \ln \frac{k_{\perp}^{2}}{\Lambda^{2}} \\
\text { running coupling: } & S_{\text {Sud }}^{q q}=C_{F} \int_{\Lambda^{2}}^{k_{\perp}^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} \frac{\alpha_{s}\left(\mu^{2}\right)}{\pi} \ln \frac{k_{\perp}^{2}}{\mu^{2}}-3 C_{F} \int_{\Lambda^{2}}^{k_{\perp}^{2}} \frac{\mathrm{~d} \mu^{2}}{\mu^{2}} \frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi}
\end{array}
$$

NLO resummed

$$
\frac{\mathrm{d} \sigma_{\text {resummed }}}{\mathrm{dyy} \mathrm{~d}^{2} p_{\perp}}=S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} x_{p} q\left(x_{p}, \Lambda^{2}\right) D_{h q}\left(z, \Lambda^{2}\right) F\left(k_{\perp}\right) e^{-S_{s i a}^{s t}}
$$

Final results

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{dyd}^{2} p_{\perp}}=\frac{\mathrm{d} \sigma_{\text {resummed }}}{\mathrm{d} y \mathrm{~d}^{2} p_{\perp}}+\frac{\mathrm{d} \sigma_{\mathrm{NLO} \text { matching }}}{\mathrm{dyd}^{2} p_{\perp}}+\frac{\mathrm{d} \sigma_{\text {Sud matching }}}{\mathrm{dyd}^{2} p_{\perp}} \\
& \text { om the hard factor } \\
& S_{\text {sud }}^{q u}-C_{F} \frac{\alpha_{s}}{2 \pi}\left(\ln ^{2} \frac{k_{\perp}^{2}}{\Lambda^{2}}-3 \ln \frac{k_{\perp}^{2}}{\Lambda^{2}}\right)
\end{aligned}
$$

Choosing Λ^{2}

Saddle point approximation

$$
\begin{gathered}
\frac{\mathrm{d} \sigma_{\mathrm{resummed}}^{q q}}{\mathrm{~d} y \mathrm{~d}^{2} p_{T}}= \\
S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} \int \frac{\mathrm{~d}^{2} r_{\perp}}{(2 \pi)^{2}} e^{-i k_{\perp} \cdot r_{\perp}} S^{(2)}\left(r_{\perp}\right) e^{-S_{\mathrm{Sud}}^{q q}} \int_{x_{p}}^{1} \frac{\mathrm{~d} x}{x} q(x, \mu) \frac{e^{\left(3 / 4-\gamma_{E}\right) \gamma_{\mu_{r}, \mu}^{q}}}{\Gamma\left(\gamma_{\mu_{r}, \mu}^{q}\right)}\left[\ln \frac{x}{x_{p}}\right]_{*}^{\gamma_{\mu_{r}, \mu}^{q}-1} \\
\Lambda \sim \mu_{r}=\int_{z}^{1} \frac{\mathrm{~d} z^{\prime}}{z^{\prime}} D_{h / q}\left(z^{\prime}\right) \frac{e^{\left(3 / 4-\gamma_{E}\right) \gamma_{\mu_{r}, \mu}^{q}}}{\Gamma\left(\gamma_{\mu_{r}, \mu}^{q}\right)}\left[\ln \frac{z^{\prime}}{z}\right]_{*}^{\gamma_{\mu_{r}, \mu}^{q}-1},
\end{gathered}
$$

Numerical results

BRAHMS

LHCb

■ Threshold resummation solves the negative problem.
\square Our calculation can also describe LHCb measurement. \square The suppression of $R_{p P b}$ reflects the gluon saturation.

LO jet production

LO contribution

$$
\begin{array}{rr}
\frac{d \sigma_{\mathrm{LO}}^{p+A \rightarrow \mathrm{jet}+X}}{d \eta d^{2} P_{J}}=\int_{\tau}^{1} \frac{d z}{z^{2}} \sum_{f} x q_{f}(x) F\left(q_{\perp}\right) J_{q}(z) & \mathrm{VS}
\end{array} \begin{gathered}
\frac{d \sigma_{\mathrm{LO}}^{p A \rightarrow X X}}{d^{2} p_{\perp} d y_{h}}=\int_{\tau}^{1} \frac{d z}{z^{2}} \sum_{f} x_{p} q_{f}\left(x_{p}\right) F\left(k_{\perp}\right) D_{h / q}(z) \\
\text { t function } J_{q}^{(0)}(z)=\delta(1-z)
\end{gathered}
$$

Collinear jet function

Initial condition

NLO jet productions

NLO contribution of the final state radiation

In-cone contribution: when the final state quark and the radiated gluon stay close to each other

We need to integrate the relative momentum ! $\quad R_{q g}=\sqrt{\Delta \eta^{2}+\Delta \phi^{2}}$
Kinematic constraint: $R_{q g} \leq R \rightarrow \frac{p_{\perp}^{2}}{\xi(1-\xi)} \leq l_{\perp} k_{\perp} R^{2} \simeq \frac{\xi(1-\xi)}{z^{2}} P_{J}^{2} R^{2}=\xi(1-\xi) q_{\perp}^{2} R^{2}$

NLO jet productions

NLO contribution from the final state radiation

$\sigma_{\mathrm{final}}^{\mathrm{jet}}=\sigma_{a}+\left(\sigma_{c}-\sigma_{b}\right)+\sigma_{\mathrm{virt}}$

$$
\begin{aligned}
\frac{\mathrm{d}^{3} \sigma}{\mathrm{~d} \eta \mathrm{~d}^{2} P_{J}}= & -\frac{\alpha_{s} C_{F}}{2 \pi} \int_{x}^{1} \mathrm{~d} \xi \frac{1}{\xi^{2}} \sigma_{\mathrm{LO}}\left(\frac{x}{\xi}, \frac{q_{\perp}}{\xi}\right)\left[\left(1+\xi^{2}\right)\left(\frac{\ln \frac{(1-\xi)^{2}}{\xi^{2}}}{1-\xi}\right)-\frac{1+\xi^{2}}{(1-\xi)_{+} \ln \frac{c_{0}^{2}}{q_{\perp}^{2} r_{\perp}^{2}}-\mathcal{P}_{q q}(\xi) \ln \frac{1}{R^{2}}}\right. \\
& +\frac{\alpha_{s} C_{F}}{2 \pi} \sigma_{\mathrm{LO}}\left(x, q_{\perp}\right)\left(6-\frac{4}{3} \pi^{2}\right)
\end{aligned}
$$

Comparing with hadron productions

$$
\ln \frac{1}{R^{2}} \Leftrightarrow-\frac{1}{\epsilon}+\ln \frac{q_{\perp}^{2}}{\mu^{2}}
$$

[^0]
Threshold resummation

Threshold resummation is still needed!

process	collinear \log (initial)	single log	double log	collinear $\log ($ final $)$
$q \rightarrow q$	$\mathcal{P}_{q q}(\xi) \ln \frac{\Lambda^{2}}{\mu^{2}}$	$\ln \frac{q_{\perp}^{2}}{\Lambda^{2}}$	$\ln ^{2} \frac{q_{\perp}^{2}}{\Lambda^{2}}$	$\frac{1}{\xi^{2}} \mathcal{P}_{q q}(\xi) \ln \frac{\Lambda^{2}}{\mu_{J}^{2}}$
$g \rightarrow g$	$\mathcal{P}_{g g}(\xi) \ln \frac{\Lambda^{2}}{\mu^{2}}$	$\ln \frac{q_{\perp}^{2}}{\Lambda^{2}}$	$\ln ^{2} \frac{q_{\perp}^{2}}{\Lambda^{2}}$	$\frac{1}{\xi^{2}} \mathcal{P}_{g g}(\xi) \ln \frac{\Lambda^{2}}{\mu_{J}^{2}}$
$q \rightarrow g$	$\mathcal{P}_{g q}(\xi) \ln \frac{\Lambda^{2}}{\mu^{2}}$	$/$	$/$	$\frac{1}{\xi^{2}} \mathcal{P}_{g q}(\xi) \ln \frac{\Lambda^{2}}{\mu_{J}^{2}}$
$g \rightarrow q$	$\mathcal{P}_{q g}(\xi) \ln \frac{\Lambda^{2}}{\mu^{2}}$	$/$	$/$	$\frac{1}{\xi^{2}} \mathcal{P}_{q g}(\xi) \ln \frac{\Lambda^{2}}{\mu_{J}^{2}}$

Reusmmation of the collinear logarithms from the final state radiation

$$
\frac{\partial \mathcal{J}_{q}(z, \Lambda)}{\partial \ln \Lambda^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{z}^{1} \frac{\mathrm{~d} \xi}{\xi}\left[C_{F} \mathcal{P}_{q q}(\xi) \mathcal{J}_{q}\left(\frac{z}{\xi}, \Lambda\right)+C_{F} \mathcal{P}_{g q}(\xi) \mathcal{J}_{g}\left(\frac{z}{\xi}, \Lambda\right)\right]
$$

Initial condition: $J_{q}^{(0)}=\delta(1-z) \quad$ at scale $\quad \mu_{J}=P_{J} R$

$$
\left[\begin{array}{l}
\mathcal{J}_{q}\left(z, \mu_{J}\right) \\
\mathcal{J}_{g}\left(z, \mu_{J}\right)
\end{array}\right]+\frac{\alpha_{s}}{2 \pi} \ln \frac{\Lambda^{2}}{\mu_{J}^{2}} \int_{z}^{1} \frac{\mathrm{~d} \xi}{\xi}\left[\begin{array}{ll}
C_{F} \mathcal{P}_{q q}(\xi) & C_{F} \mathcal{P}_{g q}(\xi) \\
T_{R} \mathcal{P}_{q g}(\xi) & N_{C} \mathcal{P}_{g g}(\xi)
\end{array}\right]\left[\begin{array}{l}
\mathcal{J}_{q}\left(z / \xi, \mu_{J}\right) \\
\mathcal{J}_{g}\left(z / \xi, \mu_{J}\right)
\end{array}\right] \Rightarrow\left[\begin{array}{l}
\mathcal{J}_{q}(z, \Lambda) \\
\mathcal{J}_{g}(z, \Lambda)
\end{array}\right]
$$

Threshold resummation

Resummation of the soft logarithms
O Sudakov logs from the jet contribution cancel.
O The term which proportional to $\left(\frac{\ln (1-\xi)}{1-\xi}\right)$, and this stems from final state gluon radiations.
O When $\xi \rightarrow 1(\tau \rightarrow 1)$, these terms give us $\ln ^{2} N$.

> Only initial state radiation contribution!

$$
S_{\text {Sud }}^{q q}=-\frac{\alpha_{s}}{2 \pi} \frac{C_{F}}{2} \ln ^{2} \frac{k_{\perp}^{2}}{\Lambda^{2}}+\frac{\alpha_{s}}{2 \pi} \frac{3}{2} C_{F} \ln \frac{k_{\perp}^{2}}{\Lambda^{2}}
$$

Note: for hadron productions we have

$$
S_{\text {Sud }}^{q q}=-\frac{\alpha_{s}}{2 \pi} C_{F} \ln ^{2} \frac{k_{\perp}^{2}}{\Lambda^{2}}+3 \frac{\alpha_{s}}{2 \pi} C_{F} \ln \frac{k_{\perp}^{2}}{\Lambda^{2}}
$$

Final results

Final resummed results

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \eta \mathrm{~d}^{2} P_{J}}=\frac{\mathrm{d} \sigma_{\text {resummed }}}{\mathrm{d} \eta \mathrm{~d}^{2} P_{J}}+\frac{\mathrm{d} \sigma_{\text {NLO matching }}}{\mathrm{d} \eta \mathrm{~d}^{2} P_{J}}+\frac{\mathrm{d} \sigma_{\text {Sud matching }}}{\mathrm{d} \eta \mathrm{~d}^{2} P_{J}}
$$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\text {resummed }}}{\mathrm{d} \eta \mathrm{~d}^{2} P_{J}}= & S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} x q\left(x, \Lambda^{2}\right) \mathcal{J}_{q}\left(z, \Lambda^{2}\right) F\left(q_{\perp}\right) e^{-S_{\mathrm{Sud}}^{q q}} \\
+ & S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} x g\left(x, \Lambda^{2}\right) \mathcal{J}_{g}\left(z, \Lambda^{2}\right) \int \mathrm{d}^{2} q_{1 \perp} F\left(q_{1 \perp}\right) F\left(q_{\perp}-q_{1 \perp}\right) e^{-S_{\text {Sud }}^{g g}} \\
\frac{\mathrm{~d} \sigma_{\text {Sud matching }}}{\mathrm{d} \eta \mathrm{~d}^{2} P_{J}}= & S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} x q\left(x, \mu^{2}\right) \mathcal{J}_{q}\left(z, \mu_{J}^{2}\right) F\left(q_{\perp}\right)\left\{S_{\mathrm{Sud}}^{q q}-\left[C_{F} \frac{\alpha_{s}}{2 \pi}\left(\frac{1}{2} \ln ^{2} \frac{q_{\perp}^{2}}{\Lambda^{2}}-\frac{3}{2} \ln \frac{q_{\perp}^{2}}{\Lambda^{2}}\right)\right]\right\} \\
+ & S_{\perp} \int_{\tau}^{1} \frac{\mathrm{~d} z}{z^{2}} x g\left(x, \mu^{2}\right) \mathcal{J}_{g}\left(z, \mu_{J}^{2}\right) \int \mathrm{d}^{2} q_{1 \perp} F\left(q_{1 \perp}\right) F\left(q_{\perp}-q_{1 \perp}\right) \\
& \times\left\{S_{\mathrm{Sud}}^{g g}-\left[N_{c} \frac{\alpha_{s}}{2 \pi}\left(\frac{1}{2} \ln ^{2} \frac{q_{\perp}^{2}}{\Lambda^{2}}-2 \beta_{0} \ln \frac{q_{\perp}^{2}}{\Lambda^{2}}\right)\right]\right\}
\end{aligned}
$$

$$
\frac{\mathrm{d} \sigma_{\mathrm{NLO}} \text { matching }}{\mathrm{d} \eta \mathrm{~d}^{2} P_{J}}
$$

Too long to show!

$$
\text { We consider }\left\{\begin{array}{l}
q \rightarrow q g \\
g \rightarrow g g \\
g \rightarrow q \bar{q} \\
q \rightarrow g q
\end{array}\right.
$$

Summary

1. We briefly introduce the color glass condensate effective theory.
2. By incorporating the threshold resummation in CGC formalism, we can describe the experimental data from RHIC and LHC.
3. We have systematically calculated the complete NLO cross-section for single inclusive jet production in pA collisions at forward rapidity region within the small-x framework.

Outlook

1. The numerical calculation of jet production is in progress.
2. We can apply the threshold resummation formalism on many other processes. Such as, the Muller-Navelet jet productions, diffractive processes ...

Thank you!

Backup

Dilute-Dense factorizations

- Due to quantum evolution, PDF and FF changes with scale. This introduces large theoretical uncertainties in $x f(x)$ and $D(z)$. Choice of the scale at LO requires information at NLO.
$■$ LO cross section is always a monotonic function of μ, thus it is just order of magnitude estimate.
- NLO calculation significantly reduces the scale dependence. More reliable.

Backup

More results for forward rapidity region

TABLE I. Values of Λ^{2} in calculating the cross-sections at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$ at RHIC.

Rapidity	$y=2.2$		$y=3.2$		$y=4$	
Collisional systerms	dAu	pp	dAu	pp	dAu	pp
$\Lambda^{2}\left(\mathrm{GeV}^{2}\right)$	$2 \sim 4$	~ 1	$3 \sim 7$	~ 2	$5 \sim 9$	~ 3

TABLE II. List of input values of parameters used in our numerical evaluations.

Experiment	BRAHMS	STAR	ATLAS/ALICE	LHCb
Hadron h	h^{-}	π^{0}	$h^{ \pm}$	prompt $h^{ \pm}$
$\sigma^{h} / \sigma^{\pi}$	1.3	1	2.2	2.2×0.85

Backup

Jet algorithm: k_{t}-type jet algorithm (base on the narrow jet approximation).
Indeed, we need to specify the jet algorithm. Nowadays, the popular jet algorithms are kttype jet algorithms, such as, the kt, anti-kt, and Cambridge/Aachen algorithms. In our calculation, we computed the jet cross-section based on the narrow jet approximation [Phys.Rev.D 70 (2004) 034010] together with the kt-type jet algorithm [1209.1785]

SOLO $=$ Saturation physics at One Loop Order

Backup

$$
\begin{aligned}
& \frac{1}{2 \pi p_{T}} \frac{\mathrm{~d}^{2} N^{\mathrm{pA} \rightarrow h \mathrm{X}}}{\mathrm{~d} y \mathrm{~d} p_{T}}=\frac{1}{\sigma_{\text {inel }}} \frac{1}{2 \pi p_{T}} \frac{\mathrm{~d}^{2} \sigma^{\mathrm{pA} \rightarrow h \mathrm{X}}}{\mathrm{~d} y \mathrm{~d} p_{T}} \\
& R_{p P b}=\frac{1}{A} \frac{d^{2} \sigma_{p P b} / d p_{T} d y}{d^{2} \sigma_{p p} / d p_{T} d y} .
\end{aligned}
$$

[^0]: Our one-loop calculations are consistent with hadron calculations.

