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Fig. 3.20. The BFKL evolution of Fig. 3.13 shown here as a time-ordered gluon cascade in
the proton wave function, in the IMF/Bjorken or Breit frames.

order of 1/Qs , still in the domain of validity of perturbative QCD. Therefore, the unitarity
problem of BFKL evolution has to be solved in the framework of perturbative QCD.

To address this unitarity problem we first need to understand what goes wrong with
BFKL evolution. This is easier to do if we absorb the BFKL ladder into the wave function
of a hadron in DIS in the Breit frame, as for the DGLAP evolution in the previous chapter.
(Formally, the BFKL light cone wave function is constructed in the next chapter.) The small-
x evolution then appears as a cascade in the proton’s wave function, shown in Fig. 3.20
(compare with Figs. 2.25 and 2.10). The fast proton will decay into a system of partons
long before the interaction with the virtual photon, which is at rest. The time ordering of
emissions is given by Eq. (2.156) in the DLA DGLAP case (the proton is moving in the
light cone plus direction)

x+
1 ! x+

2 ! · · · ! x+
n , (3.126)

and this would still be valid: in the general BFKL case the DGLAP ordering of transverse
momenta (2.149) is replaced by the comparability of all transverse momenta, as given by
Eq. (3.60b), with the ordering (2.150) of longitudinal momenta from DLA DGLAP still in
place (see Eq. (3.60a)). The latter fact insures that the typical lifetimes of gluon fluctuations,
given by x+

i ≈ k+
i /k2

⊥i , are still ordered as in Eq. (3.126) and as shown in Fig. 3.20. Thus,
in terms of time-ordering, the BFKL cascade is quite similar to the DGLAP cascade.

During the long time of parton-cascade evolution a large number of “wee” partons
(gluons) are created in the proton’s wave function, as in Fig. 3.20, of order (1/x)αp−1 for
BFKL evolution. Each gluon in the cascade is emitted from a pre-existing (larger-x) gluon
in the proton’s wave function. Each such “wee” parton interacts with the virtual photon over
a very short time. This interaction destroys the coherence of the partons (which are mostly
gluons at low x). The further fate of the partons is not important to us since any possible
interaction in the final state will not change the total cross section of the deep inelastic
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Fig. 2.1. Feynman diagram describing deep inelastic electron–proton scattering. The
momentum labels of the lines correspond to the frame in which the target proton is at
rest. The wavy line denotes the virtual photon propagator while the corkscrew lines denote
the gluons inside the proton.

DIS are

Q2 ≡ − q2,

xBj ≡ Q2

2P · q
, (2.2)

y ≡ P · q

P · p
.

The quantity Q2 is called the virtuality of the photon, while xBj is the Bjorken-x variable.
In the rest frame of the proton one can easily show that

Q2 = 4EE′ sin2 θ

2
(2.3)

and

y = E − E′

E
. (2.4)

Here θ is the electron scattering angle, i.e., the angle between $p and $p ′. We therefore
see that q2 ≤ 0 or, equivalently, Q2 ≥ 0, which demonstrates that Q is indeed real. In the
proton’s rest frame the third Lorentz invariant y has a physical interpretation as the fraction
of the electron’s energy transferred to the proton.

Apart from the three independent invariants in Eq. (2.2) one usually defines other
Lorentz-invariant (but not independent) quantities,

ν ≡ P · q

m
= E − E′,

ŝ ≡ (P + q)2 = 2P · q + q2 + m2, (2.5)

s ≡ (P + p)2.
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We see that in the proton’s rest frame the invariant ν stands for that part of the electron’s
energy that is transferred to the proton; s denotes the center-of-mass energy squared of
the electron scattering on the proton, while ŝ is the center-of-mass energy squared of the
γ ∗ + p reaction. The invariants in Eq. (2.5) are related to those in Eq. (2.2) via

xBj = Q2

ŝ + Q2 − m2
= Q2

2mν
,

(2.6)
Q2 = yxBj (s − m2 − m2

e) ≈ yxBj s.

The fact that DIS experiments are usually performed at very high energy s $ m2 $ m2
e

justifies the approximation in the last line of Eq. (2.6). We also see from Eq. (2.6) that
xBj ≤ 1 for DIS on a proton.

The DIS experiment allows us to investigate the structure of the hadron at short distances
by observing the recoil electron e′ in Eq. (2.1). As we will see shortly, a DIS experiment can
be thought of as a relativistic electron microscope. We can characterize this “microscope”
by its maximal resolution. We will show below that with this DIS microscope we can
resolve the sizes of the proton’s constituents down to 1/Q. Thus the physical meaning of
the photon virtuality Q2 is that it is related to the resolution of our “microscope”. However,
because our microscope is relavistic, we need to introduce one more variable, namely, the
time duration of the observation. The number of particles is not conserved in a relativistic
system: the number of quarks and gluons inside the proton constantly fluctuates owing
to particle splitting and annihilation. Some fluctuations have longer lifetimes while others
have shorter lifetimes. Therefore, the number of proton constituents can be different when
measured over different observation times. We will show below that the measuring time of
the DIS microscope is proportional to 1/xBj , so that t ∼ 1/(mxBj ). This gives one of the
two physical interpretations of xBj .

Using the covariant gauge for the photon propagator we can write the amplitude for the
DIS process pictured in Fig. 2.1 as

iMσ,λ,λ′ (X) = ie2

q2
ūλ′(p′) γµ uλ(p) 〈X|Jµ(0)|P, σ 〉. (2.7)

Here λ and λ′ are the electron polarizations before and after the interaction and σ is the
polarization of the proton (see Fig. 2.1). The initial state of the proton is denoted |P, σ 〉,
while the final state of the many produced hadrons X in Fig. 2.1 is correspondingly denoted
as |X〉. We define the quark electromagnetic current by

Jµ(x) =
∑

f

Zf q̄f (x) γ µ qf (x), (2.8)

where Zf is the quark’s electric charge in units of the electron charge e, qf (x) is the quark
field operator, and the sum in Eq. (2.8) runs over all quark flavors. (All operators in the
book are in the Heisenberg representation.)

To calculate the total DIS cross section we need to square the amplitude (2.7), integrate or
sum over the final-state quantum numbers, average over the initial-state quantum numbers,
divide by the flux factor, and impose energy–momentum conservation (see e.g. Peskin and

Downloaded from Cambridge Books Online by IP 150.244.9.175 on Tue Apr 09 19:09:54 WEST 2013.
http://dx.doi.org/10.1017/CBO9781139022187.003

Cambridge Books Online © Cambridge University Press, 2013

2.1 Kinematics, cross section, and structure functions 23

e : pµ = ( )

γ∗ : qµ = (E − E − p )

target:Pµ = (m, 0)

e : p µ = (E )

X

λ

λ

σ

Fig. 2.1. Feynman diagram describing deep inelastic electron–proton scattering. The
momentum labels of the lines correspond to the frame in which the target proton is at
rest. The wavy line denotes the virtual photon propagator while the corkscrew lines denote
the gluons inside the proton.

DIS are

Q2 ≡ − q2,

xBj ≡ Q2

2P · q
, (2.2)

y ≡ P · q

P · p
.

The quantity Q2 is called the virtuality of the photon, while xBj is the Bjorken-x variable.
In the rest frame of the proton one can easily show that

Q2 = 4EE′ sin2 θ

2
(2.3)

and

y = E − E′

E
. (2.4)

Here θ is the electron scattering angle, i.e., the angle between $p and $p ′. We therefore
see that q2 ≤ 0 or, equivalently, Q2 ≥ 0, which demonstrates that Q is indeed real. In the
proton’s rest frame the third Lorentz invariant y has a physical interpretation as the fraction
of the electron’s energy transferred to the proton.

Apart from the three independent invariants in Eq. (2.2) one usually defines other
Lorentz-invariant (but not independent) quantities,

ν ≡ P · q

m
= E − E′,
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Infinite momentum frame or Bjorken frame

2.2 Parton model and Bjorken scaling 29

particle (a quark), so that

∑

X=one particle

=
∫

d3k′

2k′0 (2π )3

∑

r ′=±1

along with pX → k′ and P → k. It is then easy to show that

1
4πmq

∫
d3k′

2k′0 (2π )3
(2π )4 δ4(k + q − k′) = 1

2mq

δ
(
(k + q)2 − m2

q

)
, (2.22)

justifying the delta function factor in Eq. (2.21).
We can rewrite δ((k + q)2 − m2

q) as follows:

δ
(
(k + q)2 − m2

q

)
= δ

(
2k · q − Q2) = 1

2 k · q
δ

(
1 − Q2

2 k · q

)
, (2.23)

where we have used the fact that the incoming quark is on mass shell.
Calculating the trace in Eq. (2.21), comparing the result with Eq. (2.16), and using

Eqs. (2.18a) and (2.18b) with P replaced by k we obtain for DIS on a point-like particle
(a quark)

F
quark

1

(
xBj ,Q

2) = mqW
quark

1

(
xBj ,Q

2) =
Z2

f

2
δ
(
1 − xBj

)
(2.24)

F
quark

2

(
xBj ,Q

2) = Q2

2mqxBj

W
quark

2

(
xBj ,Q

2) = Z2
f δ

(
1 − xBj

)
. (2.25)

We have used the fact that, for DIS on a single quark, xBj = Q2/(2k · q). We see that for
DIS on a point-like particle the structure functions F1 and F2 turn out to depend only on
one variable, xBj . This behavior is known as Bjorken scaling (Bjorken 1969).

2.2.2 Full calculation: DIS on a proton

The idea that the actual interaction in DIS occurs with the point-like constituents of a
hadron (the partons) can be illustrated by studying the full DIS process. Let us consider
DIS on the whole proton, as shown in Fig. 2.3. We want to calculate the diagram in Fig. 2.3
using the rules of light cone perturbation theory (LCPT) outlined in Sec. 1.3 (see also
Sec. 1.4). We first rewrite all four-momenta in the light cone (+,−,⊥) notation. In the
IMF/Bjorken frame the proton has a very large momentum. The proton’s momentum in
Eq. (2.19) becomes, in light cone notation,

P µ ≈ (P +, 0, 0⊥) (2.26)

with very large P + ≈ 2P . Quarks and gluons in such an ultrarelativistic proton also have
very large light cone plus momenta. The quark in Fig. 2.3 has four-momentum kµ =
(k+, (&k2

⊥ + m2
q)/k+, &k⊥); we assume that it has a large k+ component. We define the

Feynman-x variable as the fraction of the light cone momentum of the proton carried by
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Non-linear dynamics 
(BK/JIMWLK)

linear evolution 
(BFKL)

High energy=small x
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High number of gluons populate the transverse extend of the proton or nucleus, leading to 
a very dense saturated wave function. Color Glass Condensate  (CGC) is the effective 
theory to study this kind of dense gluon system.

Proton 
(x, Q2

0)
Proton 
(x, Q2)

Proton 
(x0, k⊥)

Proton 
(x, k⊥)

Q0 < Q

x0 > > x

Partons 
Δx⊥ = 1/Q0

Partons 
Δx⊥ = 1/Q

partons overlap

Low energy High energy

Partons 
Δx⊥ = 1/k⊥

The proton  wave 
function is determined 

by x and Q
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INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Deep into small-x region

• Partons in the low-x region is dominated by gluons. See HERA data.
• BFKL equation ) Resummation of the ↵s ln 1

x .
• When too many gluons squeezed in a confined hadron, gluons start to overlap

and recombine ) Non-linear dynamics ) BK (JIMWLK) equation
• Use Qs(x) to separate the saturated dense regime from the dilute regime.
• Core ingredients: Multiple interactions + Small-x (high energy) evolution

5 / 21

High energy QCD map

 . For EIC, , , Q2
s ∼ A1/3x−λ A ≃ 200 λ ≃ 0.2 Q2

s ≃ 1 ∼ 2Gev2
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Color Glass Condensate
    Color Glass Condensate

U(x⊥) = P exp {−igS ∫
+∞

−∞
dx+ A−

a (x+, x⊥)ta}

Fundamental representation-multiple scattering between fast moving quark and target dense gluons 

A A A

· · · · · · · · ·

x⊥

A A A

· · · · · · · · ·

x⊥

Wab(x⊥) = 2Tr[taU(x⊥)tbU†(x⊥)]

S(x⊥ − y⊥) = 1
Nc

Tr⟨U(x⊥)U†(y⊥)⟩ = e− Q2s (x⊥ − y⊥)2
4

The color dipole in McLerran-Venugopalan model 

Saturation physics describes high density Parton distribution at high energy limit.

· · · · · · · · ·

x⊥

y⊥

b PT Q S aZ U

Wilson Line

We use Wilson line to represent the multiple scattering between the fast moving parton and target background fields! 

INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Wilson Lines in Color Glass Condensate Formalism

We use Wilson line to represent the multiple scattering between the fast moving
quark and target background gluon fields.

x?

AA A A

· · ·U(x?)=P exp
�
�ig

R
dz+A�(x?,z+)

� · · · · · ·

The Wilson loop (color dipole) in McLerran-Venugopalan (MV) model

x?

y?

· · ·1
Nc

⌦
TrU(x?)U†(y?)

↵
=e� Q2

s (x
?

�y
?

)2

4 · · · · · ·

• Dipole amplitude S(2) then produces the quark kT spectrum via Fourier
transform

F(k?) ⌘
dN

d2k?
=

Z
d2x?d2y?

(2⇡)2 e�ik?·(x?�y?) 1
Nc

D
TrU(x?)U†(y?)

E
.

6 / 21
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    Proton-nucleus collisions

Single inclusive hadron productions in pA collisions

LO calculation

Dumitru and Jalilian-Marian, PRL 2002

dσpA→hX
LO

d2p⊥dyh
= ∫

1

τ

dz
z2 ∑

f
xpqf(xp)F(k⊥)Dh/q(z)

F(k⊥) = ∫
d2x⊥d2y⊥

(2π)2 e−ik⊥⋅(x⊥−y⊥)S(2)
Y (x⊥, y⊥)

p

A

b PT Q S aZ U

Searching for Parton saturation in dilute-dense scatterings: ep & eA & pA.  

Proton-nucleus collisions
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Proton-nucleus collisions    Proton-nucleus collisions

LO calculation
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Figure 1: Negatively charged hadron and π0 yields in proton-proton (at pseudo-rapidities (2.2,
3.2) and (3.3, 3.8 and 4)) and deuteron-gold (at pseudo-rapidities (2.2, 3.2) and 4) collisions at√
sNN = 200 GeV. Data by the BRAHMS and STAR collaborations.

Following [31], we regulate the running coupling in Eqs. (3) and (4) by freezing it to a constant
value αfr

s = 0.7 in the infrared. A detailed discussion about the different prescriptions proposed
to define the running coupling kernel and of the numerical method to solve the rcBK equation can
be found in [29]. The only piece of information left to fully complete all the ingredients in Eq. (1)
are the initial conditions for the evolution of the dipole-nucleus(proton) amplitude. Similar to
previous works, we take them from the McLerran-Venugopalan (MV) model [39]:

NF (r, Y = 0) = 1− exp

[

−r2Q2
s0

4
ln

(

1

Λ r
+ e

)]

, (5)

where Q2
s0 is the initial saturation scale (probed by quarks), and we take Λ = 0.241 GeV. Contrary

to studies of e+p data, we have discarded initial conditions a la Golec-Biernat-Wüsthoff [40], since
their Fourier transform result in an unphysical exponential fall-off of the ugd, and therefore of the
hadron spectra as well, at large transverse momenta. Finally, in the large-Nc limit which we have
implicitly assumed in order to use the rcBK equation, the gluon dipole scattering amplitude can
be expressed in terms of the quark amplitude as

NA(r, Y ) = 2NF (r, Y )−N 2
F (r, Y ) . (6)

With this setup, we obtain a very good description of RHIC data. Fig. 1 shows the comparison
of our results with data for the invariant yield of different hadron species in p+p and d+Au
collisions at

√
sNN = 200 GeV and rapidities yh = 2.2 and 3.2 for negative-charge hadrons (data

by the BRAHMS collaboration [1]) and yh = 3.3, 3.8 and 4 for neutral pions (data by the STAR
collaboration [2]). The only free parameters adjusted to the d+Au data are x0, the value of x
which indicates the start of the small−x evolution, and Qs0, the value of the saturation scale at
x = x0. For the gold nucleus we obtain a quark saturation scale Q2

s0 = 0.4 GeV2 at x0 = 0.02.
Values of x0 between 0.015 and 0.025 are allowed within error bands, they are used to generate
the yellow uncertainty band in Fig. 1. A few comments are in order. First, the parameters
Qs0 and x0 are obtained from minimum-bias data, and therefore Q2

s0 should be considered as an
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Higher order calculations are needed!

‣ Incuding higher order corrections may give more accurate answers. ‣Going to higher orders can open new channels and can sometimes result in large corrections. ‣Going to higher orders cancels some but not all of factorization scale dependence.

Albacete and Marquet, PLB 2010 

b PT Q S aZ U
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data [53]. The CMS yield is computed at y = 0.
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FIG. 9: Single inclusive ⇡0
production at

p
s = 7000

GeV compared with ALICE ⇡0
[52] data computed using kT -

factorization and the hybrid formalism with CTEQ and UGD

parton distribution functions and DSS (upper curves, multi-

plied by 10) and KKP (lower curves) fragmentation functions.

The initial condition for the BK evolution is MV
e
.

model gives a too hard spectrum, similarly as with the
Tevatron data.

In order to study the sensitivity to di↵erent ingredi-
ents we compute also the neutral pion spectrum at LHC
energies using both kT -factorization and the hybrid for-
malism using the MVe initial condition. The results are
shown in Fig. 9. With the hybrid formalism we use both
CTEQ parton distribution functions and a gluon distri-
bution obtained by integrating the unintegrated gluon
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FIG. 10: Single inclusive gluon production spectrum at
p
s =

7000 GeV obtained by using the hybrid formalism and CTEQ

(solid lines) or UGD (dashed lines) parton gluon distribution

functions normalized by the corresponding spectrum obtained

by using the kT factorization. The rapidities are, from bottom

to top, y = 0, 1, 2, 3. The results are shown in the kinematical

region where x < 10
�2

.
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PHENIX 3 < y < 3.8 �0 ⇥1
STAR y = 4 �0 ⇥1

d + Au ! �0/h� + X,
p

s = 200 GeV, K = 2.5

FIG. 11: Single inclusive ⇡0
and negative hadron pro-

duction at
p
s = 200 GeV d+Au collisions compared with

BRAHMS [51], STAR [39] and PHENIX [54] data.

distribution, see Eq. (13). We also compare the DSS and
KKP fragmentation functions (we use consistently only
LO distributions in this work). The results are scaled
by a K factor which is chosen to fit the data around
pT ⇡ 2 GeV. We observe that apart from the di↵erent
overall normalization the di↵erent model combinations
give very similar spectra, the hybrid formalism with un-
integrated gluon distribution PDF deviating slightly from

Lappi andM äntysaari, PRD 2013 

They both used the K factor!
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Proton-nucleus collisions
10

A. q ! q channel

p

A

p

A

p

A

p

A

p

A

p

A

p

A

p

A

FIG. 4. The NLO real and virtual diagrams for the q ! q channel in pA collisions. Here the grey blobs indicate where
non-linear multiple interactions occur between the vertical gluons and the quark-gluon pair.

The cross-section in the coordinate space has been obtained in Refs. [36, 37] with two additional terms presented
in Ref. [45]. To be self-contained, we summarize the final results here as the starting point. In the large Nc limit, the
complete one-loop cross-section for the q ! q channel is divided into the following parts

d�qq

dyd2pT
=

d�LO
qq

dyd2pT
+

d�NLO
qq

dyd2pT
=

d�LO
qq

dyd2pT
+

eX

i=a

d�i
qq

dyd2pT
, (9)

where the LO and NLO parts read

d�LO
qq

dyd2pT
=S?

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?), (10)

d�a
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dyd2pT
=
↵s
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S?CF

Z
1

⌧

dz
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Z
1

⌧/z
d⇠xq(x, µ2)Dh/q(z, µ

2)Pqq(⇠)

Z
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(2⇡)2

ln
c2
0

r2?µ
2

⇥
✓
e�ik?·r? +

1

⇠2
e�i 1

⇠ k?·r?
◆
S(2)(r?), (11)

d�b
qq

dyd2pT
=� 3

↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?k
2

?
, (12)

d�c
qq

dyd2pT
=� 8⇡

↵s

2⇡
S?CF

Z
1

⌧

dz

z2

Z
1

⌧/z
d⇠xq(x, µ2)Dh/q(z, µ

2)

Z
d2u?d2v?

(2⇡)4
e�ik?·(u?�v?)e�i 1�⇠

⇠ k?·u?

⇥ 1 + ⇠2

(1� ⇠)+

1

⇠

u? · v?
u2

?v
2

?
S(2)(u?)S

(2)(v?), (13)

d�d
qq

dyd2pT
=8⇡

↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2u?d2v?

(2⇡)4
e�ik?·(u?�v?)S(2)(u?)S

(2)(v?)

⇥
Z

1

0

d⇠0
1 + ⇠02

(1� ⇠0)+

✓
e�i(1�⇠0)k?·v? 1
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� �2(v?)

Z
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ik?·r0? 1
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◆
, (14)

d�e
qq

dyd2pT
=
↵s

⇡2
S?

Nc

2

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2u?d2v?

(2⇡)2
e�ik?·(u?�v?)[S(2)(u?)S

(2)(v?)� S(2)(u? � v?)]

⇥
"

1

u2

?
ln

k2?u
2

?
c2
0

+
1

v2?
ln

k2?v
2

?
c2
0

� 2u? · v?
u2

?v
2

?
ln

k2?|u?||v?|
c2
0

#
, (15)

with the kinematic variables xp = ⌧/z, x = xp/⇠, and k? = pT /z. The coordinate variables are defined as follows
r? = x? � y?, u? = x? � b?, v? = y? � b?. For convenience, we also denote c0 = 2e��E with �E the Euler constant

and the splitting function Pqq(⇠) = 1+⇠2

(1�⇠)+
+ 3

2
�(1 � ⇠). For simplicity, S(2)(r?) is assumed to be only a function

NLO diagrams in the  channelq → q

1. Both real and virtual diagrams should be considered! 
2. Grey blobs indicates the multiple interactions! 
3. Integrate over gluon phase space  divergences!⇒

    Proton-nucleus collisions

Lots of contributions for NLO 
Dumitru, Hayashigakia and Jalilian-Marianb, 

NPA, 2006  
Altinoluk and Kovner, PRD, 2011  

Chirilli, Xiao and Yuan, PRL, 2011  
Chirilli, Xiao and Yuan, PRD, 2012 

Kang, Vitev, Xing, PRL, 2014

Factorization: separating short distant physics 
(perturbative) from long distant physics (non-perturbative)

Divergences
Collinear divergences:  PDFs or FFs

Rapidity divergences: BK equation  

b PT Q S aZ U

Probing
Saturation
Physics in

pA
Collisions

Bo-Wen
XiaoñZá

Introduction

Forward
Hadron
Productions
in pA

Collisions

Sudakov
Factor

Summary

NLO Calculation and Factorization

Factorization is about separation of short distant physics (perturbatively
calculable hard factor) from large distant physics (Non perturbative).

� ⇠ xf (x) ⌦ H ⌦ Dh(z) ⌦ F(k?)

NLO (1-loop) calculation always contains various kinds of divergences.
Some divergences can be absorbed into the corresponding evolution equations.
The rest of divergences should be cancelled.

Hard factor
H = H

(0)
LO +

↵s

2⇡
H

(1)
NLO + · · ·

should always be finite and free of divergence of any kind.
NLO vs NLL Naive ↵s expansion sometimes is not sufficient!

LO NLO NNLO · · ·

LL 1 ↵sL (↵sL)2
· · ·

NLL ↵s ↵s (↵sL) · · ·

· · · · · · · · ·

Evolution ! Resummation of large logs.
LO evolution resums LL; NLO ) NLL.

7 / 16

Hard factor is finite.
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Lost of contributions for NLO



10

Proton-nucleus collisions

1. Collinear to the target nucleus  BK evolution equation! 
2. Collinear to the initial state quark  DGLAP evolution of PDFs! 
3. Collinear to the final state quark  DGLAP evolution of FFs!

⇒
⇒

⇒

INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Factorization for single inclusive hadron productions

Factorization for the p + A ! H + X process [Chirilli, BX and Yuan, 12]
[quark] (xp+

p , 0,0)

(0, xap�
a ,kg?)

z
kµ

⇠ pµ, y [hadron]

[nucleus] pµ
a

qµ [gluon]

k+ ' 0

P+
A ' 0

P�
p ' 0

Rapidity Divergence Collinear Divergence (F)Collinear Divergence (P)

• Need to include all real and virtual graphs in all four channel q ! q, q ! g,
g ! q(q̄) and g ! g.

• Gluons in different kinematical regions give different divergences due to
degeneracy. KLN

• 1. collinear to the target nucleus; ) BK evolution for UGD F(k?).
• 2. collinear to the initial quark; ) DGLAP evolution for PDFs
• 3. collinear to the final quark. ) DGLAP evolution for FFs.
• Divergence ) Renormalization ) Resummation!

9 / 21

Three kinds of divergences:
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Proton-nucleus collisions
INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Hard Factors
For the q ! q channel, the factorization formula can be written as

d3�p+A!h+X

dyd2p
?

=

Z dz

z2

dx

x
⇠xq(x, µ)Dh/q(z, µ)

Z d2x
?

d2y
?

(2⇡)2

⇢
S(2)

Y (x
?

, y
?

)


H

(0)
2qq +
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2⇡
H

(1)
2qq

�

+

Z d2b
?

(2⇡)2
S(4)

Y (x
?

, b
?

, y
?

)
↵s

2⇡
H

(1)
4qq

9
=

;

with H
(0)
2qq = e�ik

?
·r

? �(1 � ⇠) and

H
(1)
2qq = CFPqq(⇠) ln

c2
0

r2
?

µ2

0

@e�ik
?

·r
? +

1

⇠2
e
�i

k
?

⇠
·r

?

1

A � 3CF�(1 � ⇠)e�ik
?

·r
? ln

c2
0

r2
?

k2
?

� (2CF � Nc) e�ik
?

·r
?

2

64
1 + ⇠2

(1 � ⇠)+

eI21 �
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@

⇣
1 + ⇠2
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ln (1 � ⇠)2

1 � ⇠

1
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+

3

75
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4qq = �4⇡Nce�ik

?
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?
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<

:e
�i 1�⇠

⇠
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·(x
?

�b
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) 1 + ⇠2
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1

⇠

x
?

� b
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�
x
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� b
?

�2
·

y
?

� b
?

�
y
?

� b
?

�2

��(1 � ⇠)

Z 1

0
d⇠0

1 + ⇠02
�

1 � ⇠0
�
+

2

64
e�i(1�⇠0)k
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·(y

?
�b

?
)

(b
?

� y
?
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� �(2)(b

?
� y

?
)
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d2r0

?

eik
?

·r0
?
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3
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9
>=

>;
,

where eI21 =

Z d2b
?

⇡

8
<

:e�i(1�⇠)k
?

·b
?

2

4
b
?

·
�
⇠b

?
� r

?

�

b2
?

�
⇠b

?
� r

?

�2
�

1

b2
?

3

5 + e�ik
?

·b
?

1

b2
?

9
=

; .

Clear physical interpretation in coordinate space. However, need to go to momentum space for
numerical evaluation!
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Clear physical interpretation in coordinate space. However, need to go to momentum space for
numerical evaluation!
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q → qg
g → gg
g → qq̄
q → gq

Need to go to momentum space for numerical evaluations!

INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Factorization and NLO Calculation

• Factorization is about separation of short distant physics (perturbatively
calculable hard factor) from large distant physics (Non perturbative).

� ⇠ xf (x) ⌦ H ⌦ Dh(z) ⌦ F(k?)

• NLO (1-loop) calculation always contains various kinds of divergences.
• Some divergences can be absorbed into the corresponding evolution equations.
• The rest of divergences should be cancelled.

• Hard factor
H = H

(0)
LO +

↵s

2⇡
H

(1)
NLO + · · ·

should always be finite and free of divergence of any kind.
• NLO vs NLL Naive ↵s expansion sometimes is not sufficient!

LO NLO NNLO · · ·

LL 1 ↵sL (↵sL)2
· · ·

NLL ↵s ↵s (↵sL) · · ·

· · · · · · · · ·

• Evolution ! Resummation of large logs.
LO evolution resums LL; NLO ) NLL.
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Proton-nucleus collisions    Proton-nucleus collisions

Numerical calculations for NLO from SOLO (Saturation physics at One Loop Order) 

2.Cross-section turns negative at high  pT

3
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FIG. 1: Comparisons of BRAHMS [10] (h�) and STAR [11] (⇡0) yields in dAu collisions to results of the numerical calculation
with the rcBK gluon distribution, both at leading order (tree level) and with NLO corrections included. The edges of the solid
bands were computed using µ2 = 10GeV2 to 50GeV2.

tion becomes negative increases with rapidity, as can be
seen from Fig. 1. Once the hadron transverse momentum
p? is larger than Qs(xg), the NLO correction starts to
become very large and negative. This indicates that we
need to either go beyond NLO or perform some sort of
resummation when p? > Qs(xg), due to this theoreti-
cal limitation of the dilute-dense factorization formalism
at NLO. This is an important problem but it lies out-
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d
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d
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⇤

0 1 2 3

rcBK
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FIG. 2: Comparisons of BRAHMS data [10] at ⌘ = 3.2 with
the theoretical results for four choices of gluon distribution:
GBW, MV with ⇤ = 0.24GeV, BK solution with fixed cou-
pling at ↵s = 0.1, and rcBK with ⇤QCD = 0.1GeV. The edges
of the solid bands show results for µ2 = 10GeV2 to 50GeV2.
As in other figures, the crosshatch fill shows LO results and
the solid fill shows NLO results.

side the scope of the current work and we will leave this
to future study. Given these limitations, we expect the
dilute-dense factorization formalism to work much better
for more forward rapidity regions. This trend is indeed
observed in Fig. 1 and Fig. 3. Nevertheless, as shown in
all the plots, the results computed from SOLO are stable
and reliable as long as p? < Qs(xg).
Furthermore, we have also run SOLO with three

other choices of dipole gluon distribution: the Golec-
Biernat and Wustho↵ (GBW) model [34], the McLerran-
Venugopalan (MV) model [4], and the solution to the
fixed coupling BK equation. As shown in Fig. 2, all four
parametrizations give similar results and agree with the
BRAHMS data in the p? < Qs region. For other plots,
we only use the rcBK solution, which is the most sophis-
ticated parametrization.
Fig. 3 shows predictions made by SOLO for pPb col-

lisions at high pseudorapidities which are accessible at
LHC detectors, in particular 5.3  ⌘  6.5 for TOTEM’s
T2 telescope [35] and ⌘ � 8.4 at LHCf [36]. Of course,
our prediction in the left plot should only be valid when
p? < 3GeV, which is about the size of the saturation
momentum at the corresponding rapidity.
One of the advantages of the NLO results is the signif-

icantly reduced scale dependence as shown in Fig. 4. In
principle, cross sections for any physical observable, if it
could be calculated up to all order, should be completely
independent of the factorization scale µ. However, as
shown in Fig. 4, the LO cross section is a monotonically
decreasing function of the factorization scale µ. This is
well-known and is simply due to the fact that an increase
of µ causes both the parton distribution function (in the
region x > 0.1) and the fragmentation function (in the

Stasto, Xiao and Zaslavsky, PRL, 2013 

1.Perfect description at low  ,
2. There is no K factor.

pT

b PT Q S aZ U

Our motivation!
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Proton-nucleus collisions    Proton-nucleus collisions

Lots of contributions for solving the negative puzzle   

Watanabe, Xiao, Yuan and Zaslavsky, PRD, 2015  

Altinoluk, et al, PRD, 2015 
Iancu, et al, JHEP, 2016 

Ducloué, Lappi, Zhu, PRD, 2016, 2017  

Ducloué, et al, PRD, 2018 

Xiao, Yuan, PLB, 2019 
Liu, Ma, Chao, PRD, 2019 

Liu, Kang, Liu, PRD, 2020 
Liu, Liu, Shi, Zheng, Zhou, 2022

factorization scheme�
kinematic constraint�

running coupling effect�
Threshold resummation

…
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grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
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(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di�erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p� � Qs. On
the other hand, where p� � Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p� region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the applicable p� window of the saturation
formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section
still becomes negative, which implies that the saturation formalism does not apply anymore and
the collinear factorization should be used. Admittedly, what we have seen is only one piece of
a promising clue for the gluon saturation phenomenon. More data in di�erent forward rapidity
windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and
may eventually provide us the smoking gun proof.

12

10�7

10�5

10�3

10�1

101

� = 2.2

d
3
N

d
�
d
2
p

?

� G
eV

�
2
�

GBW

LO
+NLO
+Lq + Lg

BRAHMS

� = 2.2

rcBK �2
QCD = 0.01

LO
+NLO
+Lq + Lg

BRAHMS

1 2 3
10�7

10�5

10�3

10�1

101

� = 3.2

p�[GeV]

d
3
N

d
�
d
2
p

?

� G
eV

�
2
�

1 2 3

� = 3.2

p�[GeV]

FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
�

sNN = 200GeV per nucleon
at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the
grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2

from 10 GeV2 to 50 GeV2.

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di�erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p� � Qs. On
the other hand, where p� � Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p� region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the applicable p� window of the saturation
formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section
still becomes negative, which implies that the saturation formalism does not apply anymore and
the collinear factorization should be used. Admittedly, what we have seen is only one piece of
a promising clue for the gluon saturation phenomenon. More data in di�erent forward rapidity
windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and
may eventually provide us the smoking gun proof.

13

1.2 1.4 1.6 1.8
10�5

10�4

10�3

10�2

10�1

� = 4

p�[GeV]

d
3
N

d
�
d
2
p

?

� G
eV

�
2
�

GBW

LO
+NLO
+Lq + Lg

STAR

1.2 1.4 1.6 1.8

p�[GeV]

rcBK �2
QCD = 0.01

LO
+NLO
+Lq + Lg

STAR

FIG. 5. Comparison of STAR data [10] with
�

sNN = 200GeV at y = 4 with results from SOLO for the
GBW and rcBK models. The color scheme is the same as in figure 4, and again, the error band comes from
µ2 = 10 GeV2 and 50GeV2. We do not see the negative total cross section because the cuto� momentum
above which the cross section becomes negative is larger than the p� of the available data, and in fact larger
than the kinematic limit

�
sNNe�y.

2 4 6
10�6

10�5

10�4

10�3

10�2

10�1

100

101

y = 1.75

p�[GeV]

d
3
N

d
�
d
2
p

?

� G
eV

�
2
�

GBW

LO
+NLO
+Lq + Lg

ATLAS

2 4 6

y = 1.75

p�[GeV]

rcBK �2
QCD = 0.01

LO
+NLO
+Lq + Lg

ATLAS

FIG. 6. Comparison of ATLAS forward-rapidity data [21] with the center-of-mass energy of
�

sNN =
5.02 TeV at y = 1.75 with SOLO results for the GBW and rcBK models. Again, the color scheme is the
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of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the
numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK
solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks
down at y = 0. This is completely expected for the following reason. First, the collinear parton
distributions of the proton projectile do not resum small-x logarthms and may have considerable
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The abrupt drop at NLO when p? > Qs was surprising and puzzling.
Fixed order calculation in field theories is not guaranteed to be positive.
Failure of positivity is also seen in TMD factorization, where Y-term is devised to match
collinear factorization.[Collins, Foundations of perturbative QCD, 11]
Similar to TMD, saturation only applies at low-k? and x region in s ! 1.
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grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2
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(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di�erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p� � Qs. On
the other hand, where p� � Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p� region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the applicable p� window of the saturation
formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section
still becomes negative, which implies that the saturation formalism does not apply anymore and
the collinear factorization should be used. Admittedly, what we have seen is only one piece of
a promising clue for the gluon saturation phenomenon. More data in di�erent forward rapidity
windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and
may eventually provide us the smoking gun proof.
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numerical data for these measurements are not published, we have extracted the ATLAS points from Fig. 6
of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the
numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK
solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks
down at y = 0. This is completely expected for the following reason. First, the collinear parton
distributions of the proton projectile do not resum small-x logarthms and may have considerable
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same as in figure 4. Here the error band shows plots for µ2 = 10 GeV2 and µ2 = 100 GeV2. Since the
numerical data for these measurements are not published, we have extracted the ATLAS points from Fig. 6
of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the
numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK
solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks
down at y = 0. This is completely expected for the following reason. First, the collinear parton
distributions of the proton projectile do not resum small-x logarthms and may have considerable
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µ2 = 10 GeV2 and 50GeV2. We do not see the negative total cross section because the cuto� momentum
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sNN =
5.02 TeV at y = 1.75 with SOLO results for the GBW and rcBK models. Again, the color scheme is the
same as in figure 4. Here the error band shows plots for µ2 = 10 GeV2 and µ2 = 100 GeV2. Since the
numerical data for these measurements are not published, we have extracted the ATLAS points from Fig. 6
of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the
numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK
solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks
down at y = 0. This is completely expected for the following reason. First, the collinear parton
distributions of the proton projectile do not resum small-x logarthms and may have considerable

The abrupt drop at NLO when p? > Qs was surprising and puzzling.
Fixed order calculation in field theories is not guaranteed to be positive.
Failure of positivity is also seen in TMD factorization, where Y-term is devised to match
collinear factorization.[Collins, Foundations of perturbative QCD, 11]
Similar to TMD, saturation only applies at low-k? and x region in s ! 1.

12 / 18

• Work in low p?  Qs region!
• Including the kinematical

constraints. (Originally assume the
limit s ! 1)

ln
1
xg

+ ln
k2
?

q2
?| {z }

missed earlier

)

New terms: Lq + Lg.

Related to threshold double logs!
• SOLO (1.0 and 2.0) break down in

the large p? � Qs region.
• Approach threshold at high k?.

Threshold resummation
(Sudakov)! [Xiao, Yuan, 18; work
in process]
Another method: X. Liu’s talk

16 / 21
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The origin of the negativity   The origin of the negativity

 

Where is the negativity from? 

∫
1

τ
dξ

1
(1 − ξ)+

f(ξ) = ∫
1

τ
dξ

f(ξ) − f(1)
1 − ξ

+ f(1)ln(1 − τ)

p

A

(xP+, 0⊥)

x′
gP

−

(ξxP+, k⊥)

((1− ξ)xP+, q⊥)

(zξxP+, pT )

Pqq(ξ) = 1 + ξ2

(1 − ξ)+
+ 3

2 δ(1 − ξ)

Pgg(ξ) = 2 [ ξ
(1 − ξ)+

+ 1 − ξ
ξ

+ ξ(1 − ξ)] + ( 11
6 −

2NfTR

3NC ) δ(1 − ξ)

τ = xzξ = PTey/ s

τ → 1

ξ → 1

y ↑ , pT ↑

 

 

 threshold regime

Hab ∼

b PT Q S aZ U
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   The origin of the negativity

The plots of  as a function of rapidity and transverse momemtumτ
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Fourier transform   Fourier transform
The cross-section in the coordinate space

FT cross-section into the momentum space

 

Shu-yi Wei              Threshold Resummation  9

Our approach

1. cross section in the coordinate space
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2. cross section in the momentum space
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auxiliary semi-hard scale Λ
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of |r?| while the impact parameter dependence is neglected throughout this calculation. Therefore, one can simply
define S? =

R
d2R? as the e↵ective transverse area of the target nucleus after integrating over the impact parameter

R?. The first four terms �a�d
qq among the NLO corrections are first derived in Refs. [36, 37] and the last term �e

qq
is due to the kinematic constraint as illustrated in Ref. [45]. As we show in the discussion in Sec. VI, there are two

logarithms ln 1

xg
and ln k2

?
q2?

arising from the rapidity integral when we consider the kinematic constraint. The first

logarithm ln 1

xg
is corresponding to the rapidity divergence when the center of mass energy

p
s is taken to be 1, and

it is resummed through the BK evolution equation. In our scheme choice, we keep the second logarithm ln k2
?

q2?
in the

NLO hard factor and this eventually gives rise to the last term �e
qq as shown in Ref. [45].

In arriving the above expressions, we have taken the large Nc limit and assumed the Gaussian approximation
for color charge distributions inside the target nucleus. Then, we can safely neglect the NLO corrections which are
suppressed by 1/N2

c , and we also simplify multiple point correlation functions and write them in terms of products of
dipole amplitudes S(2) as shown in the last three terms, i.e., �c

qq, �
d
qq, and �e

qq. Since we do not distinguish between

Nc/2 and CF in the large Nc limit, we have replaced the color factors in �c
qq, �

d
qq by CF and we will change the color

factor Nc
2

in �e
qq to CF in the following discussions.

Although the physical interpretation of each NLO correction is manifest in the above coordinate space
expressions[36, 37], it is challenging to evaluate some of the NLO corrections accurately in numerical computations,
especially in the LHC kinematic regime. To achieve better numerical performance, we adopt an analytical procedure
including the following three steps of manipulations: 1. Fourier transform; 2. Combining terms that are cancelling
each other; 3. Shifting coordinates.

1. Fourier Transform

Due to the oscillatory behavior of the phase factor e�ik?·r? , which can be translated into a Bessel function
J0(|k?||r?|) after averaging over the azimuthal angle, it is notoriously di�cult to numerically calculate the cross-
section in the coordinate space especially in the large k? region. To achieve a much better numerical performance, we
analytically transform all of the above coordinate space expressions to the momentum space. This step is vital in the
numerical evaluation of the NLO corrections since we need to perform up to eight-dimensional numerical integrations
with high precision.

The Fourier transform of the �LO
qq term is straightforward, while the transforms of other terms are less trivial.

For example, let us consider the Fourier transform of the �a
qq and �b

qq terms. Since the splitting function Pqq(⇠) =
1+⇠2

(1�⇠)+
+ 3

2
�(1� ⇠) contains two terms, we can rewrite �a

qq as

d�a
qq

dyd2pT
=
↵s

2⇡
S?CF

Z
1

⌧

dz

z2

Z
1

⌧/z
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2)
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Z
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(2⇡)2

ln
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2

⇥
✓
e�ik?·r? +

1

⇠2
e�i 1
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◆
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+3
↵s
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Z
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⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
. (16)

We then combine the second term in Eq. (16), which is proportional to ln c20
r2?µ2 , together with �b

qq, which is proportional

to � ln c20
r2?k2

?
, and obtain the following contribution

3
↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
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e�ik?·r?S(2)(r?) ln
k2?
µ2

. (17)

The Fourier transform of this term is then straightforward. For the remaining terms of �a
qq (i.e., the first term of

Eq. (16)), the derivation is a bit more involved. We use the following identities

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
=
1

⇡

Z
d2l?
l2?


F (k? � l?)� J0

✓
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µ
|l?|

◆
F (k?)

�
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⇡

Z
d2l?
l2?


F (k? � l?)�

⇤2

⇤2 + l2?
F (k?)

�
+ F (k?) ln

⇤2

µ2
, (18)

-independentΛ

numerical FT becomes unstable at large kT
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of |r?| while the impact parameter dependence is neglected throughout this calculation. Therefore, one can simply
define S? =

R
d2R? as the e↵ective transverse area of the target nucleus after integrating over the impact parameter

R?. The first four terms �a�d
qq among the NLO corrections are first derived in Refs. [36, 37] and the last term �e

qq
is due to the kinematic constraint as illustrated in Ref. [45]. As we show in the discussion in Sec. VI, there are two

logarithms ln 1

xg
and ln k2

?
q2?

arising from the rapidity integral when we consider the kinematic constraint. The first

logarithm ln 1

xg
is corresponding to the rapidity divergence when the center of mass energy

p
s is taken to be 1, and

it is resummed through the BK evolution equation. In our scheme choice, we keep the second logarithm ln k2
?

q2?
in the

NLO hard factor and this eventually gives rise to the last term �e
qq as shown in Ref. [45].

In arriving the above expressions, we have taken the large Nc limit and assumed the Gaussian approximation
for color charge distributions inside the target nucleus. Then, we can safely neglect the NLO corrections which are
suppressed by 1/N2

c , and we also simplify multiple point correlation functions and write them in terms of products of
dipole amplitudes S(2) as shown in the last three terms, i.e., �c

qq, �
d
qq, and �e

qq. Since we do not distinguish between

Nc/2 and CF in the large Nc limit, we have replaced the color factors in �c
qq, �

d
qq by CF and we will change the color

factor Nc
2

in �e
qq to CF in the following discussions.

Although the physical interpretation of each NLO correction is manifest in the above coordinate space
expressions[36, 37], it is challenging to evaluate some of the NLO corrections accurately in numerical computations,
especially in the LHC kinematic regime. To achieve better numerical performance, we adopt an analytical procedure
including the following three steps of manipulations: 1. Fourier transform; 2. Combining terms that are cancelling
each other; 3. Shifting coordinates.

1. Fourier Transform

Due to the oscillatory behavior of the phase factor e�ik?·r? , which can be translated into a Bessel function
J0(|k?||r?|) after averaging over the azimuthal angle, it is notoriously di�cult to numerically calculate the cross-
section in the coordinate space especially in the large k? region. To achieve a much better numerical performance, we
analytically transform all of the above coordinate space expressions to the momentum space. This step is vital in the
numerical evaluation of the NLO corrections since we need to perform up to eight-dimensional numerical integrations
with high precision.

The Fourier transform of the �LO
qq term is straightforward, while the transforms of other terms are less trivial.

For example, let us consider the Fourier transform of the �a
qq and �b

qq terms. Since the splitting function Pqq(⇠) =
1+⇠2

(1�⇠)+
+ 3

2
�(1� ⇠) contains two terms, we can rewrite �a

qq as

d�a
qq
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=
↵s

2⇡
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We then combine the second term in Eq. (16), which is proportional to ln c20
r2?µ2 , together with �b

qq, which is proportional

to � ln c20
r2?k2

?
, and obtain the following contribution
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The Fourier transform of this term is then straightforward. For the remaining terms of �a
qq (i.e., the first term of

Eq. (16)), the derivation is a bit more involved. We use the following identities
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-independentΛ

numerical FT becomes unstable at large kT
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It is impossible to do the numerical calculation in the coordinate space!
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of |r?| while the impact parameter dependence is neglected throughout this calculation. Therefore, one can simply
define S? =

R
d2R? as the e↵ective transverse area of the target nucleus after integrating over the impact parameter

R?. The first four terms �a�d
qq among the NLO corrections are first derived in Refs. [36, 37] and the last term �e

qq
is due to the kinematic constraint as illustrated in Ref. [45]. As we show in the discussion in Sec. VI, there are two

logarithms ln 1

xg
and ln k2

?
q2?

arising from the rapidity integral when we consider the kinematic constraint. The first

logarithm ln 1

xg
is corresponding to the rapidity divergence when the center of mass energy

p
s is taken to be 1, and

it is resummed through the BK evolution equation. In our scheme choice, we keep the second logarithm ln k2
?

q2?
in the

NLO hard factor and this eventually gives rise to the last term �e
qq as shown in Ref. [45].

In arriving the above expressions, we have taken the large Nc limit and assumed the Gaussian approximation
for color charge distributions inside the target nucleus. Then, we can safely neglect the NLO corrections which are
suppressed by 1/N2

c , and we also simplify multiple point correlation functions and write them in terms of products of
dipole amplitudes S(2) as shown in the last three terms, i.e., �c

qq, �
d
qq, and �e

qq. Since we do not distinguish between

Nc/2 and CF in the large Nc limit, we have replaced the color factors in �c
qq, �

d
qq by CF and we will change the color

factor Nc
2

in �e
qq to CF in the following discussions.

Although the physical interpretation of each NLO correction is manifest in the above coordinate space
expressions[36, 37], it is challenging to evaluate some of the NLO corrections accurately in numerical computations,
especially in the LHC kinematic regime. To achieve better numerical performance, we adopt an analytical procedure
including the following three steps of manipulations: 1. Fourier transform; 2. Combining terms that are cancelling
each other; 3. Shifting coordinates.

1. Fourier Transform

Due to the oscillatory behavior of the phase factor e�ik?·r? , which can be translated into a Bessel function
J0(|k?||r?|) after averaging over the azimuthal angle, it is notoriously di�cult to numerically calculate the cross-
section in the coordinate space especially in the large k? region. To achieve a much better numerical performance, we
analytically transform all of the above coordinate space expressions to the momentum space. This step is vital in the
numerical evaluation of the NLO corrections since we need to perform up to eight-dimensional numerical integrations
with high precision.

The Fourier transform of the �LO
qq term is straightforward, while the transforms of other terms are less trivial.

For example, let us consider the Fourier transform of the �a
qq and �b

qq terms. Since the splitting function Pqq(⇠) =
1+⇠2

(1�⇠)+
+ 3

2
�(1� ⇠) contains two terms, we can rewrite �a

qq as

d�a
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dyd2pT
=
↵s
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We then combine the second term in Eq. (16), which is proportional to ln c20
r2?µ2 , together with �b

qq, which is proportional

to � ln c20
r2?k2

?
, and obtain the following contribution
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The Fourier transform of this term is then straightforward. For the remaining terms of �a
qq (i.e., the first term of

Eq. (16)), the derivation is a bit more involved. We use the following identities
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of |r?| while the impact parameter dependence is neglected throughout this calculation. Therefore, one can simply
define S? =

R
d2R? as the e↵ective transverse area of the target nucleus after integrating over the impact parameter

R?. The first four terms �a�d
qq among the NLO corrections are first derived in Refs. [36, 37] and the last term �e

qq
is due to the kinematic constraint as illustrated in Ref. [45]. As we show in the discussion in Sec. VI, there are two

logarithms ln 1

xg
and ln k2

?
q2?

arising from the rapidity integral when we consider the kinematic constraint. The first

logarithm ln 1

xg
is corresponding to the rapidity divergence when the center of mass energy

p
s is taken to be 1, and

it is resummed through the BK evolution equation. In our scheme choice, we keep the second logarithm ln k2
?

q2?
in the

NLO hard factor and this eventually gives rise to the last term �e
qq as shown in Ref. [45].

In arriving the above expressions, we have taken the large Nc limit and assumed the Gaussian approximation
for color charge distributions inside the target nucleus. Then, we can safely neglect the NLO corrections which are
suppressed by 1/N2

c , and we also simplify multiple point correlation functions and write them in terms of products of
dipole amplitudes S(2) as shown in the last three terms, i.e., �c

qq, �
d
qq, and �e

qq. Since we do not distinguish between

Nc/2 and CF in the large Nc limit, we have replaced the color factors in �c
qq, �

d
qq by CF and we will change the color

factor Nc
2

in �e
qq to CF in the following discussions.

Although the physical interpretation of each NLO correction is manifest in the above coordinate space
expressions[36, 37], it is challenging to evaluate some of the NLO corrections accurately in numerical computations,
especially in the LHC kinematic regime. To achieve better numerical performance, we adopt an analytical procedure
including the following three steps of manipulations: 1. Fourier transform; 2. Combining terms that are cancelling
each other; 3. Shifting coordinates.

1. Fourier Transform

Due to the oscillatory behavior of the phase factor e�ik?·r? , which can be translated into a Bessel function
J0(|k?||r?|) after averaging over the azimuthal angle, it is notoriously di�cult to numerically calculate the cross-
section in the coordinate space especially in the large k? region. To achieve a much better numerical performance, we
analytically transform all of the above coordinate space expressions to the momentum space. This step is vital in the
numerical evaluation of the NLO corrections since we need to perform up to eight-dimensional numerical integrations
with high precision.

The Fourier transform of the �LO
qq term is straightforward, while the transforms of other terms are less trivial.

For example, let us consider the Fourier transform of the �a
qq and �b

qq terms. Since the splitting function Pqq(⇠) =
1+⇠2

(1�⇠)+
+ 3

2
�(1� ⇠) contains two terms, we can rewrite �a

qq as

d�a
qq

dyd2pT
=
↵s

2⇡
S?CF

Z
1

⌧

dz

z2

Z
1

⌧/z
d⇠xq(x, µ2)Dh/q(z, µ

2)
1 + ⇠2

(1� ⇠)+

Z
d2r?
(2⇡)2

ln
c2
0

r2?µ
2

⇥
✓
e�ik?·r? +

1

⇠2
e�i 1

⇠ k?·r?
◆
S(2)(r?)

+3
↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
. (16)

We then combine the second term in Eq. (16), which is proportional to ln c20
r2?µ2 , together with �b

qq, which is proportional

to � ln c20
r2?k2

?
, and obtain the following contribution

3
↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
k2?
µ2

. (17)

The Fourier transform of this term is then straightforward. For the remaining terms of �a
qq (i.e., the first term of

Eq. (16)), the derivation is a bit more involved. We use the following identities

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
=
1

⇡

Z
d2l?
l2?


F (k? � l?)� J0

✓
c0
µ
|l?|

◆
F (k?)

�

=
1

⇡

Z
d2l?
l2?


F (k? � l?)�

⇤2

⇤2 + l2?
F (k?)

�
+ F (k?) ln

⇤2

µ2
, (18)

-independentΛ

numerical FT becomes unstable at large kT
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1. cross section in the coordinate space
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2. cross section in the momentum space
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of |r?| while the impact parameter dependence is neglected throughout this calculation. Therefore, one can simply
define S? =

R
d2R? as the e↵ective transverse area of the target nucleus after integrating over the impact parameter

R?. The first four terms �a�d
qq among the NLO corrections are first derived in Refs. [36, 37] and the last term �e

qq
is due to the kinematic constraint as illustrated in Ref. [45]. As we show in the discussion in Sec. VI, there are two

logarithms ln 1

xg
and ln k2

?
q2?

arising from the rapidity integral when we consider the kinematic constraint. The first

logarithm ln 1

xg
is corresponding to the rapidity divergence when the center of mass energy

p
s is taken to be 1, and

it is resummed through the BK evolution equation. In our scheme choice, we keep the second logarithm ln k2
?

q2?
in the

NLO hard factor and this eventually gives rise to the last term �e
qq as shown in Ref. [45].

In arriving the above expressions, we have taken the large Nc limit and assumed the Gaussian approximation
for color charge distributions inside the target nucleus. Then, we can safely neglect the NLO corrections which are
suppressed by 1/N2

c , and we also simplify multiple point correlation functions and write them in terms of products of
dipole amplitudes S(2) as shown in the last three terms, i.e., �c

qq, �
d
qq, and �e

qq. Since we do not distinguish between

Nc/2 and CF in the large Nc limit, we have replaced the color factors in �c
qq, �

d
qq by CF and we will change the color

factor Nc
2

in �e
qq to CF in the following discussions.

Although the physical interpretation of each NLO correction is manifest in the above coordinate space
expressions[36, 37], it is challenging to evaluate some of the NLO corrections accurately in numerical computations,
especially in the LHC kinematic regime. To achieve better numerical performance, we adopt an analytical procedure
including the following three steps of manipulations: 1. Fourier transform; 2. Combining terms that are cancelling
each other; 3. Shifting coordinates.

1. Fourier Transform

Due to the oscillatory behavior of the phase factor e�ik?·r? , which can be translated into a Bessel function
J0(|k?||r?|) after averaging over the azimuthal angle, it is notoriously di�cult to numerically calculate the cross-
section in the coordinate space especially in the large k? region. To achieve a much better numerical performance, we
analytically transform all of the above coordinate space expressions to the momentum space. This step is vital in the
numerical evaluation of the NLO corrections since we need to perform up to eight-dimensional numerical integrations
with high precision.

The Fourier transform of the �LO
qq term is straightforward, while the transforms of other terms are less trivial.

For example, let us consider the Fourier transform of the �a
qq and �b

qq terms. Since the splitting function Pqq(⇠) =
1+⇠2

(1�⇠)+
+ 3

2
�(1� ⇠) contains two terms, we can rewrite �a

qq as

d�a
qq

dyd2pT
=
↵s

2⇡
S?CF

Z
1

⌧

dz

z2

Z
1

⌧/z
d⇠xq(x, µ2)Dh/q(z, µ

2)
1 + ⇠2

(1� ⇠)+

Z
d2r?
(2⇡)2

ln
c2
0

r2?µ
2

⇥
✓
e�ik?·r? +

1

⇠2
e�i 1

⇠ k?·r?
◆
S(2)(r?)

+3
↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
. (16)

We then combine the second term in Eq. (16), which is proportional to ln c20
r2?µ2 , together with �b

qq, which is proportional

to � ln c20
r2?k2

?
, and obtain the following contribution

3
↵s

2⇡
S?CF

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
k2?
µ2

. (17)

The Fourier transform of this term is then straightforward. For the remaining terms of �a
qq (i.e., the first term of

Eq. (16)), the derivation is a bit more involved. We use the following identities

Z
d2r?
(2⇡)2

e�ik?·r?S(2)(r?) ln
c2
0

r2?µ
2
=
1

⇡

Z
d2l?
l2?


F (k? � l?)� J0

✓
c0
µ
|l?|

◆
F (k?)

�

=
1

⇡

Z
d2l?
l2?


F (k? � l?)�

⇤2

⇤2 + l2?
F (k?)

�
+ F (k?) ln

⇤2

µ2
, (18)

-independentΛ

numerical FT becomes unstable at large kT
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Two kinds of methods to resum the collinear logarithms
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Resummation of the collinear logarithm

1. reverse-evolution approach

2. renormalization group equation approach

23

1. Mellin Transform

Let us use the q ! q channel as an example to demonstrate how to perform Mellin transform and carry out
resummation in the Mellin space. The derivation for the g ! g channel is similar. Due to the existence of the
endpoint singularity in the splitting functions Pqq and Pgg when ⇠ ! 1, the Mellin transform integral is dominated
by the endpoint for su�ciently large N . In contrast, the o↵-diagonal splitting functions contain no plus-functions or �
functions. Therefore, the threshold e↵ects from the o↵-diagonal channels are much smaller than those in the diagonal
channels.

The Mellin transform and the inverse Mellin transform are usually defined as

f(N) =

Z
1

0

dxxN�1f(x), (97)

f(x) =
1

2⇡i

Z

C
dNx�Nf(N), (98)

where C stands for the proper contour which puts all the poles to its left.
Following the same strategy developed in the last subsection, we resum the collinear logarithms associated with

PDFs and FFs seperately. For the first term of �1
qq, we carry out the Mellin transform as follows

Z
1

0

dxpx
N�1

p

Z
1

xp

d⇠

⇠
q(
xp

⇠
)Pqq(⇠) =

Z
1

0

d⇠⇠N�1Pqq(⇠)

Z
1

0

dxxN�1q(x) = Pqq(N)q(N), (99)

where q(N) ⌘
R
1

0
dxxN�1q(x) and Pqq(N) ⌘

R
1

0
d⇠⇠N�1Pqq(⇠). Similarly, for the second term in �1

qq, we obtain

Z
1

0

dzzN�1

Z
1

z

d⇠

⇠
Dh/q(

z

⇠
)Pqq(⇠) = Pqq(N)Dh/q(N), (100)

with Dh/q(N) ⌘
R
1

0
dzzN�1Dh/q(z). Furthermore, we can evaluate Pqq(N) and find

Pqq(N) = �2�E � 2 (N) +
3

2
� 1

N
� 1

N + 1
= �2�E � 2 lnN +

3

2
+O(

1

N
), (101)

where  (N) = lnN +O( 1

N ) is the polygamma function. We have taken the large-N limit in the last step.
In the threshold limit, the resummation of the collinear logarithm in the �1

qq term in the Mellin space results in
an exponential [83–90]. It is worth mentioning that the corresponding contribution from the o↵-diagonal channels is
suppressed in the large-N limit. The resummed quark PDFs and FFs in the Mellin space can be cast into

qres(N) = q(N) exp


�↵s

⇡
CF ln

⇤2

µ2
(�E � 3

4
+ lnN)

�
, (102)

Dres

h/q(N) = Dh/q(N) exp


�↵s

⇡
CF ln

⇤2

µ2
(�E � 3

4
+ lnN)

�
. (103)

Then we perform the inverse Mellin transform with respect to qres(N) and get

qres(xp,⇤
2, µ2) =

Z

C

dN

2⇡i
x�N
p q(N) exp


�↵s

⇡
CF ln

⇤2

µ2
(�E � 3

4
+ lnN)

�

= exp


�↵s

⇡
CF ln

⇤2

µ2
(�E � 3

4
)

� Z
1

0

dx

x
q(x, µ2)

Z

C

dN

2⇡i

✓
x

xp

◆N

exp


�↵s

⇡
CF ln

⇤2

µ2
lnN

�
. (104)

Using the following identity

Z

C

dN

2⇡i

✓
x

xp

◆N

e��q
⇤,µ lnN =

✓ (x� xp)

�(�q
⇤,µ)

✓
ln

x

xp

◆�q
⇤,µ�1

, Re
h
�q
⇤,µ

i
> 0, (105)

with �q
⇤,µ = ↵s

⇡ CF ln ⇤
2

µ2 , we reach the resummed expression for the quark distribution

qres(xp,⇤
2, µ2) =

e��q
⇤,µ(�E� 3

4 )

�(�q
⇤,µ)

Z
1

xp

dx

x
q(x, µ2)

✓
ln

x

xp

◆�q
⇤,µ�1

, Re
h
�q
⇤,µ

i
> 0. (106)
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Similarly, for the collinear threshold logarithm associated with the quark FF, we have

Dres

h/q(z,⇤
2, µ2) =

e��q
⇤,µ(�E� 3

4 )

�(�q
⇤,µ)

Z
1

z

dz0

z0
Dh/q(z

0, µ2)

✓
ln

z0

z

◆�q
⇤,µ�1

, Re
h
�q
⇤,µ

i
> 0. (107)

In the running coupling case, the anomalous dimension �q
⇤,µ reads

�q
⇤,µ = CF

Z
⇤

2

µ2

dµ02

µ02
↵s(µ02)

⇡
. (108)

For the g ! g channel, the color factor and the splitting function are di↵erent from those in the q ! q channel.
The Mellin transform of Pgg(⇠) is given by

Pgg(N) ⌘
Z

1

0

d⇠⇠N�1Pgg(⇠) = �2


�E +  (N)� �0 �

2

N(N2 � 1)
+

1

N + 2

�
= �2 [�E � �0 + lnN ] +O(

1

N
), (109)

where �0 = 11

12
� nf

6Nc
and we have taken large-N limit in the last step. Therefore, for the gluon case, we obtain the

following expressions for the resummed gluon PDF and FF

gres(xp,⇤
2, µ2) =

e��g
⇤,µ(�E��0)

�(�g
⇤,µ)

Z
1

xp

dx

x
g(x, µ2)

✓
ln

x

xp

◆�g
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, Re
h
�g
⇤,µ

i
> 0, (110)

Dres

h/g(z,⇤
2, µ2) =

e��g
⇤,µ(�E��0)

�(�g
⇤,µ)

Z
1
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dz0
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✓
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z
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, Re
h
�g
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i
> 0, (111)

where the gluon channel anomalous dimension reads

�g
⇤,µ = Nc

Z
⇤

2

µ2

dµ02

µ02
↵s(µ02)

⇡
. (112)

2. The forward threshold jet function

Analogous to the jet function defined in Refs. [89, 90], we can also define the so-called forward threshold jet functions
�q(⇤2, µ2,!) and �g(⇤2, µ2,!) in the quark and gluon channels, respectively. These two functions can be written as

�q(⇤2, µ2,!) =
e��q

⇤,µ(�E� 3
4 )

�(�q
⇤,µ)

!�q
⇤,µ�1, Re

h
�q
⇤,µ

i
> 0, (113)

�g(⇤2, µ2,!) =
e��g

⇤,µ(�E��0)

�(�g
⇤,µ)

!�g
⇤,µ�1, Re

h
�g
⇤,µ

i
> 0, (114)

with ! ⌘ ln 1

⇠ . Here the splitting fraction of the longitudinal momentum ⇠ is xp

x for the initial state gluon emission
and it should be identified as z

z0 in the case of final state gluon emission. The resummed PDFs and FFs derived in
the last section can then be written as

qres(xp,⇤
2, µ2) =

Z
1

xp

dx

x
q(x, µ2)�q(⇤2, µ2,! = ln

x

xp
), (115)

gres(xp,⇤
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Z
1

xp

dx

x
g(x, µ2)�g(⇤2, µ2,! = ln

x
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), (116)

Dres

h/q(z,⇤
2, µ2) =

Z
1

z

dz0
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), (117)

Dres

h/g(z,⇤
2, µ2) =

Z
1

z
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0, µ2)�qg(⇤2, µ2,! = ln
z
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). (118)
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To connect and compare with the renormalization group approach in Refs. [89, 90], we di↵erentiate Eqs. (113-114)
with respect to lnµ2 and find

d�q(⇤2, µ2,!)

d lnµ2
= �↵sCF

⇡


��E +

3

4
�  (�q

⇤,µ) + ln!

�
�q(⇤2, µ2,!), (119)

d�g(⇤2, µ2,!)

d lnµ2
= �↵sNc

⇡

h
��E + �0 �  (�g

⇤,µ) + ln!
i
�g(⇤2, µ2,!). (120)

Due to the scale dependence in the anomalous dimensions, the flow directions of the renormalization group equation
for the µ and ⇤ scales are opposite to each other. Employing the identity of the digamma function  (�) = ��E +R
1

0
du 1�u��1

1�u , we can show that the collinear jet threshold functions �q and �g defined above satisfy the following
integro-di↵erential equations

d�q(⇤2, µ2,!)

d lnµ2
= �↵sCF

⇡


ln! +

3

4

�
�q(⇤2, µ2,!) +

↵sCF

⇡

Z !

0

d!0�
q(⇤2, µ2,!)��q(⇤2, µ2,!0)

! � !0 , (121)

d�g(⇤2, µ2,!)

d lnµ2
= �↵sNc

⇡
[ln! + �0]�

g(⇤2, µ2,!) +
↵sNc

⇡

Z !

0

d!0�
g(⇤2, µ2,!)��g(⇤2, µ2,!0)

! � !0 , (122)

respectively. In deriving the above result, we have used �q/g(⇤2, µ2,!) / !�q/g
⇤,µ�1 together with the identity

Z
1

0

duu�q/g
⇤,µ�1�q/g(⇤2, µ2,!) =

Z !

0

d!0

!
�q/g(⇤2, µ2,!0). (123)

In the threshold limit which gives rise to the approximation ln 1

⇠ |⇠!1 ⇡ 1�⇠, the above evolution equation for the jet

function �q(⇤2, µ2,!) looks rather similar to that developed in Refs. [89, 90] within the SCET framework. The only
di↵erence lies in the absence of the Sudakov double logarithm (�↵sCF

2⇡ L2) and the single logarithm ( 3
2

↵sCF
⇡ L) with

L = ln k2?/⇤
2. To simplify the theoretical derivations presented in this paper, we choose to first resum the collinear

logarithms using the renormalization group equations given by Eqs. (121-122). Then, we deal with the resummation
of the single and double soft logarithms separately through the Sudakov factor in Sec. IV. The bottom line is that the
threshold implemented in our calculation is consistent with the systematic renormalization group equation approach
discussed in Refs. [89, 90].

3. Analytic Continuation

The resummed results obtained above are well-defined in the Re[�q/g
⇤,µ] > 0 region. However, they become singular

at ⇠ = 1 (or equivlently speaking, x = xp or z = z0) when Re[�q/g
⇤,µ]  0. This is simply due to the fact that Eq. (105)

requires Re[�q/g
⇤,µ] > 0 in order to close the integral contour to the left. Similar to the analytic continuation of the

gamma function1, the identity shown in Eq. (105) can be extended to the entire complex plane. For example, we

can analytically continue the resummed results to the region where �1 < Re[�q/g
⇤,µ]  0 in the complex plane by

reconsidering the following inverse Mellin transform

Z
1

0

dx

x
q(x, µ2)

Z

C

dN

2⇡i

✓
x
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◆N

e��q
⇤,µ lnN
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Z
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0

dx

x
[q(x, µ2)� q(xp, µ

2)]

Z

C

dN

2⇡i

✓
x
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e��q
⇤,µ lnN +

Z
1

0

dx

x
q(xp, µ

2)

Z

C

dN

2⇡i

✓
x

xp

◆N

e��q
⇤,µ lnN

=

Z
1

xp

dx

x
[q(x, µ2)� q(xp, µ

2)]
1

�(�q
⇤,µ)

✓
ln

x

xp

◆�q
⇤,µ�1

+ q(xp, µ
2)

1

�(�q
⇤,µ + 1)

✓
ln

1

xp

◆�q
⇤,µ

. (124)

1 To understand this point better, we briefly recall the analytic
continuation of the gamma function �(z). Conventionally, �(z) is
defined via the integral, �(z) =

R1
0 dxxz�1e�x, when Re[z] > 0.

This integral is divergent at Re[z]  0 and therefore �(z) is not
properly defined with this expression in this region. The relation

�(z) = 1
z�(z+1) can be employed to uniquely extend the gamma

function to the �1 < Re[z]  0 region. Furthermore, using
the above relation repeatedly, we can further extend �(z) to the
entire negative half plane except zero and negative integers.

large-N
 lim

it

threshold jet function

Analogous to Becher, Neubert and Pecjak PRL 2006, JHEP 2007. 
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III. THE RESUMMATION OF THE COLLINEAR LOGARITHMS

As mentioned previously in the main text, there are two types of threshold logarithms. The first type is proportional
to the logarithm ↵s ln⇤2/µ2 and the corresponding partonic splitting function as shown in the above-mentioned NLO
corrections (see �1

qq, �
1
gg, �

1
gq and �1

qg), and it is associated with the collinear branching of partons. The second type

is proportional to either ↵s ln k2?/⇤
2 or ↵s ln

2 k2?/⇤
2, and this type originates from the soft emission of gluons near

the kinematic threshold. We first address the issue of the resummation of the collinear part in this section, and then
take care of the soft logarithms via the Sudakov factor in the next section.

A. Resummation of the collinear logarithms via the DGLAP evolution

Following the same idea proposed in Ref. [62], we can resum the collinear part of the threshold logarithms [88–90]
with the help of the DGLAP evolution, by setting the factorization scale µ to be ⇤. To deal with the first term of
�1
qq, the first term of �1

gg, �
1
gq and �1

qg, we apply the following replacement


q (xp, µ)
g (xp, µ)

�
+

↵s

2⇡
ln

⇤2

µ2

Z
1

xp

d⇠

⇠


CFPqq(⇠) TRPqg(⇠)
CFPgq(⇠) NCPgg(⇠)

� 
q (xp/⇠, µ)
g (xp/⇠, µ)

�
)


q (xp,⇤)
g (xp,⇤)

�
. (93)

Upon the above replacement, the threshold logarithm ln ⇤
2

µ2 combined with the corresponding splitting function e↵ec-

tively evolves the factorization scale of the PDFs in the LO cross-section from µ2 back to ⇤2.
The same procedure also can be applied to the FF part. To see this more clearly, we need to rewrite �LO

qq and the
second term of �1

qq as

d�LO
qq

dyd2pT
=S?

Z
1

⌧

dz

z2
xpq(xp, µ

2)Dh/q(z, µ
2)F (k?)

���
xp=

⌧
z ,k?=

pT
z

, (94)

d�1
0

qq

dyd2pT
=
↵s

2⇡
CFS?

Z
d⇠

Z
dz0

z02
✓(z0 � ⌧)✓(1� z0)✓(⇠ � ⌧
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)✓(1� ⇠)
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1
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���
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=
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2⇡
CFS?

Z
1

⌧
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z2
xq(x, µ2)F (

pT
z
) ln

⇤2

µ2

Z
1

z

d⇠

⇠
Dh/q(

z

⇠
, µ2)Pqq(⇠)

���
x= ⌧

z ,z=z0⇠
. (95)

The first line of Eq. (95) is exactly the same as the second term of Eq. (38), albeit in a slightly di↵erent form. From
the first line of Eq. (95) to the second line, we changed the variable z to z0⇠. It is then apparent that we can resum
the second term of �1

qq, the second term of �1
gg, �

2
gq and �2

qg through the DGLAP evolution of the FFs through the
following replacement


Dh/q (z, µ)
Dh/g (z, µ)

�
+

↵s

2⇡
ln

⇤2

µ2

Z
1

z

d⇠

⇠


CFPqq(⇠) CFPgq(⇠)
TRPqg(⇠) NCPgg(⇠)

� 
Dh/q (z/⇠, µ)
Dh/g (z/⇠, µ)

�
)


Dh/q (z,⇤)
Dh/g (z,⇤)

�
. (96)

To conclude, we have taken care of the resummation of the collinear threshold logarithms in the following NLO
correction terms �1

qq, �
1
gg, �

1
gq, �

2
gq, �

1
qg and �2

qg by setting the factorization scales in �LO
qq and �LO

gg to be ⇤2. Since
⇤2 is usually smaller than µ2, we refer to this appoach as the reverse-evolution method in this paper.

B. An alternative formulation of the threshold reummation

Alternatively, there is another analytical approach to resum the above mentioned collinear logarithms (↵s ln
µ2

⇤2 ) in
the threshold limit. This approach is similar to the renormalization-group method first developed in Refs. [89, 90] for
DIS within the SCET framework. Our strategy is laid out as follows. First, we transform the terms which contain

large logarithms of ln µ2

⇤2 into the Mellin space. Second, we resum the corresponding large logarithms in the Mellin
space in the large-N limit. In the end, we perform the inverse Mellin transform back to the momentum space.

As a matter of fact, the analytical results obtained in this subsection are consistent with those in the SCET approach.
Furthermore, we have checked that this alternative approach numerically also agrees well with the resummation
method mentioned in the above subsection.

1. Reverse-evolution approach

2. Renormalization group equation approach

Pqq(N ) = ∫
1

0
dξξN−1Pqq(ξ) = − 2γE − 2 ln N + 3

2 + " ( 1
N )
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1. Mellin Transform

Let us use the q ! q channel as an example to demonstrate how to perform Mellin transform and carry out
resummation in the Mellin space. The derivation for the g ! g channel is similar. Due to the existence of the
endpoint singularity in the splitting functions Pqq and Pgg when ⇠ ! 1, the Mellin transform integral is dominated
by the endpoint for su�ciently large N . In contrast, the o↵-diagonal splitting functions contain no plus-functions or �
functions. Therefore, the threshold e↵ects from the o↵-diagonal channels are much smaller than those in the diagonal
channels.

The Mellin transform and the inverse Mellin transform are usually defined as

f(N) =

Z
1

0

dxxN�1f(x), (97)

f(x) =
1

2⇡i

Z

C
dNx�Nf(N), (98)

where C stands for the proper contour which puts all the poles to its left.
Following the same strategy developed in the last subsection, we resum the collinear logarithms associated with

PDFs and FFs seperately. For the first term of �1
qq, we carry out the Mellin transform as follows

Z
1

0

dxpx
N�1

p

Z
1

xp
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⇠
q(
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⇠
)Pqq(⇠) =
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0
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Z
1

0

dxxN�1q(x) = Pqq(N)q(N), (99)

where q(N) ⌘
R
1

0
dxxN�1q(x) and Pqq(N) ⌘

R
1

0
d⇠⇠N�1Pqq(⇠). Similarly, for the second term in �1

qq, we obtain

Z
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dzzN�1

Z
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⇠
Dh/q(
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⇠
)Pqq(⇠) = Pqq(N)Dh/q(N), (100)

with Dh/q(N) ⌘
R
1

0
dzzN�1Dh/q(z). Furthermore, we can evaluate Pqq(N) and find

Pqq(N) = �2�E � 2 (N) +
3

2
� 1

N
� 1

N + 1
= �2�E � 2 lnN +

3

2
+O(

1

N
), (101)

where  (N) = lnN +O( 1

N ) is the polygamma function. We have taken the large-N limit in the last step.
In the threshold limit, the resummation of the collinear logarithm in the �1

qq term in the Mellin space results in
an exponential [83–90]. It is worth mentioning that the corresponding contribution from the o↵-diagonal channels is
suppressed in the large-N limit. The resummed quark PDFs and FFs in the Mellin space can be cast into

qres(N) = q(N) exp


�↵s

⇡
CF ln

⇤2

µ2
(�E � 3

4
+ lnN)

�
, (102)

Dres

h/q(N) = Dh/q(N) exp
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(�E � 3

4
+ lnN)

�
. (103)

Then we perform the inverse Mellin transform with respect to qres(N) and get

qres(xp,⇤
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Using the following identity

Z
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> 0, (105)

with �q
⇤,µ = ↵s

⇡ CF ln ⇤
2

µ2 , we reach the resummed expression for the quark distribution
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Δq(Λ2, μ2, ω) = e−γq
Λ,μ(γE− 3

4 )
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 Two approaches are 
numerically equivalent!
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Threshold resummation
    Threshold resummation

Resummation of the soft/Sudakov logarithms

Sqq
Sud = − αs
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CF ln2 k2
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Final results
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It is important to note that these two logarithms arise from two physical regions. First, in the region 0 < ⇠ < 1� q2?
k2
?

with finite longitudinal momentum q�, one gets Sudakov logarithm ln k2
?

q2?
corresponding to the real gluon emission.

On the other hand, q� ! 1 in the region 1� q2?
k2
?

< ⇠ < 1� q2?
k2
?
xg, then one gets ln 1

xg
which corresponds to part of

the small-x evolution. For virtual gluon, there is no such requirement.
If we introduce the semi-hard scale ⇤2 to represent the typical transverse momentum associated with the Sudakov

real gluon emission, then we can find that the real and virtual contributions would cancel each other in the region
q2?  ⇤2. When the saturation momentum is not large, this scale is estimated to be (1� ⇠)k2? ⇠ (1� ⌧)k2? since the

real gluon emission requires ⇠ < 1� q2?
k2
?
. On the other hand, when the saturation e↵ect is dominant, we expect that

the real and virtual contributions cancel up to the saturation momentum Q2
s. With these overall considerations, we

choose this semi-hard scale ⇤2 to be

⇤2

fixed
' max

⇥
(1� ⌧)k2?, Q

2

s

⇤
� ⇤2

QCD
, (160)

where the subscript “fixed” indicates that this expression for the auxiliary scale is derived with fixed coupling.
The auxiliary scale ⇤2 in our calculation is similar to the intermediate scale µ2

i in SCET [89, 90]. In the region
⇤2 < q2? < k2?, the remaining virtual contribution is found to be

�
Z k2

?

⇤2

dq2?
q2?

ln
k2?
q2?

) �1

2
ln2

k2?
⇤2

, (161)

which can be identified as the Sudakov double logarithmic contribution. The above intuitive discussion of the scale
choice is based on the separation of the kinematic region, and a more rigorous derivation using the saddle point
approximation is provided in the next subsection. It is important to note that the ⇤2 scale can also be determined
from the scale µ2

r ⌘ c2
0
/r2? with r? being the typical scale in the coordinate space. There are two competing

mechanisms: the threshold soft gluon emission and the saturation e↵ects when we try to locate the region where the
dominant contribution arises. In addition, for convenience, we use a fixed estimated value of ⇤2 in the numerical
evaluation for a given kinematic region.

B. Saddle Point Approximation

In addition to the above intuitive derivation, we can analytically study the choice of ⇤2 via the saddle point
approximation. The saddle point approximation method, also known as the method of steepest descent, allows one
to locate the region where the most important contribution arises in the resummed results and therefore identify the
natural choice of ⇤2. Similar ideas have also been used in Refs. [91–93].

To determine the value of the auxiliary scale ⇤2 in the resumed expression in Eq. (137), let us first consider the
corresponding results for the q ! q channel in the coordinate space
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, (162)

with µr = c0/r?, c0 = 2e��E and �q
µr,µ = CF

R µ2
r
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↵s(µ
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in the coordinate space is
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. (163)

The saddle point of the above r? integral depends on both the strength of the saturation e↵ect (given by the dipole
amplitude S(2)(r?)) and the threshold resummation. To identify the corresponding saddle point of each contribution,
it is convenient to rewrite above formula in terms of the convolution of the dipole gluon distribution and the threshold
Sudakov factor in the momentum space as follows

d�qq
resummed
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Z
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x
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Z
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0)

Z
d2q?F (k? � q?)Gth(q?), (164)
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Next, let us study F (k? � q?) in the second region where q? ⇠ k?, and find the saddle point in the r? integral
involving the dipole gluon distribution. In this case with q? ⇠ k?, the phase factor e�i(k?�q?)·r? or the Bessel
function J0(|k? � q?||r?|) can set to 1. The integral of interest becomes

Z 1

0

dr2?S
(2)(r?) =

Z 1

0

dr2? exp


�1

4
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2
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�
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4
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2

?

�
, (173)

where S(2)(r?) is approximately equal to exp
⇥
� 1

4
Q2

sr
2

?
⇤
as suggested in the GBW model for the dipole scattering

amplitude with Qs the saturation momentum. It is clear that the saddle point of this integral locates at 1

r2sp
= Q2

s
4
.

In the low momentum region where q? ⇠ k?, the GBW model usually provides a good description of the transverse
momentum distribution for F (k? � q?), while it does not have the power law tail in the high q? region.

To summarize, the semi-hard auxiliary scale ⇤2 in Eq. (137) is determined by the dominant region of r?-integral
in Eq. (162). Physically speaking, there are two competing mechanisms which controls the r? integral in Eq. (162).
When the final state jet transverse momentum k? mainly comes from the dipole gluon distribution, we find that the
semi-hard scale is given by Eq. (172). On the other hand, when the saturation e↵ect is strong, we can see that the
typical semi-hard scale should be of the order Q2

s. Near the kinematic threshold when k? is large, we need to minimize
the typical r? in Eq. (162) to avoid strong cancellation caused by the oscillation phase factor. Thus, the dominant
contribution to the whole integral in Eq. (162) comes from the larger scale of these two, or equivalently speaking, the
smaller rsp. Therefore, we arrive at the following quantitative prescription for the choice of ⇤2

⇤2 ⇡ max

8
<

:⇤2

QCD

"
k2?(1� ⇠)

⇤2

QCD

# CF
CF +Nc�0

, Q2

s

9
=

; . (174)

To get the result for the g ! g channel, we only need to replace the color factor CF with Nc.
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FIG. 9. Saturation momentum square Q2
sA = 5Q2

sp(xg) as a function of k? at di↵erent rapidities in the GBW model.

It is time to use Eq. (174) to estimate the natural choices of the auxiliary scale ⇤2 in various kinematic regions. At
the RHIC energy, one can take the typical k? ⇠ 10 GeV. Assuming 1� ⇠ ⇠ 0.5, the saddle point of the first region is
µ2
sp

⇠ 0.7 GeV2 for the q ! q channel. To obtain the above numbers, we have used nf = 4 and ⇤QCD = 0.15 GeV.
For the g ! g channel, the value becomes 2 GeV2, which is not large either. In the large-x region, the cross-section
is dominated by the quark channel since the quark density is much larger than the gluon density. Therefore, the
scale ⇤2 at the RHIC energy is mainly determined by the saturation momentum in dAu collisions. In our numerical
evaluation, we employ the GBW model to estimate the saturation momentum, which is given by[96]
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where xg = k?p
sNN

e�y, x0 = 3.04 ⇥ 10�4, � = 0.288 and Q2
0
= 1 GeV2. For the gold nucleus target, we use

Q2

sA(xg) = 5Q2
sp(xg) and show the saturation momentum as a function of k? at di↵erent rapidities in Fig. 9. The

corresponding saturation momentum for the proton target in pp collisions is only 1/5 of the values shown in Fig. 9.

Λ ∼ μr = c0
r⊥

saddle point approximation
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It is important to note that these two logarithms arise from two physical regions. First, in the region 0 < ⇠ < 1� q2?
k2
?

with finite longitudinal momentum q�, one gets Sudakov logarithm ln k2
?

q2?
corresponding to the real gluon emission.

On the other hand, q� ! 1 in the region 1� q2?
k2
?

< ⇠ < 1� q2?
k2
?
xg, then one gets ln 1

xg
which corresponds to part of

the small-x evolution. For virtual gluon, there is no such requirement.
If we introduce the semi-hard scale ⇤2 to represent the typical transverse momentum associated with the Sudakov

real gluon emission, then we can find that the real and virtual contributions would cancel each other in the region
q2?  ⇤2. When the saturation momentum is not large, this scale is estimated to be (1� ⇠)k2? ⇠ (1� ⌧)k2? since the

real gluon emission requires ⇠ < 1� q2?
k2
?
. On the other hand, when the saturation e↵ect is dominant, we expect that

the real and virtual contributions cancel up to the saturation momentum Q2
s. With these overall considerations, we

choose this semi-hard scale ⇤2 to be
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where the subscript “fixed” indicates that this expression for the auxiliary scale is derived with fixed coupling.
The auxiliary scale ⇤2 in our calculation is similar to the intermediate scale µ2

i in SCET [89, 90]. In the region
⇤2 < q2? < k2?, the remaining virtual contribution is found to be
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which can be identified as the Sudakov double logarithmic contribution. The above intuitive discussion of the scale
choice is based on the separation of the kinematic region, and a more rigorous derivation using the saddle point
approximation is provided in the next subsection. It is important to note that the ⇤2 scale can also be determined
from the scale µ2

r ⌘ c2
0
/r2? with r? being the typical scale in the coordinate space. There are two competing

mechanisms: the threshold soft gluon emission and the saturation e↵ects when we try to locate the region where the
dominant contribution arises. In addition, for convenience, we use a fixed estimated value of ⇤2 in the numerical
evaluation for a given kinematic region.

B. Saddle Point Approximation

In addition to the above intuitive derivation, we can analytically study the choice of ⇤2 via the saddle point
approximation. The saddle point approximation method, also known as the method of steepest descent, allows one
to locate the region where the most important contribution arises in the resummed results and therefore identify the
natural choice of ⇤2. Similar ideas have also been used in Refs. [91–93].

To determine the value of the auxiliary scale ⇤2 in the resumed expression in Eq. (137), let us first consider the
corresponding results for the q ! q channel in the coordinate space
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with µr = c0/r?, c0 = 2e��E and �q
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The saddle point of the above r? integral depends on both the strength of the saturation e↵ect (given by the dipole
amplitude S(2)(r?)) and the threshold resummation. To identify the corresponding saddle point of each contribution,
it is convenient to rewrite above formula in terms of the convolution of the dipole gluon distribution and the threshold
Sudakov factor in the momentum space as follows
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Next, let us study F (k? � q?) in the second region where q? ⇠ k?, and find the saddle point in the r? integral
involving the dipole gluon distribution. In this case with q? ⇠ k?, the phase factor e�i(k?�q?)·r? or the Bessel
function J0(|k? � q?||r?|) can set to 1. The integral of interest becomes
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where S(2)(r?) is approximately equal to exp
⇥
� 1

4
Q2

sr
2

?
⇤
as suggested in the GBW model for the dipole scattering

amplitude with Qs the saturation momentum. It is clear that the saddle point of this integral locates at 1

r2sp
= Q2

s
4
.

In the low momentum region where q? ⇠ k?, the GBW model usually provides a good description of the transverse
momentum distribution for F (k? � q?), while it does not have the power law tail in the high q? region.

To summarize, the semi-hard auxiliary scale ⇤2 in Eq. (137) is determined by the dominant region of r?-integral
in Eq. (162). Physically speaking, there are two competing mechanisms which controls the r? integral in Eq. (162).
When the final state jet transverse momentum k? mainly comes from the dipole gluon distribution, we find that the
semi-hard scale is given by Eq. (172). On the other hand, when the saturation e↵ect is strong, we can see that the
typical semi-hard scale should be of the order Q2

s. Near the kinematic threshold when k? is large, we need to minimize
the typical r? in Eq. (162) to avoid strong cancellation caused by the oscillation phase factor. Thus, the dominant
contribution to the whole integral in Eq. (162) comes from the larger scale of these two, or equivalently speaking, the
smaller rsp. Therefore, we arrive at the following quantitative prescription for the choice of ⇤2

⇤2 ⇡ max

8
<

:⇤2

QCD

"
k2?(1� ⇠)

⇤2

QCD

# CF
CF +Nc�0

, Q2

s

9
=

; . (174)

To get the result for the g ! g channel, we only need to replace the color factor CF with Nc.
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FIG. 9. Saturation momentum square Q2
sA = 5Q2

sp(xg) as a function of k? at di↵erent rapidities in the GBW model.

It is time to use Eq. (174) to estimate the natural choices of the auxiliary scale ⇤2 in various kinematic regions. At
the RHIC energy, one can take the typical k? ⇠ 10 GeV. Assuming 1� ⇠ ⇠ 0.5, the saddle point of the first region is
µ2
sp

⇠ 0.7 GeV2 for the q ! q channel. To obtain the above numbers, we have used nf = 4 and ⇤QCD = 0.15 GeV.
For the g ! g channel, the value becomes 2 GeV2, which is not large either. In the large-x region, the cross-section
is dominated by the quark channel since the quark density is much larger than the gluon density. Therefore, the
scale ⇤2 at the RHIC energy is mainly determined by the saturation momentum in dAu collisions. In our numerical
evaluation, we employ the GBW model to estimate the saturation momentum, which is given by[96]
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, (175)

where xg = k?p
sNN

e�y, x0 = 3.04 ⇥ 10�4, � = 0.288 and Q2
0
= 1 GeV2. For the gold nucleus target, we use

Q2

sA(xg) = 5Q2
sp(xg) and show the saturation momentum as a function of k? at di↵erent rapidities in Fig. 9. The

corresponding saturation momentum for the proton target in pp collisions is only 1/5 of the values shown in Fig. 9.

Λ ∼ μr = c0
r⊥

saddle point approximation
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when the saturation effect is strongΛ ∼ μr = c0
r⊥

1. Intuitive method
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It is important to note that the factorization scale in �resummed now becomes ⇤ due to the resummation of the
threshold collinear logarithms, while that in �NLO matching remains as µ. This replacement of the factorization scale is
akin to the common practice (setting µ to µb) in the transverse momentum-dependent distribution factorization[92].

VI. NATURAL CHOICES OF THE AUXILIARY SCALE

Here we illustrate how to determine the proper value of semi-hard scale ⇤ in our numerical calculations, since this
scale plays an important role in numerical results. In the case of fixed coupling, we first use an intuitive method
and find ⇤2 ⇠ (1 � ⇠)k2? when the threshold logarithms become important. In addition, by using the saddle point
approximation, we find that the semi-hard scale ⇤ can be determined by dominant scale determined by the saddle
point of the resummed formula in both the fixed and running couple scenarios.

A. An Intuitive Derivation with the Fixed coupling
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FIG. 8. The kinematics of the real gluon emission.

To illustrate the physical interpretation of the semi-hard scale ⇤2, it is instructive to consider the real emission of
gluons as shown in Fig. 8. Following the discussion outlined in Ref. [45], we use the light-cone perturbation theory

and define p+ = p0
+p3
p
2

and p� = p0�p3
p
2

. According to the momentum conservation before and after the splitting, we

get the following kinematic constraint for the radiated gluon in the ⇠ ! 1 limit
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Then the upper limit of the divergent integral of d⇠ should be modified as following
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It is important to note that the factorization scale in �resummed now becomes ⇤ due to the resummation of the
threshold collinear logarithms, while that in �NLO matching remains as µ. This replacement of the factorization scale is
akin to the common practice (setting µ to µb) in the transverse momentum-dependent distribution factorization[92].

VI. NATURAL CHOICES OF THE AUXILIARY SCALE

Here we illustrate how to determine the proper value of semi-hard scale ⇤ in our numerical calculations, since this
scale plays an important role in numerical results. In the case of fixed coupling, we first use an intuitive method
and find ⇤2 ⇠ (1 � ⇠)k2? when the threshold logarithms become important. In addition, by using the saddle point
approximation, we find that the semi-hard scale ⇤ can be determined by dominant scale determined by the saddle
point of the resummed formula in both the fixed and running couple scenarios.

A. An Intuitive Derivation with the Fixed coupling
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FIG. 8. The kinematics of the real gluon emission.

To illustrate the physical interpretation of the semi-hard scale ⇤2, it is instructive to consider the real emission of
gluons as shown in Fig. 8. Following the discussion outlined in Ref. [45], we use the light-cone perturbation theory

and define p+ = p0
+p3
p
2

and p� = p0�p3
p
2

. According to the momentum conservation before and after the splitting, we

get the following kinematic constraint for the radiated gluon in the ⇠ ! 1 limit
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Then the upper limit of the divergent integral of d⇠ should be modified as following
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It is important to note that these two logarithms arise from two physical regions. First, in the region 0 < ⇠ < 1� q2?
k2
?

with finite longitudinal momentum q�, one gets Sudakov logarithm ln k2
?

q2?
corresponding to the real gluon emission.

On the other hand, q� ! 1 in the region 1� q2?
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< ⇠ < 1� q2?
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xg, then one gets ln 1

xg
which corresponds to part of

the small-x evolution. For virtual gluon, there is no such requirement.
If we introduce the semi-hard scale ⇤2 to represent the typical transverse momentum associated with the Sudakov

real gluon emission, then we can find that the real and virtual contributions would cancel each other in the region
q2?  ⇤2. When the saturation momentum is not large, this scale is estimated to be (1� ⇠)k2? ⇠ (1� ⌧)k2? since the

real gluon emission requires ⇠ < 1� q2?
k2
?
. On the other hand, when the saturation e↵ect is dominant, we expect that

the real and virtual contributions cancel up to the saturation momentum Q2
s. With these overall considerations, we

choose this semi-hard scale ⇤2 to be
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where the subscript “fixed” indicates that this expression for the auxiliary scale is derived with fixed coupling.
The auxiliary scale ⇤2 in our calculation is similar to the intermediate scale µ2

i in SCET [89, 90]. In the region
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which can be identified as the Sudakov double logarithmic contribution. The above intuitive discussion of the scale
choice is based on the separation of the kinematic region, and a more rigorous derivation using the saddle point
approximation is provided in the next subsection. It is important to note that the ⇤2 scale can also be determined
from the scale µ2

r ⌘ c2
0
/r2? with r? being the typical scale in the coordinate space. There are two competing

mechanisms: the threshold soft gluon emission and the saturation e↵ects when we try to locate the region where the
dominant contribution arises. In addition, for convenience, we use a fixed estimated value of ⇤2 in the numerical
evaluation for a given kinematic region.

B. Saddle Point Approximation

In addition to the above intuitive derivation, we can analytically study the choice of ⇤2 via the saddle point
approximation. The saddle point approximation method, also known as the method of steepest descent, allows one
to locate the region where the most important contribution arises in the resummed results and therefore identify the
natural choice of ⇤2. Similar ideas have also been used in Refs. [91–93].

To determine the value of the auxiliary scale ⇤2 in the resumed expression in Eq. (137), let us first consider the
corresponding results for the q ! q channel in the coordinate space
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The saddle point of the above r? integral depends on both the strength of the saturation e↵ect (given by the dipole
amplitude S(2)(r?)) and the threshold resummation. To identify the corresponding saddle point of each contribution,
it is convenient to rewrite above formula in terms of the convolution of the dipole gluon distribution and the threshold
Sudakov factor in the momentum space as follows
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It is important to note that these two logarithms arise from two physical regions. First, in the region 0 < ⇠ < 1� q2?
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where the subscript “fixed” indicates that this expression for the auxiliary scale is derived with fixed coupling.
The auxiliary scale ⇤2 in our calculation is similar to the intermediate scale µ2

i in SCET [89, 90]. In the region
⇤2 < q2? < k2?, the remaining virtual contribution is found to be
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which can be identified as the Sudakov double logarithmic contribution. The above intuitive discussion of the scale
choice is based on the separation of the kinematic region, and a more rigorous derivation using the saddle point
approximation is provided in the next subsection. It is important to note that the ⇤2 scale can also be determined
from the scale µ2

r ⌘ c2
0
/r2? with r? being the typical scale in the coordinate space. There are two competing

mechanisms: the threshold soft gluon emission and the saturation e↵ects when we try to locate the region where the
dominant contribution arises. In addition, for convenience, we use a fixed estimated value of ⇤2 in the numerical
evaluation for a given kinematic region.

B. Saddle Point Approximation

In addition to the above intuitive derivation, we can analytically study the choice of ⇤2 via the saddle point
approximation. The saddle point approximation method, also known as the method of steepest descent, allows one
to locate the region where the most important contribution arises in the resummed results and therefore identify the
natural choice of ⇤2. Similar ideas have also been used in Refs. [91–93].

To determine the value of the auxiliary scale ⇤2 in the resumed expression in Eq. (137), let us first consider the
corresponding results for the q ! q channel in the coordinate space
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The saddle point of the above r? integral depends on both the strength of the saturation e↵ect (given by the dipole
amplitude S(2)(r?)) and the threshold resummation. To identify the corresponding saddle point of each contribution,
it is convenient to rewrite above formula in terms of the convolution of the dipole gluon distribution and the threshold
Sudakov factor in the momentum space as follows
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It is important to note that these two logarithms arise from two physical regions. First, in the region 0 < ⇠ < 1� q2?
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LO jet production
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LO contribution
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NLO jet productions
NLO contribution of the final state radiation 

σa

    Jet production

In-cone contribution: when the final state quark and the radiated gluon stay close to each other 

We need to integrate the relative momentum !

6

cone or not, there are three di↵erent cases. Firstly, Fig. 2 (a) represents the so-called in-cone contribution which
indicates the radiated gluon and its parent quark are almost collinear. In this case, the final state quark and gluon
are combined together and treated as a single jet. Therefore, the momentum of the measured quark jet is equal to
the sum of the momenta of these two particles. Secondly, Fig. 2 (b) stands for the false identification of the jet as the
final state quark when the radiated gluon is inside the quark jet cone. This part should be subtracted from the total
contribution. In addition, Fig. 2 (c) denotes the quark plus the gluon radiation without any constraint. Therefore,
�c � �b yields the out-cone contribution. Therefore, the corresponding quark jet cross-section can be expressed as
follows,

�final

qq = �a + (�c � �b) + �virt(jet)

qq , (13)

where �virt(jet)

qq is the virtual contribution. It is straightforward to determine the momentum constraints for the
above three cases via the light cone perturbation formalism. To proceed, we need to define the jet cone. Firstly,
we define the momenta of the radiated gluon and the final state quark as lµ ⌘ (l+ = 1p

2
l?e⌘1 , l� = 1p

2
l?e�⌘1 , l?)

and kµ ⌘ (k+ = 1p
2
k?e⌘2 , k� = 1p

2
k?e�⌘2 , k?), respectively. Then, the relative distance between the quark and the

radiated gluon is characterized by their invariant mass

(l + k)2 = l?k?
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where Rqg ⌘

p
�⌘2 +��2 when their pseudorapidity di↵erence �⌘ ⌘ ⌘1 � ⌘2 and azimuthal angle di↵erence �� ⌘

�1 � �2 are very small. Furthermore, the virtuality of the quark-gluon pair can also be expressed as

(l + k)2 =
(⇠l? � (1� ⇠)k?)2

⇠(1� ⇠)
. (15)

Here ⇠ is the longitudinal momentum carried by the final state quark, and p? = ⇠l?� (1�⇠)k? stands for the relative
transverse momentum of the quark-gluon pair. Once we define the jet cone size as R, then the requirement Rqg  R
indicates that the final state quark and the radiated gluon are located within one jet cone.

In the following, we derive the momentum constraints for the above three cases. First, the radiated gluon and
the final state quark are put inside the same jet cone. Therefore, the momentum of the measured jet is equal to
the momentum summation of the quark-gluon pair that is PJ = zq? = z(l? + k?) with z = 1. In order to get the
di↵erential cross-section of the transverse momentum of jet, we need to integrate the relative momentum p?. By
requiring that both the quark and gluon are inside the same jet cone, we have the kinematic constraint as follows

p2?
⇠(1� ⇠)

 l?k?R
2
'

⇠(1� ⇠)

z2
P 2

JR
2 = ⇠(1� ⇠)q2?R

2, (16)

where in the last step we approximately write zl? = (1�⇠)PJ and zk? = ⇠PJ . Taking all considerations into account,
the kinematic constraint becomes p2?  ⇠2(1� ⇠)2q2?R

2.
The second diagram indicates the contribution from the false identification of tagged quark when the emitted

gluon is also inside the jet cone. In this case, the transverse momentum of the measured final state quark jet is
PJ = zk? = zq?. Note that the in-cone constraint is slightly di↵erent from the constraint of �a. We still have the
approximate relation l?

k?
= 1�⇠

⇠ . Therefore, the constraint becomes
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In this case, the kinematic constraint changes to p2?  (1� ⇠)2q2?R
2. This contribution should be subtracted since it

comes from the false tagging of an individual parton inside a jet cone. Here we emphasize that the above constraints
are consistent with kt-type jet algorithms[105].

For the last part, we do not impose any jet cone constraints, and then integrate the momentum of radiated gluon
over the full phase space. In this case, the calculation is identical to that of the hadron production.

To proceed, we apply the dimensional regularization [134] and the modified minimal subtraction scheme (MS) to
evaluate the remaining part of the integral. Thus, we can write �a, �b and �c as follows
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Here ⇠ is the longitudinal momentum carried by the final state quark, and p? = ⇠l?� (1�⇠)k? stands for the relative
transverse momentum of the quark-gluon pair. Once we define the jet cone size as R, then the requirement Rqg  R
indicates that the final state quark and the radiated gluon are located within one jet cone.

In the following, we derive the momentum constraints for the above three cases. First, the radiated gluon and
the final state quark are put inside the same jet cone. Therefore, the momentum of the measured jet is equal to
the momentum summation of the quark-gluon pair that is PJ = zq? = z(l? + k?) with z = 1. In order to get the
di↵erential cross-section of the transverse momentum of jet, we need to integrate the relative momentum p?. By
requiring that both the quark and gluon are inside the same jet cone, we have the kinematic constraint as follows
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comes from the false tagging of an individual parton inside a jet cone. Here we emphasize that the above constraints
are consistent with kt-type jet algorithms[105].

For the last part, we do not impose any jet cone constraints, and then integrate the momentum of radiated gluon
over the full phase space. In this case, the calculation is identical to that of the hadron production.
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Kinematic constraint:

Rqg = Δη2 + Δϕ2
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NLO jet productions

— +

NLO contribution from the final state radiation 

σ jet
final = σa + (σc − σb) + σvirt

σa σb σc
7

evaluate the rest part of the integral. The rest calculation is trivial, we get the final results as follows
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In arriving the above equation, we have defined �LO
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simplicity with r? = x? � y? and S? is the transverse area of the target nucleus. Where c0 = 2e��E with �E is the
EulerGamma constant. The splitting function Pqq(⇠) is defined as
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2. Other contributions

This section is devoted to the discussion of the remaining contributions except for the final state gluon radiation.
As can be seen in the following, these contributions are almost same as hadron production case.

The Feynman diagram of the initial state gluon radiation is illustrated in Fig. 3, where the multiple interactions
occur not only in the amplitude but also in the conjugate amplitude. Both quark and gluon multiple interact with

the target nucleus should be resumed, which corresponds to S(6)

Y (b?, x?, b0?, x
0
?) term in Eq. (9).

Fig. 3 shows the initial state radiation. Generally, for the radiated gluon has such probability locate in the measured
jet cone of the final state quark. However, this kind of contribution is so small that we can neglect it once we take
narrow jet approximation (NJA) or small cone approximation (SMA). Therefore, the momentum of the integrated
gluon is the entire phase space. In this case, the calculation is the same as hadron production. By integrating over
the unobserved gluon momentum, we identify the transverse coordinate of the gluon from x? to x0

?, which simplifies

multiple scattering factorsS(6)

Y (b?, x?, b0?, x
0
?) to S(2)

Y (b?, b0?), the derivation details can be found in the Appendix. ??.
The rest of the story is to use dimensional regularization and MS subtraction scheme again together with the above

FIG. 3. The real diagram for the initial state gluon radiation.

momentum constraints to evaluate the integration of S(2)

Y (v?, v0?). The details can be found in Ref. [54]. We list the
final results here for completeness
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Note here in Eq. (23) we have used the usual subtraction mechanism of the rapidity divergence which change the

splitting function
R
d⇠ 1+⇠2

1�⇠ into
R
d⇠ 1+⇠2

(1�⇠)+
. In addition, as mentioned before, by considering the full four-momentum

conservation before and after scattering, additional exact kinematical constraints will occur, which is equivalent to
modifying the dipole splitting function. Therefore, for the full rapidity subtraction, several new terms come out [45].

For interference contributions S(3)

Y (b?, x?, v0?) and S(3)

Y (v?, x0
?, b

0
?) in Eq. (9). By taking into account the same

NJA, the evaluation of interference diagrams are also quite straightforward. We will list the final results in the next
subsection. In addition, as shown in Fig. 4 we have virtual diagrams as usual. It is straightforward to get virtual
contributions as
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Unique terms from jet algorithms 

Liu, Xie, Kang, and Liu, JHEP, 2022 

ln 1
R2 ⇔ − 1

ϵ
+ ln q2

⊥
μ2

Comparing with hadron productions

Our one-loop calculations are consistent with hadron calculations.

Our one-loop calculations are consistent with Liu’s paper.

Chirilli, Xiao and Yuan, PRL, 2012 
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Threshold resummation

Reusmmation of the collinear logarithms from the final state radiation

μJ = PJR

23

At first, Eq. (140) is not a closed equation. However, by taking higher loop contributions into account, we can promote

J
(0)

q (z) to Jq(z,⇤) and thus arrive at the closed evolution equation as follows
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It is obvious that the di↵erential equation for the collinear quark jet function is identical to the DGLAP evolution

equation. The initial condition for this equation is given by the J
(0)

q (z) = �(1 � z) at scale µJ = PJR. We should
also consider running coupling solution when we perform the numerical calculations. Following the same procedure,
we can obtain the evolution equation of the collinear gluon jet function
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with initial condition J
(0)

g (z) = �(1 � z) at scale µJ = PJR. Now we can resum the final state collinear logarithms

ln ⇤
2

µ2
J
as in Eqs.(53, 103, 117, 133) through the DGLAP equation with the following replacement
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In practice, we require µJ � ⇤QCD. This requirement allows us to perform perturbative QCD calculations.
The quantitative prescription for the choice of ⇤2 is the same as hadron production case. The detailed derivation

which determines the proper value of the auxiliary scale ⇤2 can be found in Ref. [66]. Particularly, we can identify
the dominant contribution for the NLO correction via the saddle point approximation and we find the natural choice
for the semi-hard scale ⇤2 in the q ! q channel
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9
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Once we replace the color factor CF with Nc in the above equation and change Qs to the adjoint representation, we
can get the result for the g ! g channel.

B. The resummation of the collinear logarithm in the Mellin space

Alternatively, we can resum the collinear logarithms in the Mellin space [131, 135–137]. This type of threshold
resummation was first introduced for the DIS process [132–134, 138] within the soft collinear e↵ective theory frame-
work. Our strategy used here is based on our previous work [66]. Due to the plus functions and delta functions in
Pqq(⇠) and Pgg(⇠), there are endpoint singularities in the ⇠ ! 1 limit. This lmit corresponds to the large N limit in
the Mellin moment space. Therefore, the dominant contributions arise from these endpoint singularities and they are
from diagonal channels. In contrast, the o↵-diagonal channels have no plus functions or delta functions. Therefore,
we expect that the threshold e↵ects from the o↵-diagonal terms are small. We simply deal with the diagonal channels
in this subsection and keep the o↵-diagonal channels unchanged.

We first Mellin transform the cross-section of the diagonal channels into the Mellin space. In the Mellin space, the
convolution of the di↵erential cross-section can be factorized into an independent integral product and the integration
over ⇠. One can exponentiate the corresponding large logarithms in the Mellin space under the large-N limit. At the
end of the day, we need to perform the cross-section back to the momentum space with the help of the inverse Mellin
transform. Since the calculation is straightforward, we only list the main results here and more details can be found
in our previous work [66].

We first take the q ! q channel as an example and show what is going on, then the g ! g channel can be done
similarly. Utilizing Mellin transform and inverse Mellin transform, we resum the collinear logarithms associated with
parton distribution functions (PDFs) and CJFs separately. For PDFs and CJFs, we write
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J(0)
q = δ(1 − z)
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It is obvious that the di↵erential equation for the collinear quark jet function is identical to the DGLAP evolution

equation. The initial condition for this equation is given by the J
(0)

q (z) = �(1 � z) at scale µJ = PJR. We should
also consider running coupling solution when we perform the numerical calculations. Following the same procedure,
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In practice, we require µJ � ⇤QCD. This requirement allows us to perform perturbative QCD calculations.
The quantitative prescription for the choice of ⇤2 is the same as hadron production case. The detailed derivation

which determines the proper value of the auxiliary scale ⇤2 can be found in Ref. [66]. Particularly, we can identify
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Once we replace the color factor CF with Nc in the above equation and change Qs to the adjoint representation, we
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Alternatively, we can resum the collinear logarithms in the Mellin space [131, 135–137]. This type of threshold
resummation was first introduced for the DIS process [132–134, 138] within the soft collinear e↵ective theory frame-
work. Our strategy used here is based on our previous work [66]. Due to the plus functions and delta functions in
Pqq(⇠) and Pgg(⇠), there are endpoint singularities in the ⇠ ! 1 limit. This lmit corresponds to the large N limit in
the Mellin moment space. Therefore, the dominant contributions arise from these endpoint singularities and they are
from diagonal channels. In contrast, the o↵-diagonal channels have no plus functions or delta functions. Therefore,
we expect that the threshold e↵ects from the o↵-diagonal terms are small. We simply deal with the diagonal channels
in this subsection and keep the o↵-diagonal channels unchanged.

We first Mellin transform the cross-section of the diagonal channels into the Mellin space. In the Mellin space, the
convolution of the di↵erential cross-section can be factorized into an independent integral product and the integration
over ⇠. One can exponentiate the corresponding large logarithms in the Mellin space under the large-N limit. At the
end of the day, we need to perform the cross-section back to the momentum space with the help of the inverse Mellin
transform. Since the calculation is straightforward, we only list the main results here and more details can be found
in our previous work [66].

We first take the q ! q channel as an example and show what is going on, then the g ! g channel can be done
similarly. Utilizing Mellin transform and inverse Mellin transform, we resum the collinear logarithms associated with
parton distribution functions (PDFs) and CJFs separately. For PDFs and CJFs, we write
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Initial condition: at scale

Threshold resummation is still needed!
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process collinear log(initial) single log double log collinear log(final)

q ! q Pqq(⇠) ln ⇤2

µ2 ln
q2?
⇤2 ln2 q2?

⇤2
1
⇠2
Pqq(⇠) ln ⇤2

µ2
J

g ! g Pgg(⇠) ln ⇤2

µ2 ln
q2?
⇤2 ln2 q2?

⇤2
1
⇠2
Pgg(⇠) ln ⇤2

µ2
J

q ! g Pgq(⇠) ln ⇤2

µ2 / / 1
⇠2
Pgq(⇠) ln ⇤2

µ2
J

g ! q Pqg(⇠) ln ⇤2

µ2 / / 1
⇠2
Pqg(⇠) ln ⇤2

µ2
J

TABLE I. List of collinear and Sudakov logarithms in di↵erent channels.

A. Resummation via the DGLAP evolution equation

As discussed previously, there are two types of collinear logarithms. One originates from the initial state radiation,
and the other one from the final state emission. Their resummation corresponds to the scale evolution of parton
distribution functions (PDFs) and CJFs, respectively. For the diagonal channels, we know that the di↵erential cross-
section is proportional to the plus functions as follows

Z
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(1� ⇠)+
/ ln(1� ⌧). (136)

When the gluon emission is near the boundary of the allowed phase space, the integration over the plus function then
becomes divergent in the limit ⌧ ! 1. More discussion can be found in Ref. [66]. Therefore, one needs to resum
such collinear logarithms associated with the plus function. Basically, there are two approaches to resum the collinear
logarithms. Motivated by the works in Ref. [66, 114], the collinear logarithms [136–138] can intuitively be resumed
with the help of the DGLAP evolution equations. This methods is called the reverse-evolution method in Ref. [66].

For the collinear logarithms ln ⇤
2

µ2 associated with initial state gluon emissions as in Eqs.(45, 93, 114, 130), once
we evolve the factorization scale µ to the auxiliary scale ⇤, the resummation of the collinear part can be achieved
automatically. As demonstrated in Ref. [66], we can apply the following replacement
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In order to resum the collinear logarithm (ln ⇤
2

µ2
J
with µJ = PJR) arising from the final state radiations, our strategy

is to redefine the CJFs. Similar to the FFs in the hadron production case [68], we take q ! q channel as an example
and start with Eq. (53), which can be cast into
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where we have used
R 01
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= 0 in the last line, and changed the integration

variable z0 ! z. By combining the LO, q ! q channel and q ! g channel contributions together, we redefine the
collinear quark jet function as follows
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By di↵erentiating Eq. (139) with respect to ln⇤2, we can obtain
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Threshold resummation
Resummation of the soft logarithms

Sqq
Sud = − αs

2π
CF

2 ln2 k2
⊥

Λ2 + αs

2π
3
2 CF ln k2

⊥
Λ2

Only initial state radiation 
contribution!

    Jet production

Sudakov logs from the jet contribution cancel.

The term which proportional to , 

and this stems from final state gluon radiations. 
When  ( ), these terms give us .

( ln(1 − ξ)
1 − ξ )

+

ξ → 1 τ → 1 ln2 N

Sqq
Sud = − αs

2π
CF ln2 k2

⊥
Λ2 + 3 αs

2π
CF ln k2

⊥
Λ2

σb

Note: for hadron productions we have
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Final results    Final results

Final resummed results

26

Sudakov factor in Eq. (164) and Eq. (165). In contrast, the remaining logarithms 1

2
�5a
qq and 1

2
�7a
gg are associated with

the final state gluon radiation from the jet. We treat them as normal NLO corrections along with other NLO terms
in the hard factor. In the NLO hard matching term, there are nine terms (�3

qq, �
4
qq,

1

2
�5a
qq , �

5b
qq, �

6
qq, �

7
qq, �

8
qq, �

10
qq , �

11
qq )

in the q ! q channel after removing the large logarithms (�1
qq, �

2
qq,

1

2
�5a
qq ). In the g ! g channel, there are also

nine terms (�3
gg, �

4
gg, �

5
gg, �

6
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2
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7b
gg, �

8
gg, �

9
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10
gg) left after removing (�1

gg, �
2
gg and 1

2
�7a
gg ). Besides, there are

three terms (�2
gq, �

3
gq, �

5
gq) and (�2

qg, �
3
qg and �5

qg) in the q ! g and g ! q channels, respectively. We put all these
remaining small terms in the NLO hard factor which is referred to as the “NLO matching” contribution.

The fully resummed result can be derived by collecting Eq. (137), Eq. (143), Eq. (164) and Eq. (165) together, the
detailed derivation can be found in Ref. [66] and we present the final “Resummed” result here
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At the end of the day, the resummation improved NLO cross-section is then given by
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and “Sud matching” is given by Eq. (166). Due to the resummation of the threshold collinear logarithms, the scale µ
for PDFs (or µJ for CJFs) in �resummed becomes ⇤. Meanwhile, the scales remain unchanged in �NLO matching. After
all the resummations, we believe that all the large logarithms have been taken care of and the remaining NLO hard
factors are numerically small. Therefore, the resummation improved results allow us to obtain reliable predictions for
forward jet productions.

V. CONCLUSION

In summary, we have systematically calculated the
complete NLO cross-section for single inclusive jet pro-
duction in pA collisions at forward rapidity region within
the small-x framework. As shown above, the narrow jet
approximation allows us to neglect the small contribution
from the kinematic region where the radiated gluon is lo-
cated inside the jet cone. Therefore, the calculation for
the initial state radiation becomes identical to the single
hadron production case. The collinear divergences asso-
ciated with the initial state gluon radiation can also be
factorized into the splittings of the PDFs of the incoming
nucleon. Thanks to the jet algorithm, complete cancel-
lations occur for final state gluon radiations as expected.
The residual contribution after the cancellation is propor-
tional to ln 1

R2 , which is only divergent in the small cone
limit(R ! 0). It is the signature of final state collinear di-
vergence, and corresponds to the collinear singularity for
FFs in the hadron production case. By employing proper
subtractions of both rapidity and collinear divergences,
we obtain the NLO hard coe�cients which can be nu-

merically evaluated for future phenomenological studies.
The one-loop results obtained in this study are consistent
with the results in Ref. [67]. However, our resummation
strategies for the collinear and Sudakov logarithms from
the initial state radiations and the jet cone logarithms
from the final state radiations are new.
The resummation strategy that we use is analogous

to that in our previous study Ref. [66]. We first iden-
tify the Sudakov type logarithms associated with the
soft gluon emissions near the threshold, then we per-
form the Sudakov resummation in the momentum space.
The remaining single logarithmic terms are resummed
with the help of the DGLAP equation. The procedure is
also similar to the practice in the Collins-Soper-Sterman
formalism. In addition, due to the introduction of jet
cones which regularize the final state divergence, we find
that double logarithmic divergences are absent in the fi-
nal state gluon radiations. Therefore, there are no Su-
dakov double logs for the final state radiations in the end.
We expect the numerical results of the jet cross-section
will be similar to the hadron case. Our approach for re-
summation is di↵erent from that in Ref. [67] where the
threshold logarithms are resummed in the Mellin space.
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6
gg,

1

2
�7a
gg , �

7b
gg, �

8
gg, �

9
gg, �

10
gg) left after removing (�1

gg, �
2
gg and 1

2
�7a
gg ). Besides, there are

three terms (�2
gq, �

3
gq, �

5
gq) and (�2

qg, �
3
qg and �5

qg) in the q ! g and g ! q channels, respectively. We put all these
remaining small terms in the NLO hard factor which is referred to as the “NLO matching” contribution.

The fully resummed result can be derived by collecting Eq. (137), Eq. (143), Eq. (164) and Eq. (165) together, the
detailed derivation can be found in Ref. [66] and we present the final “Resummed” result here
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At the end of the day, the resummation improved NLO cross-section is then given by
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where
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and “Sud matching” is given by Eq. (166). Due to the resummation of the threshold collinear logarithms, the scale µ
for PDFs (or µJ for CJFs) in �resummed becomes ⇤. Meanwhile, the scales remain unchanged in �NLO matching. After
all the resummations, we believe that all the large logarithms have been taken care of and the remaining NLO hard
factors are numerically small. Therefore, the resummation improved results allow us to obtain reliable predictions for
forward jet productions.

V. CONCLUSION

In summary, we have systematically calculated the
complete NLO cross-section for single inclusive jet pro-
duction in pA collisions at forward rapidity region within
the small-x framework. As shown above, the narrow jet
approximation allows us to neglect the small contribution
from the kinematic region where the radiated gluon is lo-
cated inside the jet cone. Therefore, the calculation for
the initial state radiation becomes identical to the single
hadron production case. The collinear divergences asso-
ciated with the initial state gluon radiation can also be
factorized into the splittings of the PDFs of the incoming
nucleon. Thanks to the jet algorithm, complete cancel-
lations occur for final state gluon radiations as expected.
The residual contribution after the cancellation is propor-
tional to ln 1

R2 , which is only divergent in the small cone
limit(R ! 0). It is the signature of final state collinear di-
vergence, and corresponds to the collinear singularity for
FFs in the hadron production case. By employing proper
subtractions of both rapidity and collinear divergences,
we obtain the NLO hard coe�cients which can be nu-

merically evaluated for future phenomenological studies.
The one-loop results obtained in this study are consistent
with the results in Ref. [67]. However, our resummation
strategies for the collinear and Sudakov logarithms from
the initial state radiations and the jet cone logarithms
from the final state radiations are new.
The resummation strategy that we use is analogous

to that in our previous study Ref. [66]. We first iden-
tify the Sudakov type logarithms associated with the
soft gluon emissions near the threshold, then we per-
form the Sudakov resummation in the momentum space.
The remaining single logarithmic terms are resummed
with the help of the DGLAP equation. The procedure is
also similar to the practice in the Collins-Soper-Sterman
formalism. In addition, due to the introduction of jet
cones which regularize the final state divergence, we find
that double logarithmic divergences are absent in the fi-
nal state gluon radiations. Therefore, there are no Su-
dakov double logs for the final state radiations in the end.
We expect the numerical results of the jet cross-section
will be similar to the hadron case. Our approach for re-
summation is di↵erent from that in Ref. [67] where the
threshold logarithms are resummed in the Mellin space.
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function, the resummed PDFs and CJFs can be rewritten with the help of the star distribution [137, 138, 142]. With
the star distribution, they are given by
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where the detailed prescription of the star distribution can also be found in Sec. III3 in the supplemental material of
Ref. [66].

C. Resummation of the soft logarithms

The resummation procedures for both single and double Sudakov logarithms are almost the same as those in the
hadron production case, except for the final state radiation. As we have discussed at the beginning of this section,
the counting rule for the double logarithmic contribution is di↵erent between hadron and jet production. We have
only initial state contribution for the jet production. Therefore, we identify the following Sudakov logarithms for the
q ! q channel and similarly for the g ! g channel
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In addition, we can extend the above expression by considering the running of the coupling as follows
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The resummation of the soft logarithms can be achieved by the exponentiating the above Sudakov factor. Following
Ref. [66], to treat the NLO correction, the Sudakov matching term is defined as follows
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D. The full resummation results

By using the DGLAP evolution equations, we resum the initial state collinear logarithms in �1
qq, �

1
gg, �

1
gq and �1

qg

by setting the factorization scale µ2 to ⇤2 in Eq. (137), then resum the final state collinear logarithms associated with
the jet in �9

qq, �
11
gg, �

4
gq and �4

qg by replacing P 2

JR
2 by ⇤2 in Eq. (143).

As discussed previously, only initial state radiations contain the genuine Sudakov logarithms, thus we extract the
corresponding initial state Sudakov logarithms in �2

qq,
1

2
�5a
qq , �

2
gg and 1

2
�7a
gg and resum them by exponentiating the
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Sudakov factor in Eq. (164) and Eq. (165). In contrast, the remaining logarithms 1

2
�5a
qq and 1

2
�7a
gg are associated with

the final state gluon radiation from the jet. We treat them as normal NLO corrections along with other NLO terms
in the hard factor. In the NLO hard matching term, there are nine terms (�3
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gq, �

3
gq, �

5
gq) and (�2

qg, �
3
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qg) in the q ! g and g ! q channels, respectively. We put all these
remaining small terms in the NLO hard factor which is referred to as the “NLO matching” contribution.

The fully resummed result can be derived by collecting Eq. (137), Eq. (143), Eq. (164) and Eq. (165) together, the
detailed derivation can be found in Ref. [66] and we present the final “Resummed” result here
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At the end of the day, the resummation improved NLO cross-section is then given by
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and “Sud matching” is given by Eq. (166). Due to the resummation of the threshold collinear logarithms, the scale µ
for PDFs (or µJ for CJFs) in �resummed becomes ⇤. Meanwhile, the scales remain unchanged in �NLO matching. After
all the resummations, we believe that all the large logarithms have been taken care of and the remaining NLO hard
factors are numerically small. Therefore, the resummation improved results allow us to obtain reliable predictions for
forward jet productions.

V. CONCLUSION

In summary, we have systematically calculated the
complete NLO cross-section for single inclusive jet pro-
duction in pA collisions at forward rapidity region within
the small-x framework. As shown above, the narrow jet
approximation allows us to neglect the small contribution
from the kinematic region where the radiated gluon is lo-
cated inside the jet cone. Therefore, the calculation for
the initial state radiation becomes identical to the single
hadron production case. The collinear divergences asso-
ciated with the initial state gluon radiation can also be
factorized into the splittings of the PDFs of the incoming
nucleon. Thanks to the jet algorithm, complete cancel-
lations occur for final state gluon radiations as expected.
The residual contribution after the cancellation is propor-
tional to ln 1

R2 , which is only divergent in the small cone
limit(R ! 0). It is the signature of final state collinear di-
vergence, and corresponds to the collinear singularity for
FFs in the hadron production case. By employing proper
subtractions of both rapidity and collinear divergences,
we obtain the NLO hard coe�cients which can be nu-

merically evaluated for future phenomenological studies.
The one-loop results obtained in this study are consistent
with the results in Ref. [67]. However, our resummation
strategies for the collinear and Sudakov logarithms from
the initial state radiations and the jet cone logarithms
from the final state radiations are new.
The resummation strategy that we use is analogous

to that in our previous study Ref. [66]. We first iden-
tify the Sudakov type logarithms associated with the
soft gluon emissions near the threshold, then we per-
form the Sudakov resummation in the momentum space.
The remaining single logarithmic terms are resummed
with the help of the DGLAP equation. The procedure is
also similar to the practice in the Collins-Soper-Sterman
formalism. In addition, due to the introduction of jet
cones which regularize the final state divergence, we find
that double logarithmic divergences are absent in the fi-
nal state gluon radiations. Therefore, there are no Su-
dakov double logs for the final state radiations in the end.
We expect the numerical results of the jet cross-section
will be similar to the hadron case. Our approach for re-
summation is di↵erent from that in Ref. [67] where the
threshold logarithms are resummed in the Mellin space.

Too long to show!

b PT Q S aZ U

q → qg
g → gg
g → qq̄
q → gq

We consider
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Summary

1. We briefly introduce the color glass condensate effective theory. 

2. By incorporating the threshold resummation in CGC formalism, we can describe the 
experimental data from RHIC and LHC. 

3. We have systematically calculated the complete NLO cross-section for single inclusive 
jet production in pA collisions at forward rapidity region within the small-x framework.

1. The  numerical calculation of jet production is in progress. 
2. We can apply the threshold resummation  formalism on many other processes. Such as, the 

Muller-Navelet jet productions, diffractive processes …

Outlook
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Thank you!
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kt factorization vs Dilute-Dense factorizations

kt factorization for single inclusive gluon productions in hadron-hadron collision:

3

atic error in the comparison of theory and experiment.
Explicitly noticing such problems can be an important
motivation for topics for further research that are impor-
tant for the success of a field.

The kT -factorization formula that we discuss, Eq. (1)
below, is intended to be valid for single inclusive jet pro-
duction in hadron-hadron collisions. It is widely used
in phenomenological applications to study the particle
multiplicity observed at hadron colliders. (For some ex-
amples see [4–12] and references therein. A comparison
of some phenomenological predictions to LHC data for
the particle multiplicities in both proton-proton and lead-
lead collisions was presented by the ALICE collaboration
[13].)

The kT -factorization formula used in this area is (see,
e.g., Ref. [8, Eq. (1)]):

d�

d2pT dy
=

2�s

CF p2
T

�

�
�

d2kA,T fA(xA, kA,T ) fB(xB , pT � kA,T ). (1)

Here fA and fB are TMD densities of gluons in their
parent hadrons, and the two gluons combine to give an
outgoing gluon of transverse momentum pT which gives
rise to an observed jet in the final state. In the formula,
CF = (N2

c � 1)/2Nc with Nc = 3 for QCD, y is the
rapidity of the final-state jet, and xA,B = (pT /

�
s)e±y.

The incoming hadrons A and B can be protons or nuclei.
Questions that now naturally arise are: Where does

this formula originate from? Where can a proper deriva-
tion be found, and under what conditions and to what
accuracy is the derivation valid? What are the explicit
definitions of the unintegrated distributions fA,B, and do
these definitions overcome the subtleties that are found
in constructing definitions of TMD distributions in QCD
in the non-small-x regime [2, Chs. 13 & 14]? In an ideal
world, we could say that in order for the requirements
(T1)–(T4) to be fulfilled, it is absolutely necessary that
these questions be answered, and that a person who reads
a paper which makes use of this formula can, if needed,
go back to the original source and himself/herself repro-
duce and verify the derivations. But we must recognize
that in the real world some of these issues are very deep
and di�cult, and that therefore complete answers to the
questions do not (yet) all exist. Nevertheless, in this
subject, we should expect some kind of derivation, with
the accompanying possibility of an outsider being able
to identify, for example, possible gaps in the logic where
further work is needed.

However, as we will explain below, we tried to find any
kind of a derivation of the formula by following citations
given for it, but were unable to do so. Our findings can
be visualized in Fig. 1, which shows the chain of refer-
ences that one needs to follow to arrive at the nearest
possible source(s), starting from a selection of recent pa-
pers. Coming to those sources we find that the formula is
never derived but essentially asserted. Moreover, the ba-
sic concepts involved are never defined in a clear enough

way to make it understandable what exactly it is that
is being done. We therefore find it impossible that (1)
can be satisfactorily re-derived from sources referenced
in the literature, contrary to what should be the case if
principles (T1)–(T4) hold.

A clear symptom that these are not merely abstract
di�culties but are problems with practical impact is that
the overall normalization factor di�ers dramatically be-
tween the references. See, for example, Eq. (40) in [14]
and Eq. (4.3) in [15] — and notice that this di�erence in
normalization does not appear to be commented on, let
alone explained. The di�erence in normalization factors
demonstrates that at least one of the presented factor-
ization formulas is definitively wrong. (In the two ap-
pendices of the present paper, we will show that in fact
the normalizations of both formulas appear to be wrong.)
There are a number of di�cult physical and mathemati-
cal issues that need to be addressed if one is to provide a
fully satisfactory proof of a factorization formula. These
issues go far beyond a mere normalization factor. But
the existence of problems with the normalization factor
is a diagnostic: it provides a clear and easily verifiable
symptom that something has gone wrong. A minimum
criterion for a satisfactory derivation is that it should be
explicit enough to allow us to debug how the normaliza-
tion factor arises.

At the top of our chart of references, Fig. 1, we have
chosen some of the recent phenomenological applications
[8–11] that make use of (1). We also include some earlier
highly cited phenomenological applications [5, 6]. There
exist a very great number of papers which make use of
(1), so we include here only a representative few. As is
indicated in the top part of Fig. 1, a central source that
is given for (1) is the highly cited Ref. [14]. We thus ask
whether we then can find a derivation of (1) in [14].

That paper performs a calculation in a quasi-classical
approximation of particle production in DIS using the
dipole formalism (see the reference for the exact calcu-
lations that define this “quasi-classical” approximation).
There actually is an implicit assumption of a factorized
structure from the very start in this formalism (see Eqs.
(1) and (7) in the reference). For our purposes it is im-
portant to notice what the exact statement is regarding
(1), which can be found as Eq. (40) in [14]. (An unimpor-
tant di�erence is that in [14], the f ’s in (1) are instead
written as f/k2

T .) Prior to this equation, an equation for
the production of gluons in DIS is derived, Eq. (39) in
[14]. The exact statement just prior to stating (1) in the
form of Eq. (40) in [14] reads

The form of the cross section in Eq. (39) sug-
gests that in a certain gauge or in some gauge
invariant way it could be written in a fac-
torized form involving two unintegrated gluon
distributions merged by an e�ective Lipatov
vertex.

There is no derivation of Eq. (1). Rather, this equation is
stated as being the “usual form of the factorized inclusive

Factorization and NLO correction? Only proved for DY and Higgs !
For dijet processes in pp, AA collisions, no kt factorization[Collins, Qiu,
08],[Rogers, Mulders; 10].

Dilute-Dense factorizations

x1 � p��
s
e+y � 1

x2 � p��
s
e�y � 1

Jan 8, 2013 Zhongbo Kang, LANL

Observation at high energy

! The spin asymmetry becomes the largest at forward rapidity region, 
corresponding to
! The partons in the projectile (the polarized proton) have very large momentum 

fraction x: dominated by the valence quarks (spin effects are valence effects)
! The partons in the target (the unpolarized proton or nucleus) have very small 

momentum fraction x: dominated by the small-x gluons

! Thus spin asymmetry in the forward region could probe both
! The transverse spin effect from the valence quarks in the projectile: Sivers 

effect, Collins effect, and etc
! The small-x gluon saturation physics in the target

4

projectile:

target:

valence

gluon

�
s

Tuesday, January 8, 2013

Protons and virtual photons are dilute probes of the dense target hadrons.
For dijet productions in forward pA collisions, effective kt factorization:

d�pA!ggX

d2P?d2q?dy1dy2
=xpg(xp, µ)xAg(xA, q?)

1
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d�̂

d̂t
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Why do we need NLO calculations?

13J.Pawlowski / U. Uwer

Advanced Particle Physics: VII. Quantum Chromodynamics

QCD explains observed scaling violation

Large x: valence quarks Small x: Gluons, sea quarks

Q2 
  F2 � for fixed x Q2 
  F2 
 for fixed x

Scaling violation is one of the clearest manifestation of 
radiative effect predicted by QCD.

Quantitative description of scaling violation 
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• Now, calculate M2 ��
�M2

• Again, the derivative of the first line cancels a portion of the derivative of
the third and the remaining derivatives give results of O(↵4

s) (Exercise:
Fill in the steps to show this)

• Both the renormalization and factorization scale dependences cancel to
the order calculated, although there is still residual scale dependence
due to higher order corrections

• The following plot shows the type of behavior which is typical of LO
and NLO calculations

0 0.5 1 1.5 2 2.5
µ/ET

100

1000

dσ
/d

yd
E T (

pb
/G

eV
)

p p− −−> jet + X
√s = 1800 GeV   ET = 70 GeV   2 < |y| < 3

LO
NLO

Due to quantum evolution, PDF and FF changes with scale. This introduces
large theoretical uncertainties in xf (x) and D(z). Choice of the scale at LO
requires information at NLO.
LO cross section is always a monotonic function of µ, thus it is just order of
magnitude estimate.
NLO calculation significantly reduces the scale dependence. More reliable.
K = �LO+�NLO

�LO
is not a good approximation.

NLO is vital in establishing the QCD factorization in saturation physics.
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More results for forward rapidity region
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The semi-hard scale, ⇤2, needs to be much larger than ⇤2

QCD
. Therefore, we choose it to be a few times smaller than

that in dAu collisions but still larger than 1 GeV2. We show the values of ⇤2 used to compute the cross-sections at
the RHIC energy in Table I.

TABLE I. Values of ⇤2 in calculating the cross-sections at
p
sNN = 200 GeV at RHIC.

Rapidity y = 2.2 y = 3.2 y = 4

Collisional systerms dAu pp dAu pp dAu pp

⇤2 (GeV2) 2 ⇠ 4 ⇠ 1 3 ⇠ 7 ⇠ 2 5 ⇠ 9 ⇠ 3

At the LHC energy, the typical k? is usually very large. Taking k? ⇠ 100 GeV and 1 � ⇠ ⇠ 0.5, we find ⇤2 ⇠ 4
GeV2 for q ! q channel and ⇤2 ⇠ 30 GeV2 for g ! g channel. Since the g ! g channel becomes more important at
the LHC energy, we choose ⇤2 to be 20 GeV2 at

p
s = 5.02 TeV and set ⇤2 to be 40 GeV2 at

p
s = 13 TeV.

In principle, we expect that the dependence on the auxiliary scale is mild except for case in the threshold region
where the resummed result gets enhanced by the threshold resummation. In Fig. 10, the ⇤2-dependence of the
resummed cross-sections at di↵erent collisional energies are presented. In general, the ⇤2-dependence is strong when
the threshold resummation is important (i.e., when pT is closer to the kinematic threshold). Furthermore, at given
pT , the resummed cross-section increases with decreasing ⇤2 due to increased threshold logarithms. These e↵ects
are manifest at the RHIC energy as shown in the left panel of Fig. 10. At the RHIC energy, we see clearly that the
⇤2-dependence becomes stronger at larger pT . Taking into account that the maximum pT allowed by the kinematics is
just around 8 GeV at y = 3.2, the threshold resummation is actually vital at large pT . At low pT , the resummed cross-
section is less sensitive to the value of ⇤2. At the LHC energy, the pT regions that we are interested in are actually
still far away from the kinematic threshold. Therefore, as shown in the right panel of Fig. 10, the ⇤2 dependence in
the resummed cross-section is rather mild.
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FIG. 10. The ratios of the resummed cross-section to the reference cross-section at certain value of ⇤2
0 as a function of ⇤2 atp

sNN = 200 GeV (the left plot) and
p
sNN = 5.02 TeV (the right plot). At the RHIC energy, we choose ⇤2

0 = 5GeV2, while we
set ⇤2

0 = 20GeV2 at the LHC.

VII. DIPOLE SCATTERING AMPLITUDE AND SMALL-x GLUON DISTRIBUTION

In the above derivation, the dipole gluon distribution F (⌘, k?) is defined as the Fourier transform of the dipole

scattering amplitude S(2)

xg (r?) in the fundamental representation, where ⌘ = ln x0
xg

is the rapidity range of the small-x

evolution with x0 = 0.01. Conventionally, we evolve the dipole scattering amplitude with initial condition starting
from xg = x0 = 0.01 in the CGC formalism. This means that we usually assume that the CGC formalism starts to
apply when xg < x0. The dimension of F (⌘, k?) is GeV�2. It is related to Fxg (k?) by F (⌘, k?) = Fxg (k?)/S?. In

principle, F (⌘, k?) and S(2)

xg (r?) implicitly depend on xg. In the previous sections, we have suppressed the xg or ⌘

dependence for simplicity. In our numerical implementation, we define S(2)

xg (r?) = 1�N(⌘, r?). Here N(⌘, r?) is the
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to the second scenario with the perfect correlation (C(�pA,�pp) = 1). This result can be viewed as the sign that there
exists a strong correlation between �pA and �pp in our numerical calculations.

IX. RELATING THE NUMERICAL RESULTS TO THE EXPERIMENTAL DATA

In this section, we discuss in detail how to relate our numerical results to experimental measurements, and provide
a systematical description of all relevant data with the chosen initial condition and a uniform set of parameters.

Let us first briefly summarize the numerical implementation of threshold resummation for the inclusive hadron
production in forward pp/pA collisions. We perform the numerical calculations in the momentum space, since the
evaluation in the coordinate space is quite demanding on computation resources and it may result in sizable uncer-
tainties. The LO and one-loop cross-sections are given in Sec. I, and the resummed cross-section is given in Sec. V.
We employ the one-loop running coupling for the strong coupling ↵s, which is given by

↵s(µ
2) =

4⇡

(11� 2nf

3
) ln µ2

⇤2
QCD

, (181)

where the number of active flavor nf = 4 and ⇤QCD = 0.15 GeV. With this set of parameters, we set the one-loop
running coupling at the Z pole to be ↵s(µ = MZ = 91.2GeV) = 0.118. The dipole scattering amplitude, S(2)(r?), is
obtained by solving the rcBK evolution equation with the initial condition provided by Ref. [100]. The dipole gluon
distribution F (k?) is the Fourier transform of S(2)(r?). For more details, we refer the reader to Sec. VII. Additionally,
We utilise the NLO MSTW PDFs [94] and NLO DEHSS FFs [95] in our numerical evaluation.

On the theoretical calculation side, we execute the numerical implementation mentioned above and numerically
calculate the di↵erential cross-section of ⇡0 production divided by the overlapping transverse area S? of the collision,
which reads

1

S?

1

2⇡pT

d2�pA!⇡X

dydpT
. (182)

On the experimental side, the BRAHMS [19], ALICE [25] and ATLAS [26] collaborations measure the hadron yield,
which is related to the di↵erential cross-section as follows

1

2⇡pT

d2NpA!hX

dydpT
=

1

�inel

1

2⇡pT

d2�pA!hX

dydpT
, (183)

where h represents various kinds of hadrons measured in di↵erent experiments and �inel represents the total inelastic

cross-section. Therefore, our results need to be multiplied by a factor of �h

�⇡
S?
�inel

to compare with these data, where

�h/�⇡ is the rescale factor converting the ⇡ cross-section calculated in our code to the measured hadron h yields in
experiments. We use �inel = 2400 mb in dAu collisions at

p
sNN = 200 GeV [19] and �inel = 2100 mb in pPb collisions

which is measured with at least one charged hadron locating in the range of 2.5  y  4.5 at the LHC energy [28].
In the pA/dA collisions, we approximately set S? as the transverse area of the target nucleus, since the size of the
nucleus is much larger than that of the proton/deuteron. Therefore, we utilize S? = 1770 mb in dAu collisions [45]
and S? = 1830 mb in pPb collisions. For the ratio �h/�⇡, we summarize the parameters used in our numerical
evaluations in Table II.

TABLE II. List of input values of parameters used in our numerical evaluations.

Experiment BRAHMS STAR ATLAS/ALICE LHCb

Hadron h h� ⇡0 h± prompt h±

�h/�⇡ 1.3 1 2.2 2.2 ⇥ 0.85

Meanwhile, the STAR [20] and LHCb [27, 28] collaborations directly publish the di↵erential cross-section in the
following form

1

2⇡pT

d2�pA!hX

dydpT
. (184)

Therefore, only a factor of �h

�⇡ S? is multiplied to our numerical result before it is compared with these experimental
data. To account for the fraction of the prompt charged particles measured by the LHCb collaboration[27], we multiply
a factor of 0.85 to the total cross section for charged hadrons as given in the end of Table II.
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Indeed, we need to specify the jet algorithm. Nowadays, the popular jet algorithms are kt- 
type jet algorithms, such as, the kt, anti-kt, and Cambridge/Aachen algorithms. In our 
calculation, we computed the jet cross-section based on the narrow jet approximation 
[Phys.Rev.D 70 (2004) 034010] together with the kt-type jet algorithm [1209.1785] 

Jet algorithm: -type jet algorithm (base on the narrow jet approximation).kt

SOLO=Saturation physics at One Loop Order
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be somewhere in-between. In our numerical evaluation, the theoretical uncertainties of RpPb are estimated from the
ratios of upper bands of �pA and �pp and those of the lower bands. This simple prescription gives error bands close
to the second scenario with the perfect correlation (C(�pA,�pp) = 1). This result can be viewed as the sign that there
exists a strong correlation between �pA and �pp in our numerical calculations.

IX. RELATING THE NUMERICAL RESULTS TO THE EXPERIMENTAL DATA

In this section, we discuss in detail how to relate our numerical results to experimental measurements, and provide
a systematical description of all relevant data with the chosen initial condition and a uniform set of parameters.

Let us first briefly summarize the numerical implementation of threshold resummation for the inclusive hadron
production in forward pp/pA collisions. We perform the numerical calculations in the momentum space, since the
evaluation in the coordinate space is quite demanding on computation resources and it may result in sizable uncer-
tainties. The LO and one-loop cross-sections are given in Sec. I, and the resummed cross-section is given in Sec. V.
We employ the one-loop running coupling for the strong coupling ↵s, which is given by

↵s(µ
2) =

4⇡

(11� 2nf

3
) ln µ2

⇤2
QCD

, (181)

where the number of active flavor nf = 4 and ⇤QCD = 0.15 GeV. With this set of parameters, we set the one-loop
running coupling at the Z pole to be ↵s(µ = MZ = 91.2GeV) = 0.118. The dipole scattering amplitude, S(2)(r?), is
obtained by solving the rcBK evolution equation with the initial condition provided by Ref. [99]. The dipole gluon
distribution F (k?) is the Fourier transform of S(2)(r?). For more details, we refer the reader to Sec. VII. Additionally,
We utilise the NLO MSTW PDFs [93] and NLO DEHSS FFs [94] in our numerical evaluation.

On the theoretical calculation side, we execute the numerical implementation mentioned above and numerically
calculate the di↵erential cross-section of ⇡0 production divided by the overlapping transverse area S? of the collision,
which reads

1

S?

1

2⇡pT

d2�pA!⇡X

dydpT
. (182)

On the experimental side, the BRAHMS [19], ALICE [25] and ATLAS [26] collaborations measure the hadron yield,
which is related to the di↵erential cross-section as follows

1

2⇡pT

d2NpA!hX

dydpT
=

1

�inel

1

2⇡pT

d2�pA!hX

dydpT
, (183)

where h represents various kinds of hadrons measured in di↵erent experiments and �inel represents the total inelastic

cross-section. Therefore, our results need to be multiplied by a factor of �h

�⇡
S?
�inel

to compare with these data, where

�h/�⇡ is the rescale factor converting the ⇡ cross-section calculated in our code to the measured hadron h yields in
experiments. We use �inel = 2400 mb in dAu collisions at

p
sNN = 200 GeV [19] and �inel = 2100 mb in pPb collisions

which is measured with at least one charged hadron locating in the range of 2.5  y  4.5 at the LHC energy [28].
In the pA/dA collisions, we approximately set S? as the transverse area of the target nucleus, since the size of the
nucleus is much larger than that of the proton/deuteron. Therefore, we utilize S? = 1770 mb in dAu collisions [45]
and S? = 1830 mb in pPb collisions. For the ratio �h/�⇡, we summarize the parameters used in our numerical
evaluations in Table ??.

TABLE II. List of input values of parameters used in our numerical evaluations.

Experiment BRAHMS STAR ATLAS/ALICE LHCb

Hadron h h� ⇡0 h± prompt h±

�h/�⇡ 1.3 1 2.2 2.2 ⇥ 0.85

Meanwhile, the STAR [20] and LHCb [27, 28] collaborations directly publish the di↵erential cross-section in the
following form
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dydpT
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