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Introduction/Motivation




Gold, Lead ions smashed together at Large Hadron Collider (LHC)
and Relativistic Heavy lon Collider (RHIC)
=Heavy lon Collisions (HIC)
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m QGP has extremely short lifetime ~ 10fm/c ~ 10723s
= Cannot study with external probe
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m QGP has extremely short lifetime ~ 10fm/c ~ 10723s
= Cannot study with external probe

m Next best thing?
= Probe created at beginning of collision = Jets!

m Can also use other hard probes such as quarkonium,
photons, dileptons
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Jets are relatively well-understood in the vacuum - used in
searches for physics beyond the standard model




Jets are relatively well-understood in the vacuum - used in
searches for physics beyond the standard model

= Provides nice benchmark to understand how jets are
quenched in heavy-ion collisions!




C 1| CMS Experiment at LHC, CERN

4| Data recorded: Sun Nov 14 19:31:39 2010 CEST
Run/Event: 151076 / 1328520
Lumi section: 249

Jet 1, pt: 70.0 GeV|




Want to extract QGP properties
= Need more precise theory calculations




Want to extract QGP properties
= Need more precise theory calculations

m Include contributions from pre-equilibrium and Glasma
phases

m Inclusion of sub-eikonal corrections
m Relaxation of static medium assumption

m Inclusion of higher order corrections




Want to maintain connection with first principles




Want to maintain connection with first principles
m Finite-temperature lattice QCD should be preferred choice




Want to maintain connection with first principles
m Finite-temperature lattice QCD should be preferred choice
= Well-suited for computation of thermodynamic
(Euclidean) quantities

= In general, not well-suited to computation of real-time
(Minkowskian) quantites,
(see [Boguslavski et al., 2023] for recent progress)




Perturbative quantum field theory at finite temperature

—

Imaginary time formalism

Frequency integral

becomes discrete sum over
Matsubara modes wP = 27nT
orwh =2n(n+1)T

e

Real time formalism

Doubling of degrees
of freedom




Perturbative quantum field theory at finite temperature

PN
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Euclidean quantities Minkowskian quantities
e.g Thermodynamics e.g Particle production rate
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Real time formalism

Minkowskian quantities
e.g Particle production rate

Applicable to jet quenching!




Jet Energy Loss




m For rest of this talk, consider jet as single highly energetic
particle parton




m For rest of this talk, consider jet as single highly energetic
particle parton

m Parton has energy, P, much greater than T, temperature of
plasma
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How to quantify medium induced radiation?




How to quantify medium induced radiation?

Compute ng), probability of parton of energy, P splitting into

particles with energies zP and (1 — z)P




How to quantify medium induced radiation?

Compute ng), probability of parton of energy, P splitting into

particles with energies zP and (1 — z)P

Not straightforward! But why??




Depends on quantum mechanical
formation time, 7 ~ w/R} associated
with the radiated gluon:

m Radiated gluon triggered by one
collision with medium constituent

» Bethe-Heitler or single
scattering regime

m Many collisions with smaller
momentum exchange effectively
trigger gluon radiation

> Multiple scattering regime

h 4



m For single scattering, expand in number of scatterings
between parton and medium constituents
= OpaCIty expansion [Gyulassy et al., 2001, Wiedemann, 2000]




m For single scattering, expand in number of scatterings
between parton and medium constituents
= OpaCIty expansion [Gyulassy et al., 2001, Wiedemann, 2000]

m For multiple scattering, need to account for LPM interference
= BDMPS-Z or AMY frameworks [Baier et al., 1995, Zakharov, 1997, Arnold et al., 2003]

= To get analytical solution, need to take Harmonic
Oscillator Approximation (HOA)




Differential probability of parton with energy, P splitting into
particles with energies zP and (1 — z)P

dz  4n(z(1—2)P)

d 2 [e'e} o0
7)a—>b,c g pa—>b,c(z) . Re/ dt1 dtz
(o] t1

X VB1 . VBZ{G(Bz, tz; B1, t1) — VaC.} (1)

B1 :Bz =0

G(B,, ty; B4, t;) is Green’s function of the Hamiltonian,
describing momentum diffusion in directions transverse to jet
propagation.
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Differential probability of parton with energy, P splitting into
particles with energies zP and (1 — z)P

dz  4n(z(1—2)P)

d 2 [e'e} o0
7)a—>b,c g pa—>b,c(z) . Re/ dt1 dtz
(o] t1

X VB1 . VBZ{G(Bz7 tz; B1, t1) — VaC.} (1)

B1 :Bz =0

G(B,, ty; B4, t;) is Green’s function of the Hamiltonian,
describing momentum diffusion in directions transverse to jet
propagation.

2 2
VB m. i

= “2z(1—2)P T2 5p,
1

—ic(B)

Both m,,C(B) can be computed in thermal field theory!




Aside: Loops in Thermal Field Theory




In vacuum, going to higher orders in perturbation theory means
adding loops

= costs g?




In vacuum, going to higher orders in perturbation theory means
adding loops

= costs g?

At finite temperature (or density), propagators come along with
statistical functions (Bose-Einstein or Fermi-Dirac)

1
nB/F(W) = m
>

= Things become more complicated (and potentially
problematic)



m T, hard scale associated with energy of individual particles
= hard-hard interactions can be described perturbatively

m gT, soft scale associated with energy of collective excitations
= soft-soft interactions can also be described
perturbatively

m g°T, ultrasoft scale is associated with nonperturbative
physics
= Loops can be added at no extra cost (Linde problem)
= Cannot use perturbation theory



m For hard-soft interactions, we are not so lucky either...
Turns out that one can add loops for free
— perturbative expansion breaks down




m For hard-soft interactions, we are not so lucky either...
Turns out that one can add loops for free
— perturbative expansion breaks down

m Integrate out scale T to get Hard Thermal Loop (HTL)

effective theory
= EFT for momenta gT ~ mp allows us to resum these loops
= typically used in jet energy loss calculations

HTL
Losummdtian
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Classical Corrections to Jet Quenching




Reminder: Consider jet as a hard parton with momentum P > T
propagating through the medium, with interactions controlled by
Hamiltonian

m Hard parton undergoes forward scattering with the medium,
induces shift in dispersion relation, asymptotic mass
i.e w® =k +m%

m Transverse scattering rate, C(R ) describes damping in
transverse momentum space due to interactions with
medium,

Related to transverse momentum broadening coefficient

a) = [ Grsc(e)



m Both m,, and C(R ) can be expressed in terms of correlators
on the lightcone

m Both receive classical contributions
i.e corrections coming from exchange of gluons between
medium and parton that are < gT




m Both m,, and C(R ) can be expressed in terms of correlators
on the lightcone

m Both receive classical contributions
i.e corrections coming from exchange of gluons between
medium and parton that are < gT

L
op(7)

— corrections are enhanced!

= np(w) = > 1




m Can compute some of these classical corrections using Hard
Thermal Loop (HTL) effective theory, but analytically difficult
in practice




m Can compute some of these classical corrections using Hard
Thermal Loop (HTL) effective theory, but analytically difficult
in practice

m Breakthrough: classical corrections to thermal correlators on
the lightcone can be computed in Electrostatic QCD (EQCD)
[Caron-Huot, 2009]




m Integrate out hard scale, T from QCD




m Integrate out hard scale, T from QCD

m Arrive at 3 dimensional gluon effective field theory for
momenta, gT ~ mp, inverse screening length for
chromoelectric fields

m EQCD Lagrangian

1
Leqep = 202, Tr FjiFjj + Tr D;j®D;® + m3 Trd? + ) (Tr (132)2
3d

where ¢ is adjoint scalar, i,j =1,2,3




m Integrate out hard scale, T from QCD

m Arrive at 3 dimensional gluon effective field theory for
momenta, gT ~ mp, inverse screening length for
chromoelectric fields

m EQCD Lagrangian

1
Leqep = 202, Tr FjiFjj + Tr D;j®D;® + m3 Trd? + ) (Tr (132)2
3d

where ¢ is adjoint scalar, i,j =1,2,3

m = “Dimensional Reduction”




m HTL theory accounts for dynamics of all Matsubara modes
(reminder w, = 27nT)
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= EQCD can be studied using Lattice QCD!




m HTL theory accounts for dynamics of all Matsubara modes
(reminder w, = 27nT)

m But in EQCD, all Matsubara modes are integrated out except
for zero mode

= EQCD can be studied using Lattice QCD!

= Captures (numerically) all classical contributions from
soft and ultrasoft scales!!!



m Paved way for non-perturbative
(NP) determination of classical
corrections to C(k,)

5 10°
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m Series of papers culminated with “_qu .
determination of in-medium SR =l e —
. . . . E=l NP —

splitting rate for medium of finite st T = 500MeV
size [Panero et al., 2014, Moore et al., 2021, ” 1% /\Ratiﬂ
Schlichting and Soudi, 2021] O_é

1 10
Evolution time: t[fm/c]

m Difference between rate from LO
kernel and NP kernel up to 50%!




m Masses are given by m2, = g*Cr(Zy + Zf), where classical
corrections are contained in the part

Zg = /OOO dx X TTr(Up(—o0; xT)F~H(x ") Ur(x*; 0)F 1 (0)UF(0; —0))

F~(0) Ft(z)

AY
]

Same idea here, lattice calculation has been completed
[Moore and Schlusser, 2020, Ghiglieri et al., 2022]
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m Match lattice evaluation to perturbative EQCD evaluation v/

[Ghiglieri et al., 2022]
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m Match lattice evaluation to perturbative EQCD evaluation v/

[Ghiglieri et al., 2022]
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m Match lattice evaluation to perturbative EQCD evaluation v/

[Ghiglieri et al., 2022]

m Match perturbative EQCD evaluation to (4D) QCD evaluation
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T2 Tup T
Zg=|— — —
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m Match lattice evaluation to perturbative EQCD evaluation v/

[Ghiglieri et al., 2022]
m Match perturbative EQCD evaluation to (4D) QCD evaluation
m Supply entire O(g?) correction coming from thermal scale

scale T scale gT scale g°T
[T> Tpn T
Zg=|—— —
g | 6 2 |
[ Tm T 1
N _Tmo , Tan
L 2 ™ ]
- T :
In In In In
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L " " Hs J g T J _







Only need to compute (c)




EQCD equivalent

Two loop momenta: K, Q

Q~gT

~T




EQCD equivalent

Two loop momenta: K, Q

Q~T Q~gT
Isolate K zero-mode contribution Take K > gT limit




EQCD equivalent

Two loop momenta: K, Q

Q~T Q~gT
Isolate K zero-mode contribution Take K > gT limit

Find that logarithmic divergences cancel
= UV behaviour of NP evaluation is cured!
[Ghiglieri et al., 2024]




Naively, should be finite...




Naively, should be finite...

Find outstanding double-logarithmic divergence

in part of phase space: R" ~ T, R~ ~ g?T, k|, ~gT = K>~ 0

— adv.

7 o / 14 ng(R) R | NF(K) — N§(K)
gnzodv =1 | (k= —ie)2 R | K2+ ickO



Naively, should be finite...

Find outstanding double-logarithmic divergence

in part of phase space: R" ~ T, R~ ~ g?T, k|, ~gT = K>~ 0

= Collinear physics that needs to be accounted for!

Must be addressed in order meaningfully to quantify NP evaluation



m Want to improve accuracy of theoretical jet quenching
calculations
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m Want to improve accuracy of theoretical jet quenching
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= Finite temperature perturbation theory

m Jet evolution governed by asymptotic mass, m., and
transverse scattering rate, C(k, )



m Want to improve accuracy of theoretical jet quenching
calculations

= Finite temperature perturbation theory

m Jet evolution governed by asymptotic mass, m., and
transverse scattering rate, C(k, )

= Important to include higher-order corrections!
= In some cases we can even do better using lattice EQCD
to get non-perturbative classical corrections
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non-pert class 3d
- Zg Zg 10
T2 T2

250 MeV | —0.513(138)(45)(7) | —0.376
500 MeV | —0.619(99)(39)(3) | —0.324

1GeV | —0.462(71)(9)(7) —0.305
100 GeV | —0.327(16)(5)(2) —0.223

Table:



m Intuitively, transport coefficient
describing transverse diffusion of
jet: R = gL

m Can be related to the transverse
scattering rate, C(k, )

o+ (0,0) (L,0)
R " d?kR o
q(n) :/ Wkic(’ﬁ) L
] (©0,z1) (L,z1)
Jim (W(x1)) = exp(~C(x1)L) .
00 [Ghiglieri and Teaney, 2015]

m W(x,) is a Wilson loop defined in
the (x*,x.) plane
[Casalderrey-Solana and Teaney, 2007, D'Eramo et al., 2011,

Benzke et al., 2013]



m Can think of sticking together
amplitude and conjugate
amplitude to get diagrams on the
right

m Black lines represent hard parton
in the amplitude and conjugate
amplitude

m Red gluons are bremsstrahlung, \gj

represented by thermal
propagators

m Blue gluons are those that are
exchanged with the medium and
are represented by HTL
propagators
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N = 1 term in opacity expansion emerges from dipole picture

B dw [ d?l, &
5C(ki)LMW—4045CR/?/WCO([J-)W (2)




P2l 2
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6C(RL, p)mw = AasCR/?
hkL + | > [, =Single Scattering

d P d?l
(I?L;P)me—hasCR/ w/ L Co(lL)

kl&

A1 dw
5C(kJ_)LMW:4OésCRQOE/?

d’kRy .,
Reminder: g(u) = / kLC(kL)



2ng(w) accounts for stimulated emission and absorption
of thermal gluons

il N
) k







Only need to compute (c)
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Two loop momenta: K, Q \
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EQCD equivalent

Two loop momenta: K, Q \
Q~T Q~gT
M ?5\

Isolate K zero-mode contribution Take K > gT limit

Find that logarithmic divergences cancel
= UV behaviour of NP evaluation is cured!
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Find outstanding double-logarithmic divergence

in part of phase space: k" ~ T, R~ ~ g’T, R} ~gT = K>~ 0

0\ p2 R MR
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Naively, should be finite...

Find outstanding double-logarithmic divergence

in part of phase space: R" ~ T, R~ ~ g?T, k| ~gT = K>~ 0

= Collinear physics that needs to be accounted for!

Must be addressed in order meaningfully to quantify NP evaluation
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How to adapt BDIM/LMW result to weakly coupled QGP?



How to adapt BDIM/LMW result to weakly coupled QGP?

R Cp . 1 /4o o 2T doo
SGmw(p) = o RQo/ == —
0 - T
R Cr . /4o dr [T duw
dqumw(p) = asﬂ RQO/ — —(1+2ng(w))

[707'2 w

min

aoTz w

min

—— can be ignored iff wyi, = Gor2:, > T
et —1



How to adapt BDIM/LMW result to weakly coupled QGP?

R Cr . 1 /4o o 127 g
Saumw(p) = == Rqo/ a7 aw

min T aoT2 w

|

asCr L /"“2/@" dr (7 dw
do —

—(1+2n
T Gor? w( + B(w))

SGimw(p) =

min

1 . ) .
— np(w) = — can be ignored iff wyi, = oty > T
et —1
But is this consistent with single scattering?
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o asCp . #/Go dr  [FT dw
dGimw(p) = > RQo/ — —

. T Gar2 W N
min JoT qO ~ g4T3

Need to demand g“T372. > T

min
1
= Tmin Should be >> T

1 . . . .
But T is the mean free time between multiple scatterings!

= Would lead us away from single scattering regime!



= In order to stay away from multiple scattering regime,
must account for thermal effects

R Cn . 1 /4o o G|
dGimw(p) = o RQo/ = ~

min T aOTz w



= In order to stay away from multiple scattering regime,
must account for thermal effects

asCr . /“2/‘% dr [*7 dw
do — —

T aoTz w

Sqmw(p) =

min

Introduce intermediate regulator
Tint K 1/92T

. Cr . 12/Go o 127 d
5na(r) = 2 a0 / ar / &1 4 2mp(w)
Ti q

T - 27 orz W
asCR 2 M T 5 wr
5 Jo4 In 3 5 In Gor2
T oTint oT; —
" nt = yr = 2xTe e




2ng(w) accounts for stimulated emission and absorption
of thermal gluons

il N
) k




Intermediate regulator

InT

’/a——leT E | 4
ln,u Tint ln l,{l_
90
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m Investigate which logs are produced by soft, collinear modes
through a semi-collinear process associated with formation

time Tsemi ™~ 1/gT [Ghiglieri et al., 2013, Ghiglieri et al., 2016]

K+1L
K+ 1L
P P+L
R P P+L

Now timelike interactions are allowed too

Only spacelike interactions with medium

= Going beyond instantaneous approximation!
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Few-scatterings
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Strict single scattering
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Why is it that region 2 and 4 do not contribute to the double Logs?



First, note that

lim (1 + 2nB(w)> a2y (3)

w
F—>0 w

The absence of the IR scale in any logarithms can then be seen
by looking at the following integral, with vr < T < vyy

v duw Vuv 2T 27T
—( 1 +2nB(w)>:|n— +— —1In +
v w ~ ——

) VIR VIR VIReE
vacuum oy oo th orn 1
vacuum Crma
2T vyy et
_ + In + . (4)

VIR 2nT



Region of phase space from which classical O(g)
corrections emerge [Caron-Huot, 2009] In w

InT

Inwr | Y
Ing Inp’rm In—
q0

How can we understand the transition to power law enhancement
in regions 2 and 4?



Can understand transition by looking at w integrand, f(w)
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Can understand transition by looking at w integrand, f(w)

w=wr
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Our results include power law corrections depending on our IR cutoff

InT

Inwr | 4
Inp Inplry, Ini-
d0

They cancel against cutoff-dependent corrections
computed from [Caron-Huot, 2009]= Non-trivial check!




HOA not well-suited to single-scattering



HOA not well-suited to single-scattering
So how can we go beyond it?

n asCr . 2 ,ul* asCp ., 2 i
= 2R > In2 =
au(n) = °; Fdoln® Al
2

- P

where g(p) o In —;

mp

p separates us from neighbouring region
with simultaneously single-scattering and multiple scatterings

Appearance of §o in double log signifies lack of understanding of
transition between single scattering and multiple scattering regimes




HOA not well-suited to single-scattering
So how can we go beyond it?

. asCr, 5, p* asCp . 2 #
) = In® — > In® —
dow(n) el LU i 4(p)In -

2

where §(p) o In %

D

Need to solve transverse momentum-dependent LPM equation
without HOA [Ghiglieri and Weitz, 2022] in order to
shed light on how these issues could be addressed




HOA not well-suited to single-scattering
So how can we go beyond it?

n asCr . 2 ,ul* asCp ., 2 i
= 2R > In2
au(n) = °; Fdoln® Al
2

- P

where g(p) o In —;

mp

Improved Opacity Expansion [Barata et al., 2021]
could be used to solve resummation equation in order to better
understand transition from single scattering to multiple scattering
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