CONFRONTING JET-MEDIUM INTERACTIONS IN A WEAKLY COUPLED QGP

EAMONN WEITZ Based on 2312.11731 with Jacopo Ghiglieri, Philipp Schicho and Niels Schlusser See Also PhD thesis 2311.04988

28.06.2024 QCD Masterclass – Saint Jacut de la Mer NantesUniversité

OUTLINE

1 Introduction/Motivation

- 2 Jet Energy Loss
- 3 Aside: Loops in Thermal Field Theory
- 4 Classical Corrections to Jet Quenching
- 5 Quantum Corrections to Forward Scattering

OUTLINE

1 Introduction/Motivation

- 2 Jet Energy Loss
- 3 Aside: Loops in Thermal Field Theory
- 4 Classical Corrections to Jet Quenching
- 5 Quantum Corrections to Forward Scattering

THE QGP IN A LAB

Gold, Lead ions smashed together at Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC) ⇒Heavy Ion Collisions (HIC)

■ QGP has extremely short lifetime \sim 10 fm/c \sim 10⁻²³ s \Rightarrow Cannot study with external probe

- QGP has extremely short lifetime \sim 10 fm/c \sim 10⁻²³ s \Rightarrow Cannot study with external probe
- Next best thing? ⇒ Probe created at beginning of collision ⇒ Jets!

- QGP has extremely short lifetime $\sim 10 \text{ fm/c} \sim 10^{-23} \text{ s}$ \Rightarrow Cannot study with external probe
- Next best thing? ⇒ Probe created at beginning of collision ⇒ Jets!
- Can also use other hard probes such as quarkonium, photons, dileptons

JETS IN "VACUUM"

Jets are relatively well-understood in the vacuum – used in searches for physics beyond the standard model

Jets are relatively well-understood in the vacuum – used in searches for physics beyond the standard model ⇒ Provides nice benchmark to understand how jets are **quenched** in **heavy-ion collisions**!

JET QUENCHING

Want to extract QGP properties \Rightarrow Need more precise theory calculations

Want to extract QGP properties

 \Rightarrow Need more precise theory calculations

- Include contributions from pre-equilibrium and Glasma phases
- Inclusion of sub-eikonal corrections
- Relaxation of static medium assumption
- Inclusion of higher order corrections

Want to maintain connection with first principles

Want to maintain connection with first principles

Finite-temperature lattice QCD should be preferred choice

Want to maintain connection with first principles

■ Finite-temperature lattice QCD should be preferred choice ⇒ Well-suited for computation of thermodynamic (Euclidean) quantities

⇒ In general, **not** well-suited to computation of real-time (Minkowskian) quantites,

(see [Boguslavski et al., 2023] for recent progress)

Perturbative quantum field theory at finite temperature

Real time formalism

Doubling of degrees of freedom

Perturbative quantum field theory at finite temperature

Applicable to jet quenching!

OUTLINE

1 Introduction/Motivation

2 Jet Energy Loss

- 3 Aside: Loops in Thermal Field Theory
- 4 Classical Corrections to Jet Quenching
- 5 Quantum Corrections to Forward Scattering

For rest of this talk, consider jet as single highly energetic particle parton

- For rest of this talk, consider jet as single highly energetic particle parton
- Parton has energy, P, much greater than T, temperature of plasma

JET ENERGY LOSS

JET ENERGY LOSS

How to quantify medium induced radiation?

How to quantify medium induced radiation?

Compute $\frac{d\mathcal{P}}{dz}$, probability of parton of energy, P splitting into particles with energies *zP* and (1 - z)P

How to quantify medium induced radiation?

Compute $\frac{d\mathcal{P}}{dz}$, probability of parton of energy, P splitting into particles with energies *zP* and (1 - z)P

Not straightforward! But why??

HOW EXACTLY IS BREMSSTRAHLUNG TRIGGERED?

- Depends on quantum mechanical formation time, $\tau \sim \omega/k_{\perp}^2$ associated with the radiated gluon:
 - Radiated gluon triggered by one collision with medium constituent
 - Bethe-Heitler or single scattering regime
 - Many collisions with smaller momentum exchange effectively trigger gluon radiation
 - Multiple scattering regime

 For single scattering, expand in number of scatterings between parton and medium constituents
⇒ Opacity expansion [Gyulassy et al., 2001, Wiedemann, 2000] For single scattering, expand in number of scatterings between parton and medium constituents
⇒ Opacity expansion [Gyulassy et al., 2001, Wiedemann, 2000]

■ For multiple scattering, need to account for LPM interference

 \Rightarrow BDMPS-Z or AMY frameworks [Baier et al., 1995, Zakharov, 1997, Arnold et al., 2003]

 \Rightarrow To get analytical solution, need to take Harmonic Oscillator Approximation (HOA)

SPLITTING PROBABILITY

Differential probability of parton with energy, P splitting into particles with energies zP and (1 - z)P

$$\frac{d\mathcal{P}_{a\to b,c}}{dz} = \frac{g^2 p_{a\to b,c}(z)}{4\pi (z(1-z)P)^2} \operatorname{Re} \int_0^\infty dt_1 \int_{t_1}^\infty dt_2 \times \nabla_{\mathbf{B_1}} \cdot \nabla_{\mathbf{B_2}} \{ G(\mathbf{B_2}, t_2; \mathbf{B_1}, t_1) - \operatorname{vac.} \} \Big|_{\mathbf{B_1} = \mathbf{B_2} = 0}$$
(1)

 $G(\mathbf{B_2}, t_2; \mathbf{B_1}, t_1)$ is Green's function of the Hamiltonian, \mathcal{H} describing momentum diffusion in directions transverse to jet propagation.

SPLITTING PROBABILITY

Differential probability of parton with energy, P splitting into particles with energies zP and (1 - z)P

$$\frac{d\mathcal{P}_{a\to b,c}}{dz} = \frac{g^2 p_{a\to b,c}(z)}{4\pi (z(1-z)P)^2} \operatorname{Re} \int_0^\infty dt_1 \int_{t_1}^\infty dt_2 \times \nabla_{\mathbf{B_1}} \cdot \nabla_{\mathbf{B_2}} \{ G(\mathbf{B_2}, t_2; \mathbf{B_1}, t_1) - \operatorname{vac.} \} \Big|_{\mathbf{B_1} = \mathbf{B_2} = 0}$$
(1)

 $G(\mathbf{B_2}, t_2; \mathbf{B_1}, t_1)$ is Green's function of the Hamiltonian, \mathcal{H} describing momentum diffusion in directions transverse to jet propagation.

$$\mathcal{H} = -\frac{\nabla_{\mathbf{B}}^2}{2Z(1-Z)P} + \sum_i \frac{m_{\infty i}^2}{2P_i} - i\mathcal{C}(\mathbf{B})$$

SPLITTING PROBABILITY

Differential probability of parton with energy, P splitting into particles with energies zP and (1 - z)P

$$\frac{d\mathcal{P}_{a\to b,c}}{dz} = \frac{g^2 p_{a\to b,c}(z)}{4\pi (z(1-z)P)^2} \operatorname{Re} \int_0^\infty dt_1 \int_{t_1}^\infty dt_2 \times \nabla_{\mathbf{B_1}} \cdot \nabla_{\mathbf{B_2}} \{ G(\mathbf{B_2}, t_2; \mathbf{B_1}, t_1) - \operatorname{vac.} \} \Big|_{\mathbf{B_1} = \mathbf{B_2} = 0}$$
(1)

 $G(\mathbf{B_2}, t_2; \mathbf{B_1}, t_1)$ is Green's function of the Hamiltonian, \mathcal{H} describing momentum diffusion in directions transverse to jet propagation.

$$\mathcal{H} = -\frac{\nabla_{\mathbf{B}}^2}{2Z(1-Z)P} + \sum_i \frac{m_{\infty i}^2}{2P_i} - i\mathcal{C}(\mathbf{B})$$

Both $m_{\infty}, C(\mathbf{B})$ can be computed in **thermal field theory**!

OUTLINE

1 Introduction/Motivation

2 Jet Energy Loss

3 Aside: Loops in Thermal Field Theory

4 Classical Corrections to Jet Quenching

5 Quantum Corrections to Forward Scattering

FROM VACUUM TO FINITE TEMPERATURE

In vacuum, going to higher orders in perturbation theory means adding loops

 \Rightarrow costs g^2
FROM VACUUM TO FINITE TEMPERATURE

In vacuum, going to higher orders in perturbation theory means adding loops

 \Rightarrow costs g^2

At finite temperature (or density), propagators come along with statistical functions (Bose-Einstein or Fermi-Dirac)

$$n_{B/F}(\omega) = rac{1}{\exprac{\omega}{T} \mp 1}$$

 \Rightarrow Things become more complicated (and potentially problematic)

THERMAL SCALES IN A WEAKLY COUPLED QGP

- *T*, hard scale associated with energy of individual particles ⇒ hard-hard interactions can be described perturbatively
- gT, soft scale associated with energy of collective excitations
 ⇒ soft-soft interactions can also be described
 perturbatively
- g²T, ultrasoft scale is associated with nonperturbative physics
 → Loops can be added at no extra cost (Linde problem)
 - \Rightarrow Loops can be added at no extra cost (Linde problem)
 - \Rightarrow **Cannot** use perturbation theory

HTL EFFECTIVE THEORY

For hard-soft interactions, we are not so lucky either...
 Turns out that one can add loops for free

 perturbative expansion breaks down

HTL EFFECTIVE THEORY

- For hard-soft interactions, we are not so lucky either...
 Turns out that one can add loops for free
 perturbative expansion breaks down
- Integrate out scale T to get Hard Thermal Loop (HTL) effective theory
 - \Rightarrow EFT for momenta $gT \sim m_D$ allows us to resum these loops
 - \Rightarrow typically used in jet energy loss calculations

OUTLINE

1 Introduction/Motivation

- 2 Jet Energy Loss
- 3 Aside: Loops in Thermal Field Theory

4 Classical Corrections to Jet Quenching

5 Quantum Corrections to Forward Scattering

CLASSICAL CORRECTIONS: SOME PHYSICAL INTUITION

Reminder: Consider jet as a hard parton with momentum $P \gg T$ propagating through the medium, with interactions controlled by Hamiltonian

- Hard parton undergoes forward scattering with the medium, induces shift in dispersion relation, asymptotic mass i.e $\omega^2 = \mathbf{k}^2 + m_{\infty}^2$
- Transverse scattering rate, C(k_⊥) describes damping in transverse momentum space due to interactions with medium,

Related to transverse momentum broadening coefficient $\hat{q}(\mu) \equiv \int^{\mu} \frac{d^2 k_{\perp}}{(2\pi)^2} k_{\perp}^2 C(k_{\perp})$

CLASSICAL CORRECTIONS

- Both m_∞ and C(k_⊥) can be expressed in terms of correlators on the lightcone
- Both receive **classical** contributions i.e corrections coming from exchange of gluons between medium and parton that are $\lesssim gT$

CLASSICAL CORRECTIONS

- Both m_∞ and C(k_⊥) can be expressed in terms of correlators on the lightcone
- Both receive **classical** contributions i.e corrections coming from exchange of gluons between medium and parton that are $\leq gT$

$$\implies n_B(\omega) \equiv \frac{1}{\exp(\frac{\omega}{\overline{t}}) - 1} \gg 1$$

 Can compute some of these classical corrections using Hard Thermal Loop (HTL) effective theory, but analytically difficult in practice

- Can compute some of these classical corrections using Hard Thermal Loop (HTL) effective theory, but analytically difficult in practice
- Breakthrough: classical corrections to thermal correlators on the lightcone can be computed in Electrostatic QCD (EQCD) [Caron-Huot, 2009]

WHAT IS EQCD?

■ Integrate out hard scale, *T* from QCD

WHAT IS EQCD?

- Integrate out hard scale, *T* from QCD
- Arrive at 3 dimensional gluon effective field theory for momenta, gT ~ m_D, inverse screening length for chromoelectric fields
- EQCD Lagrangian

$$\mathcal{L}_{\text{EQCD}} = \frac{1}{2g_{3d}^2} \operatorname{Tr} F_{ij} F_{ij} + \operatorname{Tr} D_i \Phi D_i \Phi + m_D^2 \operatorname{Tr} \Phi^2 + \lambda \left(\operatorname{Tr} \Phi^2 \right)^2$$

where Φ is adjoint scalar, i, j = 1, 2, 3

WHAT IS EQCD?

- Integrate out hard scale, *T* from QCD
- Arrive at 3 dimensional gluon effective field theory for momenta, gT ~ m_D, inverse screening length for chromoelectric fields
- EQCD Lagrangian

$$\mathcal{L}_{\text{EQCD}} = \frac{1}{2g_{3d}^2} \operatorname{Tr} F_{ij} F_{ij} + \operatorname{Tr} D_i \Phi D_i \Phi + m_D^2 \operatorname{Tr} \Phi^2 + \lambda \left(\operatorname{Tr} \Phi^2 \right)^2$$

where Φ is adjoint scalar, i, j = 1, 2, 3

\blacksquare \Rightarrow "Dimensional Reduction"

■ HTL theory accounts for dynamics of all Matsubara modes (reminder $\omega_n = 2\pi nT$)

- HTL theory accounts for dynamics of all Matsubara modes (reminder $\omega_n = 2\pi nT$)
- But in EQCD, all Matsubara modes are integrated out except for zero mode

- HTL theory accounts for dynamics of all Matsubara modes (reminder $\omega_n = 2\pi nT$)
- But in EQCD, all Matsubara modes are integrated out except for zero mode
 - \Rightarrow EQCD can be studied using Lattice QCD!

- HTL theory accounts for dynamics of all Matsubara modes (reminder $\omega_n = 2\pi nT$)
- But in EQCD, all Matsubara modes are integrated out except for zero mode
 - \Rightarrow EQCD can be studied using **Lattice QCD**!

 \Rightarrow Captures (numerically) all classical contributions from soft and ultrasoft scales!!!

NON-PERTURBATIVE MOMENTUM BROADENING

- Paved way for non-perturbative (NP) determination of classical corrections to C(k_⊥)
- Series of papers culminated with determination of in-medium splitting rate for medium of finite size [Panero et al., 2014, Moore et al., 2021,

Schlichting and Soudi, 2021]

Difference between rate from LO kernel and NP kernel up to 50%!

Definition of m_{∞}

• Masses are given by $m_{\infty}^2 = g^2 C_R (Z_g + Z_f)$, where classical corrections are contained in the part

$$Z_g \approx \int_0^\infty dx^+ x^+ \operatorname{Tr} \langle U_F(-\infty; x^+) F^{-\perp}(x^+) U_F(x^+; 0) F^{-\perp}(0) U_F(0; -\infty) \rangle$$

Same idea here, lattice calculation has been completed [Moore and Schlusser, 2020, Ghiglieri et al., 2022]

OUTLINE

1 Introduction/Motivation

- 2 Jet Energy Loss
- 3 Aside: Loops in Thermal Field Theory
- 4 Classical Corrections to Jet Quenching

5 Quantum Corrections to Forward Scattering

 \blacksquare Match lattice evaluation to perturbative EQCD evaluation \checkmark

[Ghiglieri et al., 2022]

 \blacksquare Match lattice evaluation to perturbative EQCD evaluation \checkmark

[Ghiglieri et al., 2022]

- Match lattice evaluation to perturbative EQCD evaluation [Ghiglieri et al., 2022]
- Match perturbative EQCD evaluation to (4D) QCD evaluation

- Match lattice evaluation to perturbative EQCD evaluation [Ghiglieri et al., 2022]
- Match perturbative EQCD evaluation to (4D) QCD evaluation
- Supply entire $\mathcal{O}(g^2)$ correction coming from thermal scale

Zg DIAGRAMS IN QCD

Zg DIAGRAMS IN QCD

MATCHING TO EQCD

MATCHING TO EQCD

EQCD equivalent $K \sim gT \qquad Q \sim gT$

Isolate K zero-mode contribution

Take $K \gg gT$ limit

28

MATCHING TO EQCD

Isolate K zero-mode contribution

Take $K \gg gT$ limit

Find that logarithmic divergences cancel ⇒ UV behaviour of NP evaluation is cured! [Ghiglieri et al., 2024]

Rest – Outlook

Naively, should be finite...

Rest – Outlook

Naively, should be finite...

Find outstanding double-logarithmic divergence in part of phase space: $k^+ \sim T$, $k^- \sim g^2 T$, $k_\perp \sim gT \Rightarrow K^2 \sim 0$

$$Z_{g n\neq 0 \text{ div}} = i \int_{K} \frac{1+n_{\mathrm{B}}(k^{\mathrm{O}})}{(k^{-}-i\varepsilon)^{2}} \frac{k_{\perp}^{2}}{k^{2}} \left[\frac{\Pi_{L}^{R}(K)-\Pi_{T}^{R}(K)}{K^{2}+i\varepsilon k^{\mathrm{O}}} - \mathrm{adv.} \right]$$

Rest – Outlook

Naively, should be finite...

Find outstanding double-logarithmic divergence

in part of phase space: $k^+ \sim T, \, k^- \sim g^2 T, \, k_\perp \sim gT \Rightarrow K^2 \sim 0$

 \Rightarrow Collinear physics that needs to be accounted for!

Must be addressed in order meaningfully to quantify NP evaluation

Want to improve accuracy of theoretical jet quenching calculations
- Want to improve accuracy of theoretical jet quenching calculations
 - \Rightarrow Finite temperature perturbation theory

- Want to improve accuracy of theoretical jet quenching calculations
 - \Rightarrow Finite temperature perturbation theory
- Jet evolution governed by asymptotic mass, m_{∞} and transverse scattering rate, $C(k_{\perp})$

- Want to improve accuracy of theoretical jet quenching calculations
 - \Rightarrow Finite temperature perturbation theory
- Jet evolution governed by asymptotic mass, m_{∞} and transverse scattering rate, $C(k_{\perp})$

 \Rightarrow Important to include higher-order corrections! \Rightarrow In some cases we can even do better using lattice EQCD to get non-perturbative **classical corrections**

THANKS FOR LISTENING!

[ARNOLD ET AL., 2003] ARNOLD, P. B., MOORE, G. D., AND YAFFE, L. G. (2003).

TRANSPORT COEFFICIENTS IN HIGH TEMPERATURE GAUGE THEORIES. 2. BEYOND LEADING LOG.

JHEP, 0305:051.

[BAIER ET AL., 1995] BAIER, R., DOKSHITZER, Y. L., PEIGNE, S., AND SCHIFF, D. (1995).

INDUCED GLUON RADIATION IN A QCD MEDIUM.

Phys.Lett., B345:277-286.

[Barata et al., 2021] Barata, J. a., Mehtar-Tani, Y., Soto-Ontoso, A., and Tywoniuk, K. (2021).

MEDIUM-INDUCED RADIATIVE KERNEL WITH THE IMPROVED OPACITY EXPANSION.

JHEP, 09:153.

[BENZKE ET AL., 2013] BENZKE, M., BRAMBILLA, N., ESCOBEDO, M. A., AND VAIRO, A. (2013).

GAUGE INVARIANT DEFINITION OF THE JET QUENCHING PARAMETER. *JHEP*, 1302:129.

[BOGUSLAVSKI ET AL., 2023] BOGUSLAVSKI, K., HOTZY, P., AND MÜLLER, D. I. (2023).

REAL-TIME CORRELATORS IN 3+1D THERMAL LATTICE GAUGE THEORY.

[CARON-HUOT, 2009] CARON-HUOT, S. (2009). O(G) PLASMA EFFECTS IN JET QUENCHING. Phys.Rev., D79:065039.

[CASALDERREY-SOLANA AND TEANEY, 2007] CASALDERREY-SOLANA, J. AND TEANEY, D. (2007).

Transverse Momentum Broadening of a Fast Quark in a N=4 Yang Mills Plasma.

JHEP, 04:039.

[D'ERAMO ET AL., 2011] D'ERAMO, F., LIU, H., AND RAJAGOPAL, K. (2011). Transverse Momentum Broadening and the Jet Quenching Parameter, Redux.

Phys.Rev., D84:065015.

[GHIGLIERI ET AL., 2013] GHIGLIERI, J., HONG, J., KURKELA, A., LU, E., MOORE, G. D., AND TEANEY, D. (2013).

NEXT-TO-LEADING ORDER THERMAL PHOTON PRODUCTION IN A WEAKLY COUPLED QUARK-GLUON PLASMA.

JHEP, 1305:010.

[GHIGLIERI ET AL., 2022] GHIGLIERI, J., MOORE, G. D., SCHICHO, P., AND SCHLUSSER, N. (2022).

THE FORCE-FORCE-CORRELATOR IN HOT QCD PERTURBATIVELY AND FROM THE LATTICE.

JHEP, 02:058.

[GHIGLIERI ET AL., 2016] GHIGLIERI, J., MOORE, G. D., AND TEANEY, D. (2016). JET-MEDIUM INTERACTIONS AT NLO IN A WEAKLY-COUPLED QUARK-GLUON PLASMA.

JHEP, 03:095.

[GHIGLIERI ET AL., 2024] GHIGLIERI, J., SCHICHO, P., SCHLUSSER, N., AND WEITZ, E. (2024).

THE FORCE-FORCE CORRELATOR AT THE HARD THERMAL SCALE OF HOT QCD. *JHEP*, 03:111.

[GHIGLIERI AND TEANEY, 2015] GHIGLIERI, J. AND TEANEY, D. (2015). **PARTON ENERGY LOSS AND MOMENTUM BROADENING AT NLO IN HIGH TEMPERATURE QCD PLASMAS.** Int. J. Mod. Phys., E24(11):1530013.

To appear in QGP5, ed. X-N. Wang.

[GHIGLIERI AND WEITZ, 2022] GHIGLIERI, J. AND WEITZ, E. (2022). CLASSICAL VS QUANTUM CORRECTIONS TO JET BROADENING IN A WEAKLY-COUPLED QUARK-GLUON PLASMA. JHEP, 11:068.

[GYULASSY ET AL., 2001] GYULASSY, M., LEVAI, P., AND VITEV, I. (2001). **Reaction operator approach to nonAbelian energy loss.** *Nucl. Phys. B*, 594:371–419.

[HEINZ, 2013] HEINZ, U. W. (2013). **TOWARDS THE LITTLE BANG STANDARD MODEL.** J. Phys. Conf. Ser., 455:012044.

[MOORE ET AL., 2021] MOORE, G. D., SCHLICHTING, S., SCHLUSSER, N., AND SOUDI, I. (2021). NON-PERTURBATIVE DETERMINATION OF COLLISIONAL BROADENING AND

MEDIUM INDUCED RADIATION IN QCD PLASMAS.

JHEP, 10:059.

[MOORE AND SCHLUSSER, 2020] MOORE, G. D. AND SCHLUSSER, N. (2020). **THE NONPERTURBATIVE CONTRIBUTION TO ASYMPTOTIC MASSES.** *Phys. Rev. D*, 102(9):094512.

[Panero et al., 2014] Panero, M., Rummukainen, K., and Schäfer, A. (2014).

A LATTICE STUDY OF THE JET QUENCHING PARAMETER.

Phys.Rev.Lett., 112:162001.

[Schlichting and Soudi, 2021] Schlichting, S. and Soudi, I. (2021). Splitting rates in QCD plasmas from a non-perturbative determination of the momentum broadening kernel $C(q_{\perp})$.

[WIEDEMANN, 2000] WIEDEMANN, U. A. (2000).

GLUON RADIATION OFF HARD QUARKS IN A NUCLEAR ENVIRONMENT: OPACITY EXPANSION.

Nucl. Phys. B, 588:303-344.

[ZAKHAROV, 1997] ZAKHAROV, B. (1997). RADIATIVE ENERGY LOSS OF HIGH-ENERGY QUARKS IN FINITE SIZE NUCLEAR MATTER AND QUARK - GLUON PLASMA. JETP Lett., 65:615–620.

Т	$\frac{Z_g^{\text{non-pert class}}}{T^2}$	$\frac{Z_{\rm g,LO}^{\rm 3d}}{T^2}$
250 MeV	-0.513(138)(45)(7)	-0.376
500 MeV	-0.619(99)(39)(3)	-0.324
1 GeV	-0.462(71)(9)(7)	-0.305
100 GeV	-0.327(16)(5)(2)	-0.223

Table:

Defining $\hat{\pmb{q}}(\mu)$

- Intuitively, transport coefficient describing transverse diffusion of jet: k²_⊥ = q̂L
- Can be related to the transverse scattering rate, C(k_⊥)

$$\hat{\mathbf{q}}(\boldsymbol{\mu}) = \int^{\boldsymbol{\mu}} \frac{d^2 \boldsymbol{k}_{\perp}}{(2\pi)^2} \boldsymbol{k}_{\perp}^2 \mathcal{C}(\boldsymbol{k}_{\perp})$$
$$\lim_{L \to \infty} \langle W(\boldsymbol{x}_{\perp}) \rangle = \exp(-\mathcal{C}(\boldsymbol{x}_{\perp})L)$$

[Ghiglieri and Teaney, 2015]

■ W(x_⊥) is a Wilson loop defined in the (x⁺, x_⊥) plane

[Casalderrey-Solana and Teaney, 2007, D'Eramo et al., 2011,

Benzke et al., 2013]

- Can think of sticking together amplitude and conjugate amplitude to get diagrams on the right
- Black lines represent hard parton in the amplitude and conjugate amplitude
- Red gluons are bremsstrahlung, represented by thermal propagators
- Blue gluons are those that are exchanged with the medium and are represented by HTL propagators

WHERE DO THESE DIAGRAMS COME FROM?

DOUBLE LOGS FROM THE LITERATURE

N = 1 term in opacity expansion emerges from dipole picture

$$\delta \mathcal{C}(\mathbf{k}_{\perp})_{\rm LMW} = 4\alpha_{\rm s} C_{\rm R} \int \frac{d\omega}{\omega} \int \frac{d^2 l_{\perp}}{(2\pi)^2} C_{\rm O}(l_{\perp}) \frac{l_{\perp}^2}{\mathbf{k}_{\perp}^2 (\mathbf{k}_{\perp} + \mathbf{l}_{\perp})^2}$$
(2)

DOUBLE LOGS FROM THE LITERATURE

$$\delta \mathcal{C}(\mathbf{k}_{\perp},\rho)_{\mathrm{LMW}} = 4\alpha_{\mathrm{s}} C_{R} \int \frac{d\omega}{\omega} \int^{\rho} \frac{d^{2}l_{\perp}}{(2\pi)^{2}} \mathcal{C}_{\mathrm{o}}(l_{\perp}) \frac{l_{\perp}^{2}}{k_{\perp}^{2}(\mathbf{k}_{\perp}+\mathbf{l}_{\perp})^{2}}$$

$$|\mathbf{k}_{\perp}+\mathbf{l}_{\perp}| \gg l_{\perp} \Rightarrow \text{Single Scattering}$$

$$\delta \mathcal{C}(\mathbf{k}_{\perp},\rho)_{\mathrm{LMW}} = 4\alpha_{\mathrm{s}} C_{R} \int \frac{d\omega}{\omega} \int^{\rho} \frac{d^{2}l_{\perp}}{(2\pi)^{2}} \mathcal{C}_{\mathrm{o}}(l_{\perp}) \frac{l_{\perp}^{2}}{k_{\perp}^{4}}$$

$$\hat{q}_{\mathrm{o}}(\rho) \rightarrow \hat{q}_{\mathrm{o}} \Rightarrow \mathrm{HOA}$$

$$\delta \mathcal{C}(\mathbf{k}_{\perp})_{\mathrm{LMW}} = 4\alpha_{\mathrm{s}} C_{R} \hat{q}_{\mathrm{o}} \frac{1}{k_{\perp}^{4}} \int \frac{d\omega}{\omega}$$
Reminder: $\hat{q}(\mu) = \int^{\mu} \frac{d^{2}k_{\perp}}{(2\pi)^{2}} k_{\perp}^{2} \mathcal{C}(\mathbf{k}_{\perp})$

$2n_B(\omega)$ accounts for stimulated emission and absorption of thermal gluons

Zg DIAGRAMS IN QCD

Zg DIAGRAMS IN QCD

MATCHING TO EQCD

MATCHING TO EQCD

Isolate K zero-mode contribution

Take $K \gg gT$ limit

MATCHING TO EQCD

Isolate K zero-mode contribution

Take $K \gg gT$ limit

Find that logarithmic divergences cancel \Rightarrow UV behaviour of NP evaluation is cured!

Rest of $\mathcal{O}(g^2)$ Contribution

Naively, should be finite...

Rest of $\mathcal{O}(g^2)$ Contribution

Naively, should be finite...

Find outstanding double-logarithmic divergence

in part of phase space: $k^+ \sim T, \, k^- \sim g^2 T, \, k_\perp \sim gT \Rightarrow K^2 \sim 0$

$$Z_{g n\neq o \operatorname{div}} = i \int_{K} \frac{1+n_{\mathrm{B}}(k^{\mathrm{o}})}{(k^{-}-i\varepsilon)^{2}} \frac{k_{\perp}^{2}}{k^{2}} \left[\frac{\Pi_{L}^{R}(K)-\Pi_{T}^{R}(K)}{K^{2}+i\varepsilon k^{\mathrm{o}}} - \operatorname{adv.} \right]$$

Rest of $\mathcal{O}(g^2)$ Contribution

Naively, should be finite...

Find outstanding double-logarithmic divergence

in part of phase space: $k^+ \sim T, \, k^- \sim g^2 T, \, k_\perp \sim gT \Rightarrow K^2 \sim 0$

 \Rightarrow Collinear physics that needs to be accounted for!

Must be addressed in order meaningfully to quantify NP evaluation

DOUBLE LOGS FROM THE LITERATURE

DOUBLE LOGS FROM THE LITERATURE

How to adapt BDIM/LMW result to weakly coupled QGP?

How to adapt BDIM/LMW result to weakly coupled QGP?

$$\delta \hat{q}_{\text{LMW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega}$$

$$\delta \hat{q}_{\text{LMW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} (1 + 2n_{B}(\omega))$$

$$\implies n_{B}(\omega) \equiv \frac{1}{e^{\frac{\omega}{\tau}} - 1} \text{ can be ignored iff } \omega_{\min} = \hat{q}_{\text{o}}\tau_{\min}^{2} \gg T$$

How to adapt BDIM/LMW result to weakly coupled QGP?

$$\delta \hat{q}_{LMW}(\mu) = \frac{\alpha_{s}C_{R}}{\pi} \hat{q}_{0} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{0}} \frac{d\tau}{\tau} \int_{\hat{q}_{0}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega}$$

$$\delta \hat{q}_{LMW}(\mu) = \frac{\alpha_{s}C_{R}}{\pi} \hat{q}_{0} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{0}} \frac{d\tau}{\tau} \int_{\hat{q}_{0}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} (1 + 2n_{B}(\omega))$$

$$\implies n_{B}(\omega) \equiv \frac{1}{e^{\frac{\omega}{\tau}} - 1} \text{ can be ignored iff } \omega_{\min} = \hat{q}_{0}\tau_{\min}^{2} \gg T$$
But is this consistent with single scattering?

$$\delta \hat{q}_{\text{LMW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^2/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^2}^{\mu^2\tau} \frac{d\omega}{\omega}$$

$$\hat{p}\hat{q}_{\mathsf{LMW}}(\mu) = rac{lpha_{\mathsf{s}}\mathsf{C}_{\mathsf{R}}}{\pi}\hat{q}_{\mathsf{O}}\int_{ au_{\min}}^{\mu^{2}/\hat{q}_{\mathsf{O}}} rac{d au}{ au}\int_{\hat{q}_{\mathsf{O}} au^{2}}^{\mu^{2} au}rac{d\omega}{\omega} \quad \ \ \left[\hat{q}_{\mathsf{O}}\sim g^{4}T^{3}
ight]$$

Need to demand
$$g^4 T^3 au_{\min}^2 \gg T$$

 $\Rightarrow au_{\min}$ should be $\gg rac{1}{g^2 T}$

$$\delta \hat{q}_{\text{LMW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^2 / \hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}} \tau^2}^{\mu^2 \tau} \frac{d\omega}{\omega} \frac{\hat{q}_{\text{o}} \sim g^4 T^3}{\hat{q}_{\text{o}} \sigma^2}$$
Need to demand $g^4 T^3 \tau_{\min}^2 \gg T$

$$\Rightarrow \tau_{\min} \text{ should be } \gg \frac{1}{g^2 T}$$

But $\frac{1}{g^2T}$ is the mean free time between multiple scatterings!

 \Rightarrow Would lead us away from single scattering regime!

 \implies In order to stay away from multiple scattering regime, must account for thermal effects

$$\delta \hat{q}_{\mathsf{LMW}}(\mu) = rac{lpha_{\mathsf{s}} \mathsf{C}_{\mathsf{R}}}{\pi} \hat{q}_{\mathsf{O}} \int_{ au_{\min}}^{\mu^2/\hat{q}_{\mathsf{O}}} rac{d au}{ au} \int_{\hat{q}_{\mathsf{O}} au^2}^{\mu^2 au} rac{d\omega}{\omega}$$

 \implies In order to stay away from multiple scattering regime, must account for thermal effects

$$\begin{split} \delta \hat{q}_{\text{LMW}}(\mu) &= \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\min}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} \\ \\ \hline \text{Introduce intermediate regulator} \\ \hline \tau_{\text{int}} \ll 1/g^{2}T \\ \delta \hat{q}_{1+2}(\mu) &= \frac{\alpha_{\text{s}} C_{\text{R}}}{\pi} \hat{q}_{\text{o}} \int_{\tau_{\text{int}}}^{\mu^{2}/\hat{q}_{\text{o}}} \frac{d\tau}{\tau} \int_{\hat{q}_{\text{o}}\tau^{2}}^{\mu^{2}\tau} \frac{d\omega}{\omega} (1 + 2n_{\text{B}}(\omega)) \\ &= \frac{\alpha_{\text{s}} C_{\text{R}}}{2\pi} \hat{q}_{\text{o}} \Big\{ \ln^{2} \frac{\mu^{2}}{\hat{q}_{\text{o}}\tau_{\text{int}}} - \frac{1}{2} \ln^{2} \frac{\omega_{\text{T}}}{\hat{q}_{\text{o}}\tau_{\text{int}}^{2}} \Big\} \\ \hline \omega_{\text{T}} \equiv 2\pi T e^{-\gamma_{\text{E}}} \end{split}$$
$2n_B(\omega)$ accounts for stimulated emission and absorption of thermal gluons

DOUBLE LOGS IN A WEAKLY COUPLED QGP

• Investigate which logs are produced by *soft, collinear* modes through a *semi-collinear* process associated with formation time $\tau_{semi} \sim 1/gT$ [Ghiglieri et al., 2013, Ghiglieri et al., 2016]

Only spacelike interactions with medium

Now timelike interactions are allowed too

 \Rightarrow Going beyond instantaneous approximation!

DOUBLE LOG WITH SINGLE SCATTERING

DOUBLE LOG WITH SINGLE SCATTERING

DOUBLE LOG WITH SINGLE SCATTERING

Why is it that region 2 and 4 do not contribute to the double Logs?

First, note that

$$\lim_{\frac{\omega}{T}\to0}\left(1+2n_B(\omega)\right)=1+\frac{2T}{\omega}-1$$
(3)

The absence of the IR scale in any logarithms can then be seen by looking at the following integral, with $\nu_{IR} \ll T \ll \nu_{UV}$

How can we understand the transition to power law enhancement in regions 2 and 4?

Our results include power law corrections depending on our IR cutoff

computed from [Caron-Huot, 2009] \Rightarrow Non-trivial check!

GOING BEYOND HARMONIC OSCILLATOR APPROXIMATION – OUTLOOK

HOA not well-suited to single-scattering

GOING BEYOND HARMONIC OSCILLATOR APPROXIMATION – OUTLOOK

HOA not well-suited to single-scattering So how can we go beyond it?

$$\delta \hat{q}_{\text{GW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}_{\text{o}} \ln^2 \frac{\mu^4}{\hat{q}_{\text{o}} \omega_{\text{T}}} \longrightarrow \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}(\rho) \ln^2 \frac{\#}{\omega_{\text{T}}}$$
where $\hat{q}(\rho) \propto \ln \frac{\rho^2}{m_D^2}$

 ρ separates us from neighbouring region with simultaneously single-scattering and multiple scatterings

Appearance of \hat{q}_0 in double log signifies lack of understanding of transition between single scattering and multiple scattering regimes

Going Beyond Harmonic Oscillator Approximation – Outlook

HOA not well-suited to single-scattering So how can we go beyond it?

$$\delta \hat{q}_{\text{GW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}_{\text{o}} \ln^2 \frac{\mu^4}{\hat{q}_{\text{o}} \omega_{\text{T}}} \longrightarrow \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}(\rho) \ln^2 \frac{\#}{\omega_{\text{T}}}$$
where $\hat{q}(\rho) \propto \ln \frac{\rho^2}{m_D^2}$

Need to solve transverse momentum-dependent LPM equation without **HOA** [Ghiglieri and Weitz, 2022] in order to shed light on how these issues could be addressed

GOING BEYOND HARMONIC OSCILLATOR APPROXIMATION – OUTLOOK

HOA not well-suited to single-scattering So how can we go beyond it?

$$\delta \hat{q}_{\text{GW}}(\mu) = \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}_{\text{o}} \ln^2 \frac{\mu^4}{\hat{q}_{\text{o}} \omega_{\text{T}}} \longrightarrow \frac{\alpha_{\text{s}} C_{\text{R}}}{4\pi} \hat{q}(\rho) \ln^2 \frac{\#}{\omega_{\text{T}}}$$
where $\hat{q}(\rho) \propto \ln \frac{\rho^2}{m_D^2}$

Improved Opacity Expansion [Barata et al., 2021] could be used to solve resummation equation in order to better understand transition from single scattering to multiple scattering