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14 Introduction: basics of QCD perturbation theory
l
q i : q
g—1

Fig. 1.1. A Feynman diagram in the ¢*-theory considered here. The arrows indicate the
momentum flow,

We see that each light cone wave function W (ng, n,) is normalized to a number less than
orequal to 1.

1.4 Sample LCPT calculations

While we expect that the reader has a fluent knowledge of Feynman rules, we realize that
it is less likely that he or she is equally fluent with LCPT rules. Therefore, to help the
reader become more familiar with LCPT, here we will perform two LCPT calculations. We
will first “cross-check” LCPT by calculating a sample scattering amplitude using both the
Feynman and LCPT rules and showing that we obtain the same result. We will then set up
the rules for calculating light cone wave functions, by considering an example of a basic
wave function containing 1 — 2 particle splitting.

1.4.1 LCPT “cross-check”

We begin by calculating a simple amplitude in a real scalar ¢* field theory in two ways:
using standard Feynman rules and using the rules of LCPT. We will show that the two ways
give identical results. This demonstrates that LCPT is indeed equivalent to the standard
Feynman diagram approach.

The process we consider is illustrated in Fig. 1.1. We consider a field theory for a real
massive scalar field ¢ with Lagrangian

1 m? A
o o 2 3
L= 23“1138 3 2 ¢ —3!¢- ; (1.71)

The contribution of the diagram in Fig. 1.1 (henceforth labeled A) can be written down
using the Feynman rules for the real scalar field theory having Lagrangian (1.71) (see e.g.
Sterman (1993) on Peskin and Schroeder (1995)):

C (A o dY i i

A ,
: 20 @)Y P—mPtic (g 12 —m?+tie

(1.72)

Here 1/2! is a symmetry factor and m is the mass of the scalar particles.
Working in the light cone variables

g=(".q".q1), =" 1,1, (1.73)

17:19
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we write 12 = [t~ — 2 and (g —D>= (g% —I*) (g~ —1")— (§L —[1)®. Equa-
tion (1.72) can now be rewritten as

AL [ dItdl- di 1
iA= f .-

4 @O - —m? tie
1
X - = g
(gt —1")g~ — 1) — (G g lBke m? f5ic

(1.74)

Now we need to integrate over /~. In the complex [~ -plane the integrand in Eq. (1.74) has
two poles,

f?_—l—mz—ie - _(éj_—fl)2+m2—ie

b= I+ L =g gt — I+

(1.75)
The /™ -integral is nonzero only if these two poles lie in different half-planes. This happens
for either (i) It > 0, gt — [T > 0 or (i) I+ < 0, g™ —I* < 0. As the incoming particle
with momentum ¢ is physical we have g* > 0, which makes case (ii) impossible to achieve,
as there one has g+ < [T < 0. We are left with case (i). Closing the [~ -integration contour
to be in the lower half-plane we pick up the pole at [T, obtaining

X o = fdﬁa'?.u 8IH)8(gT —1F)
1 2077 I (gt — 1Y)
1
_ PlEEm?—ie en — L) 4+m?—ie
!+ q+ s [+
-2 [ dItd¥, edh)e(gt — 1Y)
T 28 f 27?1t (g —1%)
1
_ B4m? Gu-DP4mitic

I+ ey /

We observe that Eq. (1.76) is identical to what one would obtain for the diagram in
Fig. 1.1 if one calculated it using the rules of LCPT from Sec. 1.3 (modified for a scalar
particle), as illustrated in Fig. 1.2. Indeed Eq. (1.76) can be obtained by assigning

(1.76)

o) 0g* —1")

= and W (1.77)

for each internal line (LCPT rule 4), including an energy denominator

1 1
Lkm= D kttien | B4mt @ -Ly+m?
inc interm qg — I+ == q+ I+

(1.78)
+ie
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q

{
l

q : q q—1
q—1
q
A B

Fig. 1.2. Light cone perturbation theory diagrams in the ¢*-theory corresponding to the
Feynman diagram in Fig. 1.1. Time flows to the right. The arrows indicate the momentum
direction. The vertical dotted line indicates an intermediate state.

for the intermediate state (denoted by the dotted line in Fig. 1.2A), according to LCPT
rule 3, and integrating over the internal momentum [ with the integration measure

ditd?l,
= 1.79
[ 2Q2m) =)

as prescribed by LCPT rule 6. In LCPT each vertex gives a factor A (a modification of rule
5 for ¢*-theory) and one has to include the symmetry factor 1/2! as well. (Scalar particles
obviously have no polarization. Neither do they have instantaneous terms.)

We have demonstrated that starting from the Feynman diagram amplitude expression
(1.72) we can reduce it to the result that one would obtain by the rules of LCPT. Hence the
two approaches in the end give identical expressions for the amplitudes, as expected.

A few words of caution are in order here. In principle the Feynman diagram in Fig. 1.1
corresponds to the two LCPT diagrams A and B shown in Fig. 1.2, which correspond to
two different orderings of the vertices (see LCPT rule 1). The two graphs A and B in
fact correspond to cases (i) and (ii) considered after Eq. (1.75). Our argument above was
simplified by the fact that diagram B in Fig. 1.2 is zero as, according to the LCPT rules, it
comes with a factor 8(—I1) 8(I* — ¢*), which is zero for g™ > 0. The physical meaning
of this is quite clear: one cannot generate three particles with positive plus momenta out of
nothing (see the lower vertex in Fig. 1.2B). Conversely, three particles with positive plus
momenta cannot combine to give nothing (see the upper vertex in Fig. 1.2B). Because of
this simplification, we have a one-to-one correspondence between the Feynman diagram in
Fig. 1.1 and the LCPT diagram in Fig. 1.2A. In general, each Feynman diagram corresponds
to a sum of all the LCPT diagrams with the same topology, including all possible time-
orderings and instantaneous terms. A general derivation of an LCPT diagram starting from
a Feynman diagram does not simply involve integration over the minus components of the
internal momenta; one has to assign each vertex an x™-coordinate and Fourier transform
the diagram (by integrating over the minus momenta) into x coordinate space. One then
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Fig. 1.3. Light cone wave function for a scalar particle splitting into two. The vertical dotted
line denotes an intermediate state.

has to integrate over all the x*-coordinates of the vertices, imposing different orderings:
each ordering will lead to a different LCPT diagram.

1.4.2 A sample light cone wave function

Letus calculate, using the rules of LCPT, a sample light cone wave function. The calculation
will be instructive, as the wave function we will calculate is similar to certain light cone
wave functions that we will use throughout the book. In this calculation we will also
illustrate in more detail what is actually meant by the light cone wave function definition
(1.69) and will set up the rules for wave function calculations.

The sample wave function is depicted in Fig. 1.3. Again we are working in ¢° real scalar
field theory, with the Lagrangian (1.71). The wave function describes a single incoming
particle splitting into two. For the scalar field theory only rules 1, 3, 4, and 6 from Sec. 1.3
apply. On top of these rules there is a factor equal to the coupling A coming from the vertex.
In calculating light cone wave functions one has to treat the “outgoing” state on the right of
the diagram (the state denoted by the dotted line in Fig. 1.3) as an intermediate state. The
reason is that, in describing a scattering process, the light cone wave function is thought of
as a part of a larger diagram in which this “outgoing™ state in fact undergoes subsequent
interactions with other particles and therefore is truly an intermediate state. Our definition
of the boost-invariant integration measure (1.67) dictates a slight modification of LCPT
rule 4 as well, when calculating light cone wave functions: we treat the incoming lines (the
external lines on the left, e.g. line p in Fig. 1.3) as “internal” and include a factor 1/p™ for
them, while the outgoing lines (the lines on the right, e.g. lines k; and k; in Fig. 1.3) will
be treated as “external’” and so will not bring in such factors.

To summarize, when calculating the light cone wave function using LCPT one should
follow the rules stated in Sec. 1.3, with the following modifications.

(i) The outgoing state on the right of a diagram is treated as an internal state and brings
in an energy denominator according to LCPT rule 3.

(i1) At the same time the outgoing external lines on the right of the diagram bring in only
factors 6(k™), in modification of LCPT rule 4. (As usual, light cone time flows to the
right.)

17:19
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