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12 Introduction: basics of QCD perturbation theory

line crossing them.
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6. For each independent momentum k* integrate with the measure
f dk™ d*ky
2027 )

Sum over all internal quark and gluon polarizations and colors.

March 23, 2012

(1.60)

(L.61)

(1.62)

(1.63)

(1.64)

Again, standard parts of the rules, common to both LCPT and Feynman diagram calcu-
lations, such as symmetry factors and a factor —1 for fermion loops and for fermion lines

beginning and ending at the initial state, are assumed implicitly.

The rules of LCPT are supplemented by tables of Dirac matrix elements in appendix

section A.1. These tables are very useful in the evaluation of LCPT vertices.

1.3.2 Light cone wave function

An important quantity in LCPT, which is hard to construct in the standard Feynman diagram
language, is the light cone wave function. Its definition is similar to that of the wave function

17:19
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1.3 Rules of light cone perturbation theory 13

in quantum mechanics. In our presentation of the light cone wave function we will follow
Brodsky, Pauli, and Pinsky (1998). Imagine that we have a hadron state |W), In general this
is a superposition of different Fock states

|n61 I’n‘.q) = ,ng, {kl+! i-c‘fJ_, }"l's ai};nqs [pj-’ ﬁjl?6j1 aj, fj})! (1'65)

where a particular Fock state has n¢g gluons and n, quarks (and antiquarks). The gluon
momenta are labeled k+ -', 1, with polarizations A; and gluon color indices a; where
E=ily soytips LAE usual in LCPT k] = k /k, , as all particles are on mass shell.) The
quark momenta are labeled pj, Pj 1, with helicities o}, colors @;, and flavors f; where
=4 n,.

The Fock states form a complete basis such that

> fdnw,,q Ing, ng)ing, ngl = 1, (1.66)

nG My

where the phase-space integral is defined by
2P+ (2r)? ["G dk; d?k; 1 dpj dpj1
ds2 = —
f g S EL 2k+ @) H Z 2p 2pT 1)
=1 Ana 1

ne ng o ne g
XE(P+—Z,CIT““ZP;) 32 (PL— kalJ-_ Zﬁmgi.)

5=1 =1 my=1 my=1

(1.67)

with symmetry factor S, = ng! ng! ng!. Here ng and ny are respectively the numbers
of quarks and antiquarks in the wave-function, so that n, = ng + ng. The delta functions
in Eq. (1.67) represent the conservation of the “plus” and transverse components of the
momenta, according to rule 1 of LCPT. The incoming hadron has longitudinal momentum
P+ and transverse momentum P 1. We assume that each Fock state is normalized to 1, so
that (ng, n4lng, ny) = 1.

Using Eq. (1.66) we can write

=W fdn,,ﬁ,,q g, ng)(ng, ng | ). (1.68)
nG,\fg
The quantity
Y(ng,ng) =(ng,nqi\11) (1.69)

is called the light cone wave function. It is a multi-particle wave function, describing a Fock
state in the hadron with ng gluons and n,, quarks.

Note that requiring that the state |W) is normalized to unity, (¥|W¥) = 1, and using
Eqg. (1.68) we can write

1= (v|y)= )" fdQnG+,,,, |W(ng, ny)[. (1.70)

ng.iy

=) gdlﬁth@f,ﬂ? ,q’(“"a, q?_)lz \< (
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16 Introduction: basics of QCD perturbation theory
q
{
> f
q q qg-—1
qg—1
q
A B

Fig. 1.2. Light cone perturbation theory diagrams in the ¢*-theory corresponding to the
Feynman diagram in Fig. 1.1. Time flows to the right. The arrows indicate the momentum
direction. The vertical dotted line indicates an intermediate state.

for the intermediate state (denoted by the dotted line in Fig. 1.2A), according to LCPT
rule 3, and integrating over the internal momentum / with the integration measure

dit d?l;
j By (1.79)

as prescribed by LCPT rule 6. In LCPT each vertex gives a factor A (a modification of rule
5 for ¢3-theory) and one has to include the symmetry factor 1/2! as well. (Scalar particles
obviously have no polarization. Neither do they have instantaneous terms.)

We have demonstrated that starting from the Feynman diagram amplitude expression
(1.72) we can reduce it to the result that one would obtain by the rules of LCPT. Hence the
two approaches in the end give identical expressions for the amplitudes, as expected.

A few words of caution are in order here. In principle the Feynman diagram in Fig. 1.1
corresponds to the two LCPT diagrams A and B shown in Fig. 1.2, which correspond to
two different orderings of the vertices (see LCPT rule 1). The two graphs A and B in
fact correspond to cases (i) and (ii) considered after Eq. (1.75). Our argument above was
simplified by the fact that diagram B in Fig. 1.2 is zero as, according to the LCPT rules, it
comes with a factor 8(—I*)8(I* — g*), which is zero for g* > 0. The physical meaning
of this is quite clear: one cannot generate three particles with positive plus momenta out of
nothing (see the lower vertex in Fig. 1.2B). Conversely, three particles with positive plus
momenta cannot combine to give nothing (see the upper vertex in Fig. 1.2B). Because of
this simplification, we have a one-to-one correspondence between the Feynman diagram in
Fig. 1.1 and the LCPT diagram in Fig. 1.2A. In general, each Feynman diagram corresponds
to a sum of all the LCPT diagrams with the same topology, including all possible time-
orderings and instantaneous terms. A general derivation of an LCPT diagram starting from
a Feynman diagram does not simply involve integration over the minus components of the
internal momenta; one has to assign each vertex an x*-coordinate and Fourier transform
the diagram (by integrating over the minus momenta) into x* coordinate space. One then
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1.4 Sample LCPT calculations 17

Fig. 1.3. Light cone wave function for a scalar particle splitting into two. The vertical dotted
line denotes an intermediate state.

has to integrate over all the x*-coordinates of the vertices, imposing different orderings:
each ordering will lead to a different LCPT diagram.

1.4.2 A sample light cone wave function

Let us calculate, using the rules of LCPT, a sample light cone wave function. The calculation
will be instructive, as the wave function we will calculate is similar to certain light cone
wave functions that we will use throughout the book. In this calculation we will also
illustrate in more detail what is actually meant by the light cone wave function definition
(1.69) and will set up the rules for wave function calculations.

The sample wave function is depicted in Fig. 1.3, Again we are working in ¢° real scalar
field theory, with the Lagrangian (1.71). The wave function describes a single incoming
particle splitting into two. For the scalar field theory only rules 1, 3, 4, and 6 from Sec. 1.3
apply. On top of these rules there is a factor equal to the coupling A coming from the vertex.
In calculating light cone wave functions one has to treat the “outgoing” state on the right of
the diagram (the state denoted by the dotted line in Fig. 1.3) as an intermediate state. The
reason is that, in describing a scattering process, the light cone wave function is thought of
as a part of a larger diagram in which this “outgoing” state in fact undergoes subsequent
interactions with other particles and therefore is truly an intermediate state. Our definition
of the boost-invariant integration measure (1.67) dictates a slight modification of LCPT
rule 4 as well, when calculating light cone wave functions: we treat the incoming lines (the
external lines on the left, e.g. line p in Fig. 1.3) as “internal” and include a factor 1/p™ for
them, while the outgoing lines (the lines on the right, e.g. lines k; and k; in Fig. 1.3) will
be treated as “external” and so will not bring in such factors.

To summarize, when calculating the light cone wave function using LCPT one should
follow the rules stated in Sec. 1.3, with the following modifications.

(i) The outgoing state on the right of a diagram is treated as an internal state and brings
in an energy denominator according to LCPT rule 3.

(ii) At the same time the outgoing external lines on the right of the diagram bring in only
factors 6(k™), in modification of LCPT rule 4. (As usual, light cone time flows to the
right.)

17:19
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18 Introduction: basics of QCD perturbation theory

(iii) The incoming external lines on the left of a diagram bring in factors 1/p™, i.e., LCPT
rule 4 is extended to apply to those lines. (We will drop 8(p* > 0) as incoming lines
always have positive p* momentum.)

According to the above-stated rules, the light cone wave function depicted in Fig. 1.3 is

Wl ) = B (L,t)B(T)

pm—ki —k;
1 A
=—— 2 . , (1.80)
prELAm K tmt kg, +m?
p* kf ks

where we have omitted the regulator ie for simplicity (in fact we will not need it below).
Before we simplify this expression, let us note that, as can be seen from Eq. (1.70), the
probability of finding such a configuration in a general “dressed” state |\¥) of the incoming
particle is

fdﬂz | W, k)|, (1.81)

where, as follows from Eq. (1.67), the phase-space integral for two identical particles is
given by

2pt 2x)? / dk} d?ky . dky d®ky 1
A, = § +._ . k+ _ k+
/ 2 2! 2kF @m)? 2kF @) "=~

x 52(§J_ _EI.L —EZJ.)

+ 2 oy
g3 ‘”‘Ld ki p +. (1.82)
21 ) 2k7 2n)} pt -k

We see that kf = p* — ki and Fai = i — Ki1. Using these to replace k; and 3
Eq. (1.80) and doing some algebra yields
s —zy O(2,)0((-2)

Yk, p=—k)=——= = : (1.83)
(ki —z1pL)? +m2[1—z1(1 —z1)]
where
ki
1= > (1.84)

is the longitudinal fraction of the original particle’s momentum p carried by the particle k;,
which will be identified as a Feynman-x variable in the next chapter. Equation (1.83) gives
us the momentum-space two-particle light cone wave function at the lowest order in A.
Substituting the wave function (1.83) into Eq. (1.81) and using Eq. (1.82) for the phase-
space integration measure, one obtains the probability for one particle to fluctuate into two

17:19
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1.5 Asymptotic freedom 19
particles:
; f s e » (1.85)
2! 2(2m)? ’

5 N 7 o
[(ku — Z{PL)? +m? [1 —zi(l -21)]]

Thus the probability of the configuration in Fig. 1.3 is proportional to the coupling constant
squared. As the coupling in ¢>-theory has the dimension of the mass, the factor m? in the
denominator of Eq. (1.85) makes the expression dimensionless. We note in passing that
the effective dimensionless coupling constant for the perturbative expansion of ¢*-theory
is A/m.

It is also instructive to Fourier-transform the wave function (1.83) into transverse coor-
dinate space. The transverse coordinates of the lines are shown in Fig. 1.3. The Fourier
transform is accomplished by integrating over the independent transverse momenta, assign-
ing a factor e**+%+ for each line, with k the net outgoing momentum carried by the line. For
the two-particle wave function (1.83) we have

W(X1 1, X210, %01, 21)

2 2 = 5
= f d—k(lzt,jttpl eikll'ili+fk2L'£2L_iﬁL';ﬂi q,(kh gl kl)

2 2 4
— f M el Ghi—%1)~ipL(For~%a1) W(ky, p — k1). (1.86)
@r)y*

Substituting Eq. (1.83) into Eq. (1.86) and integrating yields (see Eq. (A.11) in appendix
section A.2)

5w s A ” =
WXL, Xa1, %01, 21) = _Ezl(l —z1) Ko(lxlzlmv I—zi(1— 21)) 9(21) &(f %‘)

x 8% (¥or — z1¥1L — (1 — 21)%21), (1.87)

where ¥;; = X; | — ¥; 1. Equation (1.87) gives us the 1 — 2 splitting wave function shown
in Fig. 1.3 in coordinate space. Even though this wave function has been obtained for
the scalar ¢*-theory case it has a feature valid for theories with higher spin: it contains
a delta function insuring that Xo, = z1X11 + (1 — z1)X2.1 . This means that the transverse
coordinate positions of the two produced particles are indeed related to each other (Kope-
liovich, Tarasov, and Schafer 1999): both the original particle and the two new particles
lie on one straight line in transverse coordinate space, and xgp : xo1 = z1 : (I — z1) where
xij = |%;;|- The transverse coordinate space structure of the wave function (1.87) is illus-
trated in Fig. 1.4. The same constraint on the transverse plane locations of the produced
particles applies to the splittings of particles in quantum electrodynamics (QED) as in QCD.

1.5 Asymptotic freedom

A remarkable property of QCD, known as asymptotic freedom, is the fact that the running
QCD coupling tends to be small at short distances (corresponding to large values of the

d* (4 ¥ :
.._-—:‘E—f-———- € * Z 2% ko(”'\)‘.x.)
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