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80 Energy evolution and leading logarithm-1/x approximation in QCD

The square of the amplitude in Eq. (3.17) leads to the following high energy cross section:

0 _ 2Cf52CF dzlL

o =L =, (3.18)
q9—+qq N. (li)z

We see that, in agreement with the rule in Eq. (3.6), the cross section due to two /-channel
gluon exchanges is independent of energy at high energy. This feature of QCD was first
noticed by Low (1975) and Nussinov (1976). The two t-channel gluon exchange cross
section is sometimes called the Low-Nussinov pomeron, since this result was the first
successful attempt to describe hadronic cross sections in the framework of perturbative
QCD: in pre-QCD language hadronic cross sections were described as being due to the
t-channel exchange of a hypothetical particle with the quantum numbers of the vacuum
called the pomeron, named after I. Y. Pomeranchuk (1958). The contribution of the pomeron
to the scattering amplitude is

M ~ 0, (3.19)

where s and ¢ are Mandelstam variables and «(#) is the “angular momentum” of the pomeron,
usually referred to as the pomeron trajectory. The contribution of a single pomeron exchange
to the total cross section is

Opor ~ s40O-1, (3.20)

Here «(0) is the value of the pomeron trajectory at + = 0, which is the point where it
intercepts the angular momentum axis in the (¢, cr)-plane. Therefore «(0) is referred to as
the pomeron intercept and is sometimes denoted by ap. As one can see from Eq. (3.20),
the pomeron intercept always comes in the combination «(0) — 1: according to a com-
mon notation, we will often refer to @(0) — 1 = ap — 1 as itself the pomeron intercept.
Frequently one uses a linear expansion of the pomeron trajectory near ¢ = 0:

a(t) ~ a(0) +o't. (3.21)

The parameter &' is called the slope of the pomeron trajectory. A tantalizing feature of
strong interactions is that the linear approximation (3.21) actually describes the pomeron
trajectory a(t) rather well at all values of ¢. This observation gave rise to the development
of string theory, which started out as a candidate theory for strong interactions (see e.g.
Green, Schwarz, and Witten (1987)).

From Eq. (3.18) it is clear that the Low—Nussinov pomeron has intercept «(0) — 1 = 0.
In high energy proton-proton (pp) (and proton—antiproton, pp) collisions, analysis of
the experimental data showed that the total cross section grows approximately as follows
(Donnachie and Landshoff 1992):

o bl ~ 008, (3.22)

That is, using pre-QCD language, the pomeron intercept op — 1 = 0.08. Since soft non-
perturbative QCD physics is probably responsible for much of the total pp cross section
observed at many modern-day accelerators, the pomeron with intercept ap — 1 = 0.08 is
usually called the “soft pomeron”.
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3.2 Two-gluon exchange: the Low-Nussinov pomeron 81

Fig. 3.4, A diagram contributing to the onium-onium high energy scattering cross section
at leading order. The arrows next to the gluon lines indicate the direction of momentum
flow and the vertical straight line denotes the final state cut.

We see that the prediction of Low and Nussinov that @p — 1 = 0, while it does not give
the correct pomeron intercept, is not far from it, in the sense of giving a cross section that
at least does not decrease with energy. (Of course there is no a priori reason to expect a
perturbative calculation to describe the total pp scattering cross section, but it is good to
have at least qualitative agreement between the two.) As we will see below, higher-order
perturbative corrections to the cross section (3.18) generate a positive order-e; contribution
to the @p — 1 = 0 result. Note that the fact that experimental measurement of the total pp
scattering cross section (3.22) gives a result that does not fall off with energy but instead
rises slowly with s, when combined with the above rule for counting powers of s (see (3.6)),
demonstrates that there must exist a spin-1 particle responsible for strong interactions — the
gluon. This is exactly the argument for the existence of gluons mentioned in Sec. 1.1.

The I, -integral in Eq. (3.18) has an infrared (IR) divergence. This is natural since
we are calculating a cross section for the scattering of free color charges (quarks). To
make the cross section IR-finite we need to remember that the scattering quarks are part
of the onium wave functions. Suppose that the g7 pairs have separations X;; and X, in
transverse coordinate space, though the impact parameter between the two onia has been
integrated out. By summing diagrams with all possible gluon connections to quarks and
antiquarks, one of which is shown in Fig. 3.4, one can then show that the total onium-onium
scattering cross section is

g Jrlumponkim e fdleldz)@ldeHiZZ W11, 20)? 1o, 22) P60 mHomm (3.23)
0
with
2 2
on_onfum+onium — 20.’5 CF d IJ-
tot N. (Ii)z

(2 a e—fl—i'ill _ e;L.gu) (2 _ e—if_]_-jfu - er'fpin.)) (3.24)

at the lowest order in cr;. Here W(X, z) is the onium light cone wave function with quark
light cone momentum fraction z. The exact form of the wave function is not important



(21"

{ ™~ -
S s ? 7% 7 e,
Vi Z
{ ~
é—;l‘,
e t t {-
AN by
L ¢ w4 =
L.'z L_LK_S-————
] ) /
_,_EZ-—-"Q N~

—e-\f’%zsl, P -,{gaj: y faf_é_u__/_ /ekf’,{&,_ ._L/.l’.)_c‘ll
L = It ey e

“-P'zf.-)fz ":ﬁ'il?ﬁc_(l’ _ j“{ 454, A [2 ecf X, e..uf LJ
e —é - (.2__)1.—(%,_)2_ i

Camppceft Lok

[ 5 o cl-x, _C—Cf)—‘i] = lee s b s. (3_2'~().

L_/“—_'_"—‘v“'____—"-———-«—'

Em/oquf Locefrer



S P - 3T
el - i e

- B .
: : . . L e 3
= ' =} I w . i o -
= ] I y — -— ! .
! - L4 P tel .
o H f - . .
i N l_.- g
. . ~ o . ) .
1 -~ - e 2 z . |
] T § : | ) : -
- i q -. . v r “
— - h . ¥ . Ly )
‘ . . e [ y i 5 ;
| . v = - LR -
- _ : 4 l -
1 P -t ' ) ,
- . { . : . .
. 3 - - N J{ - l
— ! - ) - . ; . o " “ 1 i
H e oL s B :
i ; . . ._ . i :
v i = i N o o v ‘
. . . . . v l
. i U ) ) ,.. . I . i
i s - . - ‘ _
I} 1 . i l - | .
! Y A . o .
s K . _
“ioy 4\.. 1' o ,.
1 : - a i} : : P
1 W e N : . 1
- ! ..v
- B l” : :
..-l. y - ‘e - = »
H | - 7 - B K |
| ) ) L B .
1 N
.
" o 27y -~ .~ i3
i ~r . - B - N i o .
q : . o - i
&) . , . R A
. 3 + Ll F | b
. J . y | -
l ! . B B tx N )
(o N - . .
" LA = = - h | 4 - .f
- g " r
. - : 3 ;
. 1} - p,s‘.') 0 -
i ] » i =iy & of \.
4 - Lo o - i .
: R 1 . St j A . . #
B " 4 2t . )
" : ! - . ..n J_ -~ r
) . . . y" . N ;! B
N i & A = ’ :
u 5 Ay Ty
4-‘.. “a , & i
v, B — - - n.
%3 i N - .. .
, . . o 4 1F
J R - . .
: et ‘ - T = p
1 i - . . i .
: _ .. . _
. 3 H ) ln ;
iy wy F : N u. ) » \
s B - ) T e : ) r 4 _
} N4 . o . , ;
t . 5 i : . "
] . N ¥ ‘ &
. ! ! . , B .
‘.‘ y ‘ v F .
. . . \ :
i T ) . e, = A g g : .
T ik e e N it . -
o Y . . ) _ .
N i o - ;
s N ] S .
-y o - . | : 4
! M - - » =
. .‘v .
3 ] L -
- i . L ' . i .
- ar i : , | _-I .
Ea ¢ . . i
“ : .
b al » - . - i e l
-y L ) . : .
. y
: w 3 ! . . _
} ! L i : - . : - L
i » B . ; |
! " B i '
- N ~. = \H.
B N
'



P1: SFK Trim; 247mm x 174mm Top: 13.707mm Gutter; 18.98mm

CUUKI1947-03 CUUK1947/Kovchegov 978 0521 11257 4 March 23,2012 20:23 { 2 ?
82 Energy evolution and leading logarithm-1/x approximation in QCD
g T11
.z Tg gi z
G (I, 1Y)
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Fig. 3.5. A general representation of the onium—onium scattering cross section at high
energy. The rectangle denotes all leading-In s corrections to the two-gluon exchange cross
section from Fig. 3.5.

for the moment. The summation and averaging over all appropriate quantum numbers is
implicit in the |¥|? factors in Eq. (3.23).

The [, -integral in Eq. (3.24) is now finite; if we average over the directions of X, and
X»1 then it can be easily carried out, giving

) , droC x
(6_!(;:1mm+umum) - s in In i e 1) , (325)
N{.‘ <
where x..(«) = max (min){|X; .|, |X,.|} and (- - -} denotes angular averaging.
We will now look for corrections to this lowest-order result.

3.3 The Balitsky—Fadin-Kuraev-Lipatov evolution equation

As discussed in Sec. 3.1, in high energy scattering (or at small Bjorken x) one would like to
sum the longitudinal logarithms, i.e., the powers of o In s (or & In 1/x). We will denote the
sum of all such corrections to the Born-level onium—onium scattering cross section found
above in Sec. 3.2 by the shaded rectangle in Fig. 3.5.

Generalizing the cross section in Eq. (3.24) we write

2 27 4217
A onium~+onium _ 20"'3 Cr d [.Ld lJ_
Urﬂf " 312

NC lJ_IJ_

(2 _ e—;fj_-fu_ _ eiﬁ-zu)

x (2 —eihF e”'i'fu) & (EL, 7l Y) , (3.26)

where [ and [’ are the momenta of the gluon lines on each side of the shaded rectangle,
as illustrated in Fig. 3.5. We also define the rapidity variable ¥ = In(s|X; 1 ||X2 1 ]); it is
important that ¥ ~ In s, though the exact cutoff under the logarithm of the energy is not
important in the leading-logarithmic approximation that we would like to apply here. The
shaded rectangle in Fig. 3.5 brings in a factor G(I1, 1/, ¥). The lowest-order expression
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316 Dispersion relations, analyticity, and unitarity of the scattering amplitude

For example, the tree-level diagrams in Fig. B.1 yield
Im; A(.f’, ¢, Fig. Bla) =A% (m2 - s’) ; (B.16a)
Im, A(u', t;Fig. B1b) = A8 (m* = u'). (B.16b)

Substituting each of these imaginary parts into the right-hand side of Eq. (B.15) yields the
appropriate amplitude after straightforward integration over the delta functions.

Note that a dispersion relation in the form Eq. (B.15) cannot be used in QCD since we know
that QCD amplitudes grow in proportion to the energy s at large s (see e.g. Eq. (3.17)), making
the integrals in Eq. (B.15) divergent. Therefore, we have to alter Eq. (B.15) by subtracting, for
example, the amplitude A(s = 0, 1) obtained by putting s = 0 in Eq. (B.15). Doing this, we
obtain the subtracted dispersion relation

1 I f+w Img A(s', 1)
A, D)=A=0,1)+—1s ds’'———=
T S §'(s" —8)

+ [ —u(s = 0)] du W —uls = Ol — o)

(B.17)

Wmin

oo Im, A(.u’, I) }

Finally, subtracting s3; A(s = 0, ¢) from Eq. (B.17) (with A(s, t) again given by Eq. (B.15)) we
obtain the double-subtracted dispersion relation
,Im; A (.s’ , I)

+oo
Als,D=A(s =0,0) +sd,A(s = 0, :)+l s2/ ds
us Swin s2(s' —5)

—o : +00d . I]Tlu A(u’,t) (B.18)
+ (1 —u(s = 0)] i W —us =0PwW —w) | '

Umin

This is exactly the dispersion relation used in Eq. (3.43). Note that in perturbative QCD
As=0,n=0.

B.2 Unitarity and the Froissart-Martin bound

The unitarity constraint (B.3) can be written in terms of scattering amplitudes as (see e.g. Peskin
and Schroeder (1995))

Mk, ka = ki, ka) — M*(ky, ks — ki, ko)

) 00 n dqu‘ . i n
- Zz[,l:! (2m)2E,, Mk, ko = g, .o, g)l"Q2m)'8" | ki ko — Zq; , (B.19)

=

where M(ky, k> — ¢q1,...,qy) is the 2 — n scattering amplitude for the scattering of two
particles with momenta k|, k» into n particles with momenta gy, .. ., gn, and M(k1, kr — ki, ka)
is the forward scattering amplitude; E,, is the energy of a particle with momentum ¢;.

Let us consider the case of high energy scattering, where k] and k; are very large and
so are g;7 =~ ki and g5 ~ k. Separating the elastic 2 — 2 contribution from the inelastic
contributions (2 — 3,2 — 4, etc.) on the right-hand side of Eq. (B.19), and integrating over the
delta-function in that contribution, yields

d2q_|_

ZImA(kl,kz——)k],kz)= W

|Alk, ks = qu, q2)|* + inelastic terms,  (B.20)



Pl: SFK Trim: 247mm x 174mm Top: 13.707mm Gutter: 18.98mm
CUUKI1947-APP-B CUUK1947/Kovchegov 978 0 521 11257 4 March 23, 2012 19:41

B.2 Unitarity and the Froissart—Martin bound 317

where ¢ is the momentum transfer four-vector, defined by
qg=q1—k =k —qa, (B.21)
and we also define a new rescaled scattering amplitude

Mk, k2 = q1, 92) & M(ky, ka — q1,4q2)
% IR, OB, 2,08, 2k ks '

Ak, by — g1, 42) = (B.22)

Since both the incoming and outgoing particles are on mass shell the momentum transfer g has
only two free components, which we choose to be transverse and over which we integrated in
Eg. (B.20).

The optical theorem then states that the total scattering cross section is given by (again, see
e.g. Peskin and Schroeder (1995))

O = 21Im Alky, ko — ky, ka) (B.23)
so that Eq. (B.20) simply implies that
Otot = Ol + Tinels {824)

where o is the elastic 2 — 2 cross section and gj,, is the total inelastic cross section.

As we have seen above, in general the elastic amplitude A(k;, k2 — g1, g2) can be written
as a function of the Mandelstam variables s and ¢. However, for our purposes it is convenient to
go to impact parameter (b, ) space, using

Atk ko — q1,q2) = f dPbe P A(s, b)), (B.25)
which, when applied in Eq. (B.20) yields

2Im A(s, by) = |A(s, by )| + inelastic terms. (B.26)

In arriving at Eq. (B.26) we have used the fact that the forward amplitude corresponds to the
case of zero momentum transfer, t+ = 0, or, equivalently, g, = 0, such that

Alky, by — ki, kp) = f d*bA(s, b.). (B.27)
Note that the total cross section in impact parameter space is
Oror =2 f d*b Im A(s, by). (B.28)
We also see immediately from Eq. (B.26) that the elastic cross section is given by
Ol = ] d*b |AGs, b))% (B.29)
Relating the inelastic terms in Eq. (B.26) to the corresponding cross section yields
2ImA(s, by) = |AGs, bl + d—;’%’. (B.30)
The simple nonnegativity condition
% >0 (B.31)
used in Eq. (B.30) yields
Im A(s,by) < 2. (B.32)
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