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316 Dispersion relations, analyticity, and unitarity of the scattering amplitude

For example, the tree-level diagrams in Fig. B.1 yield
Im; A(s', t;Fig. Bla) = %8 (m* — '), (B.16a)
Im, A(i, t;Fig. B1b) = w2*8 (m* —u') . (B.16b)

Substituting each of these imaginary parts into the right-hand side of Eq. (B.15) yields the
appropriate amplitude after straightforward integration over the delta functions.

Note that a dispersion relation in the form Eq. (B.15) cannot be used in QCD since we know
that QCD amplitudes grow in proportion to the energy s at large s (see e.g. Eq. (3.17)), making
the integrals in Eq. (B.15) divergent. Therefore, we have to alter Eq. (B.15) by subtracting, for
example, the amplitude A(s = 0, t) obtained by putting s = 0 in Eq. (B.15). Doing this, we
obtain the subtracted dispersion relation

1 +oo  Img A(s, 1)
A{s,t):A(s:O,r)+; Sf ds’ — ey,

- s'(s" —5)
> +ood , ImuA(u’,f) B.17
+[u—u(s =0)] e u [ — uls = Ol —u) |’ it

Finally, subtracting s3; A(s = 0, #) from Eq. (B.17) (with A(s, ¢) again given by Eq. (B.15)) we
obtain the double-subtracted dispersion relation

52(s" — 5)

mitt

L], ft™ ,Im_vA(s’,t)
A(s,r)=A(s=0,t)+s3;A(s=0,I)+; sf ds' ————=

v —orp [ g ALY (B.18)
+[u — u(s = 0)] u T G = O —m | .

Himin

This is exactly the dispersion relation used in Eq. (3.43). Note that in perturbative QCD
A(s =0,1) = 0.

B.2 Unitarity and the Froissart-Martin bound

The unitarity constraint (B.3) can be written in terms of scattering amplitudes as (see e.g. Peskin
and Schroeder (1995))

M(ky, ky — ky, ka) — M*(ky, ky — ki, k)

[ee] n n
. P
=i> [Tt Mk g PR kb= D0 | B19)

j=1

where M(ki,k, = q1,...,qs) is the 2 — n scattering amplitude for the scattering of two
particles with momenta ky, k> into n particles with momenta gy, ..., gn, and M(ky, kp — ki, k)
is the forward scattering amplitude; E,, is the energy of a particle with momentum g;.

Let us consider the case of high energy scattering, where ki and k; are very large and
so are g;" ~ ki and g5 ~ kj . Separating the elastic 2 — 2 contribution from the inelastic
contributions (2 — 3,2 — 4, etc.) on the right-hand side of Eq. (B.19), and integrating over the
delta-function in that contribution, yields

dzﬂh.

21Im A(ky, k k)= | —=
m Ak, k2 — ki, k2) 2n

|Ak;, ks — g1, q2)|* + inelastic terms,  (B.20)
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B.2 Unitarity and the Froissart-Martin bound 317

where ¢ is the momentum transfer four-vector, defined by
g=q1—k =k —q, (B.21)

and we also define a new rescaled scattering amplitude

Mk, ko = q1.q2) _ Mk, k2 — g1, q2)

Alky, ko — q1, = ~ =
kike = q1.q) = 7 2Ey2Ey,2E, 2E,, 2%

(B.22)

Since both the incoming and outgoing particles are on mass shell the momentum transfer g has
only two free components, which we choose to be transverse and over which we integrated in
Eg. (B.20).

The optical theorem then states that the total scattering cross section is given by (again, see
e.g. Peskin and Schroeder (1995))

O = 21Im Alky, by — Ky, k2) (B.23)
so that Eq. (B.20) simply implies that
Otot = O¢l + Oinel,s (324)

where o, is the elastic 2 — 2 cross section and oj,, is the total inelastic cross section.

As we have seen above, in general the elastic amplitude A(k1, k2 — g1, g2) can be written
as a function of the Mandelstam variables s and ¢. However, for our purposes it is convenient to
go to impact parameter (b, ) space, using

Ak > aiy) = [ e aG b, (8.25)
which, when applied in Eq. (B.20) yields

2Im A(s, BJ_) = |A(s, EJ_)IZ + inelastic terms. (B.26)

In arriving at Eq. (B.26) we have used the fact that the forward amplitude corresponds to the
case of zero momentum transfer, t = 0, or, equivalently, g, = 0, such that

Alky, ky = ki, k) =fd1bA(s, by). (B.27)
Note that the total cross section in impact parameter space is
Oir =2 f d*bIm A(s, by). (B.28)
We also see immediately from Eq. (B.26) that the elastic cross section is given by
O = f d*b |AGs, b)), (B.29)
Relating the inelastic terms in Eq. (B.26) to the corresponding cross section yields
2mA(s, b1) = 1AGs, bl + % (B.30)
The simple nonnegativity condition
d;’;‘ >0 (B.31)
used in Eq. (B.30) yields
ImA(s, b1) < 2. (B.32)

25 A= @af+ Tun)t ‘Qfli;:‘
d

ZTMA'“ @A\A')?—“@KA')L >/C') -

i 5
’ I—G—I%A)L >,Q1QA)1>/O |
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318 Dispersion relations, analyticity, and unitarity of the scattering amplitude

This is an important condition, which follows from unitarity,. When used in Eq. (B.28) it yields
an upper bound for the total cross section:

O = 2fd2b ImA(s, b,) < 4fd?b =47 R?, (B.33)

where R is the radius of the region in &, -space where the interactions are sufficiently strong
(the radius of the “black disk™).
Parametrizing the forward scattering amplitude by (as follows from § = I +iT)

Ate. b)) = i[l _S(s, EL)], (B.34)

with S(s, b 1) the forward matrix element of the S-matrix, we see that the constraint (B.32) and
the nonnegativity of the total cross section oy, together lead to |[ReS(s, b, )] < 1. é————'
Using Eq. (B.34) in Egs. (B.28), (B.29), and (B.30) yields

] f &2b [1 — ReS(s, BL)], (B.35a)
e f @b |1 - 5,5, (B.35b)
i f 4% [1 =%, EL)F]. (B.35¢)

In high energy scattering the bound on the total cross section is even stronger than Eq. (B.33).
At very high energies inelastic processes dominate, so that 0y, > 0,, which leads to

ReS(s, b1) > 0. (B.36)
With the help of Eq. (B.34) we obtain

ImA(s, b1) < 1, (B.37)
which is a stronger constraint than (B.32). Equation (B.37) leads to

O =2 f d*b ImA(s, by) < 2 R?. (B.38)

This is the bound used in the text in Eq. (3.112). (For a derivation of this result in nonrelativistic
quantum mechanics see Landau and Lifshitz (1958), vol. 3, Chapter 131.) Using the estimate
(3.115) for the typical interaction range, i.e.,

R=0b"~

Ins, (B.39)
Ml

in Eq. (B.38) yields the Froissart-Martin bound (3.116)

A2
T 5 o2 In?s (B.40)
by

(Froissart 1961, Martin 1969, Lukaszuk and Martin 1967).

©3
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3.3 The BFKL evolution equation 107

where MY is the single-gluon exchange amplitude given in Eq. (3.17). Note that Eq. (3.111)
is in effect the same as Eq. (3.53), which we employed in deriving the BFKL evolution
equation.

Equation (3.107) represents the so-called “bootstrap” idea, which states that the evolution
of the reggeized gluon is given by the evolution of the color-octet t-channel state of two
gluons. It is referred to as the bootstrap equation. It has been conjectured that the bootstrap
equation (3.107) with its rather simple solution (3.108) holds at any order in ;. (Indeed
both K ff} and wg receive corrections at higher orders in «: the conjecture states that these
corrections leave Egs. (3.107) and (3.108) in exactly the same form as shown above, only
modifying K ‘(\f‘),,n and wg in them.) So far the conjecture has been verified at the two lowest
orders in «: the leading order-; result is presented here, and the validity of the bootstrap
equation at order o has been shown by Fadin, Kotsky, and Fiore (1995, 1996).

We see that the bootstrap equation (3.107) with its solution leading to Eq. (3.111)
implies that the nonforward BFKL equation for the color-octet state of two gluons should
lead to areggeized gluon with the Regge trajectory ag(g1) = 1 + wg (g1 ). This observation
completes the proof that in high energy scattering a #-channel gluon should be treated as a
reggeized gluon whose spin depends on its transverse momentum.

3.3.6 Problems of BFKL evolution: unitarity and diffusion

The BFKL equation represents an important step towards understanding the high energy
asymptotics of QCD. Nonetheless, as for every major scientific advance, the BFKL
equation raises some important questions, which we will describe in this section. In
particular we will show that as the collision energy increases (i) the leading-logarithmic
BFKL equation violates unitarity and (ii) the transverse momenta of the gluons inside the
BFKL ladder tend to drift to both the UV and IR, the latter drift eventually leading to a
violation of the assumption of the perturbative nature of the interactions.

The Froissart-Martin bound

We begin our presentation of the unitarity bound with a discussion of the black disk limit.
Imagine the high energy scattering of a point particle on a “black disk” of radius R. Using
the language of nonrelativistic quantum mechanics one can think of the black disk as an
infinite potential well occupying a spherical region of space. It can then be shown that the
total cross section for the scattering of the point particle from the disk is limited from above
by

Oror < 2R (3.112)

(see Landau and Lifshitz (1958), vol. 3, Chapter 131, and the discussion in Appendix B).
The total cross section can be as large as twice the geometric cross sectional area of the
disk: this doubling is due to Babinet’s principle in optics, which states that the diffractive
patterns of complementary screens are identical (see Jackson (1999) or Landau and Lifshitz
(1958), vol. 2, Chapter 61). In optics Babinet’s principle implies that the amount of light

20:23
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108 Energy evolution and leading logarithm-1/x approximation in QCD

diffracted by a screen is equal to the amount of light it absorbs. For very high energy
scattering it implies that, when the scattering occurs from a black disk, the elastic (o)
and inelastic (ojn.;) cross sections are equal. Since the inelastic cross section is equal to
the cross sectional area of the disk wR?2, we have o,; = 0j,s = TR?, so that the total cross
section is oy = Oiper + 0o = 27R2.

Our derivation of the Froissart—Martin bound will incorporate the argument put forward
by Heisenberg (1952, 1939) with the proof devised by Froissart (1961) and Martin (1969).
Consider hadron-hadron scattering at impact parameter b. Let us assume that b is large
enough that the black-disk limit described above has not been reached. Inspired by the
above examples of the BFKL equation and the Low—Nussinov pomeron, we may assume
that the interaction between the hadrons is accomplished though an exchange of one or
several patticles, so that the cross section grows as some positive power A of the energy:
o ~ s®. At the same time the strength of the interaction should fall off as we increase b:
the steepest physically possible fall off is the exponential e ~2"~®, where m, is the mass of
the lightest QCD bound state, the pion.” (As the pion has negative parity, the exchange of
a single pion cannot contribute to the total cross section, hence we need to exchange two
pions, one in the amplitude and the other in the complex-conjugate amplitude.) We thus
have a probability p of interaction that scales with energy and impact parameter as follows:

PR ER~". (3.113)

The interaction gets strong when the probability is of order 1. In fact, for p of order 1
the black-disk-limit behavior should begin to set in. Thus the upper limit on the radius
of the black disk can be determined by requiring that p = 1, which, as we can see from
Eq. (3.113), occurs at impact parameter b* defined by

she 2l =1, (3.114)

which gives

R =b%e

Ins. 11
T ns (3.115)

Since b* is the upper bound on the black-disk radius, the total cross section, dominated by
the black-disk contribution, is then limited by 2t R? = 27 b*?, yielding eventually

2

2
Otor = G In”s. (3.116)

‘We conclude that the total cross section in QCD cannot grow faster than the logarithm of
energy squared. Equation (3.116) is known at the Froissart—-Martin bound and was first
rigorously proven by Froissart (1961) and Martin (1969) (see also Lukaszuk and Martin
(1967)).

7 As discussed by Nussinov (2008), it is possible that for realistic estimates the pion mass in this exponential should in
fact be replaced by the mass of the lightest glueball (a QCD bound state having no valence quarks) since, as we have
seen above, gluons dominate in high energy interactions.
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3.3 The BFKL evolution equation 109

As we saw above (see e.g. Eq. (3.87)), the BFKL equation in the diffusion approximation
implies that the total cross section grows as a power of the energy,

o L (3.117)

which clearly violates the Froissart-Martin bound (3.116). Things do not get much better
in the double logarithmic limit of the BFKL equation, which, according to Eq. (3.91), gives

G DIABEEL o oxny { 2,/@; InsIn(? /zﬁ)] ; (3.118)

where [, and I’} are the momentum scales at the two ends of the BFKL ladder, with
I1 > I'| inthe DLA. The energy growth of the cross section in Eq. (3.118) is exponential
in +/Ins, and, as such, is much faster than any power of Ins: therefore, DLA BFKL also
violates the Froissart-Martin bound. Note that since DLA BFKL is equivalent to DLA
DGLAP, the DGLAP evolution also violates unitarity, making this an inherent problem
of standard perturbative QCD: no matter how high the larger perturbative scale [, is, at
sufficiently high energy s, unitarity will still be violated, as follows from Eq. (3.118).
‘We thus conclude that unitarity violation happens at perturbatively large momentum scales,
where perturbative QCD is still applicable. Thus, it is natural to expect that the resolution of
this problem should also happen through a QCD perturbative mechanism. We will discuss
shortly how a nonlinear evolution equation was proposed by Gribov, Levin, and Ryskin
(GLR) to remedy this problem of the BFKL evolution (Gribov, Levin, and Ryskin 1983).

One may indeed argue that in deriving the Froissart-Martin bound above we have used
the fact that QCD is a confining theory with bound states such as, which one certainly does
not see in the perturbative calculations leading to the BFKL equation. Therefore, since the
QCD mass gap m, is not present in perturbation theory (which has a zero mass gap), one
should not expect BFKL evolution to satisfy the Froissart—-Martin bound. This argument is
indeed correct; however, as we will show below, the BFKL equation can also be written in
impact parameter space. As we argue in Appendix B, in impact parameter space the high
energy cross sections are given by

o =2 [ @b [1 ~Rests, 5], (3.11%)
=5 2

oy =fd2b |1 = 55, bi)’ , (3.119b)

oina = [ a1 =156 5.0P] G.1190)

with S(s, b, ) the forward matrix element of the scattering S-matrix. Since at high energy
§ — 0 we sce that doy,,/d®b, < 2, which is equivalent to the black-disk limit (3.112). The
BFKL-dominated total cross section at a fixed impact parameter b grows as a power of
the energy s, eventually violating the bound de;,,/d*b, < 2 at very high energy. Thus the
BFKL equation violates unitarity not only through the fast growth of the black-disk radius
but also by the fact that the cross section at each impact parameter becomes larger than the
black-disk bound doy, /d*b, < 2. While the former problem cannot be remedied in QCD
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4
Dipole approach to high parton density QCD

We are now ready to present more recent developments in high energy QCD. We will
consider DIS in the rest frame of a proton or a nucleus. In this frame a virtual photon
fluctuates into a quark—antiquark pair, which, in turn, hits the proton or nuclear target.
We argue that quark—antiquark dipoles are convenient degrees of freedom for high energy
scattering in QCD, We will present a simple model of DIS on a nucleus, due to Glauber,
Gribov, and Mueller, in which the gg dipole rescatters multiple times on a nuclear target
consisting of independent nucleons. We then include quantum corrections to this multiple-
rescattering picture: we argue that the initial g4 dipole may develop a cascade of gluons
before hitting the target nucleus. In the large- N, limit the cascade is described by Mueller’s
dipole model. When applied to DIS the dipole cascade resummation leads to the Balitsky—
Kovchegov (BK) nonlinear evolution equation. We describe approximate analytical and
exact numerical solutions of the BK equation and show that it resolves both problems of
BFKL evolution: BK evolution is unitary and has no diffusion into the IR. It generates a
saturation scale Q; that grows with energy, justifying the use of perturbative QCD. We
conclude the chapter by presenting the Bartels-Kwiecinski—Praszalowicz (BKP) evolution
equation for multiple reggeon exchanges, along with the evolution equation for (C-odd)
odderon exchange.

4.1 Dipole picture of DIS
et

Let us begin by considering DIS in the rest frame of the proton or nucleus. While many
conclusions in this chapter may also apply to proton DIS, in the strict sense our results
would be justified only for DIS on a large nucleus since such a nucleus has a large atomic
number parameter A allowing us to make the approximations we will need below. We will
therefore only talk about DIS on a nuclear target.

Without any loss of generality we can choose a coordinate axis such that the momentum
of the virtual photon is given by

2
4 = (q+, ~qQ—, ol) @.1)

+

in the (4, —, L) light cone notation. The light cone momentum of the virtual photon g.. is
very large (since the (high) photon-nucleus center-of-mass energy is § = mg™), so that its

123
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124 Dipole approach to high parton density QCD

Fig. 4.1. Forward scattering amplitude for DIS on a proton or nuclear target in the rest
frame of the target: the virtual photon splits into a gg pair which then interacts with the
target. The interaction is depicted by the vertical oval. For simplicity the electron that emits
the virtual photon is not shown.

coherence length in the longitudinal plus direction (see Sec. 2.3 above),

xt . = E 4.2)
lg=| @

is much larger than the size of the nucleus. If the virtual photon fluctuates into a quark—
antiquark pair, the typical lifetime of such a ¢4 fluctuation would also be much longer
than the nuclear diameter. Therefore, a DIS process in the nuclear rest frame occurs when
a virtual photon fluctuates into a gg pair (which we will also refer to as a color dipole or
simply a dipole); the g4 pair proceeds to interact with the target (Gribov 1970, Bjorken
and Kogut 1973, Frankfurt and Strikman 1988). The forward scattering amplitude for the
process is pictured in Fig. 4.1, with the gg dipole-nucleus interaction represented by the
vertical oval. This is the dipole picture of DIS (Kopeliovich, Lapidus, and Zamolodchikov
1981, Bertsch et al. 1981, Mueller 1990, Nikolaev and Zakharov 1991). Note that while
the topology of the DIS diagram in Fig. 4.1 is the same as for DIS in the IMF, shown in
Fig. 2.2, the time-ordering of the interactions is different in the two figures.

The interaction of a virtual photon with a nucleus can be viewed as a two-stage process:
the virtual photon decays into a colorless dipole consisting of a quark and an antiquark
and the colorless dipole travels through the nucleus. However, this separation between the
time scale for the photon to decay into the gg pair and the interaction time is not the
only advantage of the dipole picture. Another important simplification comes from the fact
that in high energy scattering a colorless dipole, with transverse size x , does not change
its size during the interaction and therefore the S-matrix of the interaction is diagonal
with respect to the transverse dipole size (Zamolodchikov, Kopeliovich, and Lapidus 1981,
Levin and Ryskin 1987, Mueller 1990, Brodsky et al. 1994). Indeed, while the colorless
dipole is traversing the target, the distance x; between the quark and antiquark can only

20:28
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4.1 Dipole picture of DIS 125

vary by an amount
ky
Ax] = R— 4.3
X1 = 4.3)

where E ~ ¢° denotes the energy of the dipole in the laboratory frame (the target rest
frame), R is the longitudinal size of the target, and & is the relative transverse momentum
of the g pair acquired through interaction with the target. In Eq. (4.3) k, /E is the relative
transverse velocity of the quark with respect to the antiquark. From Eq. (4.3) we can see
already that the change in the dipole size is suppressed by a power of the energy E and is
therefore small. To quantify this better let us first remember the definition of Bjorken x,
given in (2.2):

=
0> _ o & Wt =
x = = ~ \ 4.4)
2P-q mgt 2mE bx i T ?. E
Using Eq. (4.4) in Eq. (4.3) along with the uncertainty principle Q ~ k; ~ 1/x, yields E— ]2
A R
AL nomaR B 1, @.5) gt - ¥
X1 coh -

where l.,n = 2/(mx) is the coherence length of the dipole fluctuation (see Eq. (2.56)). o (l E
We thus see that at smalwhen the dipole interacts with the whole nucleus

coherently in the longitudinatdiTection, the transverse recoil of the quark and the antiquark

are negligible compared with the size of the dipole. Therefore the transverse size of the

dipole is invariant in high energy interactions, as indicated in Fig. 4.1.

We conclude that in calculating the total DIS cross section, along with other high
energy QCD observables, it is convenient to work in transverse coordinate space. We will
therefore adopt a mixed representation: we will use longitudinal momentum space along
with transverse coordinate space. Light cone perturbation theory (LCPT) is a very useful
tool here again. Using LCPT to calculate the total DIS y*A cross section we can factorize
the diagram in Fig. 4.1 into the square of the light cone wave function W 94 (X, , z) for

the splitting of a virtual photon into a g4 dipole and the total cross section for the scattering
of a dipole on a target nucleus o224 (%, , ¥), so that

1
2
ot 0= [ G2 [ E L Pl GL Y. 68
4w z(l —2)
0

Here z =kt /g™, with k" the light cone momentum of the quark in the ¢4 pair. In gen-
eral the dipole-nucleus cross section will depend on z too; however, in the eikonal and
LLA approximations that we mainly consider below, U,%?A is independent of z. The net
rapidity interval for the dipole-nucleus scattering is given by ¥ = In(§x%) ~ In1/x for
Xy ™~ I/Q

The reader may have other doubts about the factorization (4.6): after all, the LCPT rules
presented in Sec. 1.3 require us to subtract the light cone energy of the incoming state in
the energy denominator from each intermediate state’s energy. Since the light cone energy
of the incoming virtual photon is g~ = —Q%/g™, it seems that each intermediate state that
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126 Dipole approach to high parton density QCD

we have absorbed into of,?’\(i’ 1, Y) should “know™ about the photon’s energy. However,
in the rest frame of the nucleus, g~ is equal to —Q%/g* ~ 1/§ and is therefore negligibly
small compared with the typical minus components of momenta involved in dipole-nucleus
interactions. The same would be true for dipole-nucleus scattering: the incoming dipole
state would have a negligibly small light cone energy compared with the energies involved
in the interaction. Therefore, in our eikonal approximation (up to corrections of order 1/§),
we can interchange the negligible light cone energy g~ for the light cone energy of the
dipole without changing the answer, thus justifying the factorization of Eq. (4.6). (Note
that in calculating the light cone wave function W**=494(X | , z) we cannot neglect the light
cone energies of the virtual photon and the ¢4 dipole, since they are the only terms entering
the energy denominator.) Another important assumption is that the light cone energy of the
target is not modified until the interaction with the dipole: one can show that the time scale
of target fluctuations is much shorter than the lifetime of the dipole. Hence the target does
not affect the virtual photon’s wave function, since in constructing the latter the same light
cone energy of the target enters into both the energies of the intermediate states and the
initial-state energy, thus canceling in the energy denominators.

The factorization of Eq. (4.6) is very convenient: it allows us to separate the simple
¥* — g4 QED process from the strong interaction dynamics contained in O“ffA(f 1, Y).

Note that the virtual photon may have either transverse or longitudinal polarization.
Requiring that the photon polarization satisfies € - ¢ = 0 and imposing €2 = —1 for trans-
verse polarization and €7 = 1 for the longitudinal polarization, we obtain for g*, Eq. (4.1),
the following polarizations:

er =(0,0,&), (4.7a)
gt 0 A
€, = (E, 6_]:’ O_L) 7 (47b)

with €} as given in Eq. (1.54). The polarization vectors (4.7) form a complete basis in
the space of possible polarizations, so that the numerator of the photon propagator in the
Landau gauge can be decomposed in terms of them as

~ R = - Y et + e, 438)
A=1%

gp:v

Using the polarizations (4.7) along with Eqs. (2.13) and (2.16) one can separate the total
DIS cross section into transverse (7) and longitudinal (L) components (see Halzen and
Martin 1984):

*A 4?1'2(1'EM 1 ® 4R‘2(IEM
ol = TW““E Zehs)ﬁ, = _‘"qU_WI (4.92)
A=
" 4 473 v?
ol = __C;{_)E,Q{Wavq#gzu = TEM_ [—W1 + (1 + @) Wz] ; (4.9b)

with v as defined in Eq. (2.5) and agp the fine structure constant. Employing Eqs. (2.18a)
and (2.18b), we can rewrite Eqgs. (4.9) in the high energy v > Q limit as expressions for
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