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4
Dipole approach to high parton density QCD

We are now ready to present more recent developments in high energy QCD. We will
consider DIS in the rest frame of a proton or a nucleus. In this frame a virtual photon
fluctuates into a quark—antiquark pair, which, in turn, hits the proton or nuclear target.
We argue that quark-antiquark dipoles are convenient degrees of freedom for high energy
scattering in QCD. We will present a simple model of DIS on a nucleus, due to Glauber,
Gribov, and Mueller, in which the ¢4 dipole rescatters multiple times on a nuclear target
consisting of independent nucleons. We then include quantum corrections to this multiple-
rescattering picture: we argue that the initial gg dipole may develop a cascade of gluons
before hitting the target nucleus. In the large- N, limit the cascade is described by Mueller’s
dipole model. When applied to DIS the dipole cascade resummation leads to the Balitsky—
Kovchegov (BK) nonlinear evolution equation. We describe approximate analytical and
exact numerical solutions of the BK equation and show that it resolves both problems of
BFKL evolution: BK evolution is unitary and has no diffusion into the IR. It generates a
saturation scale Q, that grows with energy, justifying the use of perturbative QCD. We
conclude the chapter by presenting the Bartels—Kwiecinski-Praszalowicz (BKP) evolution
equation for multiple reggeon exchanges, along with the evolution equation for (C-odd)
odderon exchange.

4.1 Dipole picture of DIS
T enely el

Let us begin by considering DIS in the rest frame of the proton or nucleus. While many
conclusions in this chapter may also apply to proton DIS, in the strict sense our results
would be justified only for DIS on a large nucleus since such a nucleus has a large atomic
number parameter A allowing us to make the approximations we will need below. We will
therefore only talk about DIS on a nuclear target.

Without any loss of generality we can choose a coordinate axis such that the momentum
of the virtual photon is given by

2
qu = (CI+: —?—, OJ_) 4.1

+

in the (+, —, L) light cone notation. The light cone momentum of the virtual photon g is
very large (since the (high) photon-nucleus center-of-mass energy is § = mg™), so that its
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124 Dipole approach to high parton density QCD

Fig. 4.1. Forward scattering amplitude for DIS on a proton or nuclear target in the rest
frame of the target: the virtual photon splits into a ¢4 pair which then interacts with the
target. The interaction is depicted by the vertical oval. For simplicity the electron that emits
the virtual photon is not shown.

coherence length in the longitudinal plus direction (see Sec. 2.3 above),

b 22

x o o’ 4.2)
is much larger than the size of the nucleus. If the virtual photon fluctuates into a quark—
antiquark pair, the typical lifetime of such a ¢g fluctuation would also be much longer
than the nuclear diameter. Therefore, a DIS process in the nuclear rest frame occurs when
a virtual photon fluctuates into a g4 pair (which we will also refer to as a color dipole or
simply a dipole); the gg pair proceeds to interact with the target (Gribov 1970, Bjorken
and Kogut 1973, Frankfurt and Strikman 1988). The forward scattering amplitude for the
process is pictured in Fig. 4.1, with the gg dipole-nucleus interaction represented by the
vertical oval. This is the dipole picture of DIS (Kopeliovich, Lapidus, and Zamolodchikov
1981, Bertsch et al. 1981, Mueller 1990, Nikolaev and Zakharov 1991). Note that while
the topology of the DIS diagram in Fig. 4.1 is the same as for DIS in the IMF, shown in
Fig. 2.2, the time-ordering of the interactions is different in the two figures.

The interaction of a virtual photon with a nucleus can be viewed as a two-stage process:
the virtual photon decays into a colorless dipole consisting of a quark and an antiquark
and the colorless dipole travels through the nucleus. However, this separation between the
time scale for the photon to decay into the gg pair and the interaction time is not the
only advantage of the dipole picture. Another important simplification comes from the fact
that in high energy scattering a colorless dipole, with transverse size x, , does not change
its size during the interaction and therefore the S-matrix of the interaction is diagonal
with respect to the transverse dipole size (Zamolodchikov, Kopeliovich, and Lapidus 1981,
Levin and Ryskin 1987, Mueller 1990, Brodsky ef al. 1994). Indeed, while the colorless
dipole is traversing the target, the distance x; between the quark and antiquark can only
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4.1 Dipole picture of DIS 125

vary by an amount
ki
Ax, ~ R— 4.3
XL z 4.3)

where E ~ g° denotes the energy of the dipole in the laboratory frame (the target rest
frame), R is the longitudinal size of the target, and k, is the relative transverse momentum
of the ¢§ pair acquired through interaction with the target. In Eq. (4.3) k1 /E is the relative
transverse velocity of the quark with respect to the antiquark. From Eq. (4.3) we can see
already that the change in the dipole size is suppressed by a power of the energy E and is
therefore small. To quantify this better let us first remember the definition of Bjorken x,
given in (2.2):

=
Q° 0’ 0? Wr =~
= = ] A 4.4
YT2P.q  mg*t 2mE e AXL e
Using Eq. (4.4) in Eq. (4.3) along with the uncertainty principle Q =~ k; ~ 1/x, yields ';:' ﬂ
A 4R
L oxomxR= - « 1, .5) L _ lwr
X1 leon (9 s

where I, = 2/(mx) is the coherence length of the dipole fluctuation (see Eq. (2.56)). Ll (Z E
We thus see that at smalwhen the dipole interacts with the whole nucleus
coherently in the longitudinatdtrection, the transverse recoil of the quark and the antiquark
are negligible compared with the size of the dipole. Therefore the transverse size of the
dipole is invariant in high energy interactions, as indicated in Fig. 4.1.

We conclude that in calculating the total DIS cross section, along with other high
energy QCD observables, it is convenient to work in transverse coordinate space. We will
therefore adopt a mixed representation: we will use longitudinal momentum space along
with transverse coordinate space. Light cone perturbation theory (LCPT) is a very useful
tool here again. Using LCPT to calculate the total DIS y*A cross section we can factorize
the diagram in Fig. 4.1 into the square of the light cone wave function wr'ad(x, | 7) for

the splitting of a virtual photon into a ¢4 dipole and the total cross section for the scattering
of a dipole on a target nucleus a,qa?A(jc‘ 1, Y), so that

) 1
ot 0= [ L2 [ B wren opelitEL . @)
T z(1 —12z)
0
Here z = kT /g™, with k™ the light cone momentum of the quark in the ¢4 pair. In gen-
eral the dipole-nucleus cross section will depend on z too; however, in the eikonal and
LLA approximations that we mainly consider below, o294 is independent of z. The net
rapidity interval for the dipole—nucleus scattering is given by ¥ = In(§x}) ~ In1/x for
x; ~1/Q.

The reader may have other doubts about the factorization (4.6): after all, the LCPT rules
presented in Sec. 1.3 require us to subtract the light cone energy of the incoming state in
the energy denominator from each intermediate state’s energy. Since the light cone energy
of the incoming virtual photon is g~ = —Q?/4™*, it seems that each intermediate state that
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126 Dipole approach to high parton density QCD

we have absorbed into or,‘;f"'(f 1, Y) should “know” about the photon’s energy. However,
in the rest frame of the nucleus, ¢~ is equal to —Q?/g™ ~ 1/§ and is therefore negligibly
small compared with the typical minus components of momenta involved in dipole—nucleus
interactions. The same would be true for dipole—nucleus scattering: the incoming dipole
state would have a negligibly small light cone energy compared with the energies involved
in the interaction. Therefore, in our eikonal approximation (up to corrections of order 1/§),
we can interchange the negligible light cone energy ¢~ for the light cone energy of the
dipole without changing the answer, thus justifying the factorization of Eq. (4.6). (Note
that in calculating the light cone wave function ¥*"~94(% |, z) we cannot neglect the light
cone energies of the virtual photon and the g7 dipole, since they are the only terms entering
the energy denominator.) Another important assumption is that the light cone energy of the
target is not modified until the interaction with the dipole: one can show that the time scale
of target fluctuations is much shorter than the lifetime of the dipole. Hence the target does
not affect the virtual photon’s wave function, since in constructing the latter the same light
cone energy of the target enters into both the energies of the intermediate states and the
initial-state energy, thus canceling in the energy denominators.

The factorization of Eq. (4.6) is very convenient: it allows us to separate the simple
y* — g4 QED process from the strong interaction dynamics contained in a,f',f"’j’(f )

Note that the virtual photon may have either transverse or longitudinal polarization.
Requiring that the photon polarization satisfies € - ¢ = 0 and imposing €2 = —1 for trans-
verse polarization and ei = 1 for the longitudinal polarization, we obtain for ¢*, Eq. (4.1),
the following polarizations:

€7 =(0,0,&}), (4.72)
(gt O -
€L = (E, q_+’ OJ_) s (4.7b)

with Ej‘_ as given in Eq. (1.54). The polarization vectors (4.7) form a complete basis in
the space of possible polarizations, so that the numerator of the photon propagator in the
Landau gauge can be decomposed in terms of them as

qudy

Buv =~ = — ) €, €68 +eruel, (4.8)
4 A=

Using the polarizations (4.7) along with Egs. (2.13) and (2.16) one can separate the total

DIS cross section into transverse (T) and longitudinal (L) components (see Halzen and

Martin 1984):

. 4730 1 4720
A EM v EM
Bie= 0 W5 D Tucty = —n “.92)
A=t
. 4 4’0 v?
0’{ A qOEM W'LLUGLMEEIJ = —qOEM [—Wl + (1 + _22) WZ] ) (4.9b)

with v as defined in Eq. (2.5) and gy the fine structure constant. Employing Eqs. (2.18a)
and (2.18Db), we can rewrite Eqs. (4.9) in the high energy v > @ limit as expressions for

— affen feedtor
&g°2w
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4.1 Dipole picture of DIS 127

Fig. 4.2. Light cone wave function for a virtual photon fluctuating into a quark—antiquark
pair (a dipole). The broken line denotes the intermediate state.

the dimensionless structure functions:

Q* “A Q? A *A
P, Q)= it = e (o "4 el), 1o
2% Fi(x, 0F) = — BB (4.10b)
43’[20,’EM

Itis useful to also define the longitudinal structure function Fi,, which measures the violation
of the Callan—Gross relation (2.44):

£22 y*A

Fi(x, 01 = F(x, Qz) —2xFi(x, 0% = p Ty oy . (4.11)

Equations (4.10) and (4.11) allow us to find the DIS structure functions using the transverse
and longitudinal cross sections, which, with the help of Eq. (4.6), can be found from the
dipole-nucleus scattering via

1
2
offx, 0% = f % f Z—(ldf—z) W2 GE L ) oA E L Y). (4.12)
0
We have defined the transverse, ). ~94(%, , z), and longitudinal, ¥} ~%?(%, z), light cone
wave functions, which differ by the polarization vector of the incoming virtual photon.
Let us now calculate the light cone wave functions W;: (%, z) for the quark—
antiquark fluctuations of a virtual photon. The diagram is shown in Fig. 4.2, in which the
vertical broken line denotes the intermediate state. Using the LCPT rules from Secs. 1.3 and
1.4, we write for the wave functions in momentum space (cf. the calculation in Sec. 2.4.2)

*Sad 3 - 1 —Z)(S;'
WTAEL D) = eZ e J
fi A fkﬁ_ +m% + 0%2(1 — 2)

o (k)Y - €f L vor(q — k), (4.13)

where o and o are the quark and antiquark helicities, #, j are their colors, m ¢ is the mass
of a quark with flavor f, and Z is the quark’s electric charge in units of the electron charge
e. (Note that g# is given in Eq. (4.1).) As mentioned above, we define z = k* /g™ as the
fraction of the photon’s light cone momentum carried by the quark.
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128 Dipole approach to high parton density QCD

Starting with the transverse polarization we substitute the polarization vector from
Eq. (4.7a) into Eq. (4.13) and evaluate the Dirac matrix element using Appendix A.1,
obtaining

lllf_’“"?(lzl, z) =eZs/z(l —2) &;;

(1 - 500 )6_1_ k_l.(I -2z — O')‘-) + Baa’mf(l " O'A-)/\/_
k2 +m + 02z(1 — 2) .

(4.14)

In arrwmg at Eq. (4 14) we have also used the fact that in two transverse dimensions
e x ky = —iré} - k, for the €} from Eq. (1.54).

Since we are interested in using the virtual photon’s wave function in transverse coordi-
nate space in Eq. (4.12), we perform a Fourier transform of Eq. (4.14):

g d*ky
yroqd =+ _ ik y*—>aqq
v uba_faszﬂw Ey,2) @.15)
and employ Eq. (A.11) along with K/(z) = —K(z) to obtain

0d eZ . &
VPTG D = VT =8y [(1 — Soa (V=220 A)ia, <L

i
J-Kl(xj_af)

+ 8o \/_(1 + U)&)Kg(xiaf)] (4.16)

where
ar = 0% -2)+ f?ﬁ @.17)

The square of the absolute value of the transverse wave function (4.16), summed over all the
outgoing quantum numbers and averaged over the possible polarizations of the incoming
transverse photon is (Bjorken, Kogut, and Soper 1971, Nikolaev and Zakharov 1991) given
by

ZZ
La1-2)

L AEM
[ TG L = 2N, )
I

x {a3 [Ki(xoap 122 + (1 = 27 +mi[Korap)]'} . @.18)

To calculate the longitudinal wave function W} ~%Y(%, z) we repeat the above steps,
now using the longitudinal polarization vector (4.7b) in Eq. (4.13). The transverse momen-
tum space longitudinal wave function is

‘pz*%qq(i"Ls ) == ezf[Z(l - Z)]3/2 6'J'ZQ(I = ‘Saa”)
A k2+mf+Q2z(1—z)

(4.19)

In arriving at Eq. (4.19) we have neglected a term that would have given us a delta
function, 62(X)), in the transverse coordinate-space wave function; as we will shortly see,

20:28
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4.2 GGM multiple-rescatterings formula 129

zero-transverse-size dipoles do not interact with the nucleus (they have zero scattering cross
section) and so such configurations do not contribute to the DIS structure functions.
Fourier-transforming Eq. (4.19) into transverse coordinate space yields

. g g eZ
R Ef[za — 12 82001 — b50)Ko(x1ay), (4.20)
~

so that the longitudinal wave function squared, again with all summations performed, is
(Bjorken, Kogut, and Soper 1971, Nikolaev and Zakharov 1991)

— agmZ;
WGP =28, ) =407 - 0 [Kote a] @21
f

To obtain the phase-space integral in Eqs. (4.6) or (4.12) we remember that the two-
particle momentum phase space given in Eq. (1.82) is (remembering that in our case the
quarks are not identical)

dz ik,

—_—, 4.22

f2z(1 -2) @2n)? b=

After Fourier-transforming the wave function into transverse coordinate space the integral

becomes

dz  d*x,

LI 4.23

[ 2z(1—2) 2m (4.23)

in agreement with Egs. (4.6) and (4.12).

We have now completed the calculation of the QED part of DIS in the dipole picture.
Equations (4.18) and (4.21), when used in Eq. (4.12), give us the transverse and longitudinal
DIS cross sections, which, in turn, when used in Egs. (4.10) and (4.11) give us the structure
functions. The interesting physics of strong interactions is contained in the dipole-nucleus
scattering cross section cr,‘ff"‘(i’ 1, Y): most of this chapter is dedicated to calculating this
quantity.

4.2 Glauber-Gribov—Mueller multiple-rescatterings formula

We begin by employing Eq. (3.119a) to rewrite the total dipole-nucleus scattering cross
section as

ot @, ) =2 f d*b N(Z1, by, Y), (4.24)

where N(X J_,E 1, Y) is the imaginary part of the forward scattering amplitude for a
dipole of transverse size X, interacting with the nucleus at impact parameter b | and
with net rapidity interval ¥. Hence to find the cross section cr,f,?"‘ we need to calculate
N(EJ_, EL, Y).

To find N(¥,, b L, ¥) let us consider the following (Glauber) model. Assume that the
nucleus is very large and dilute and is made outof A 3 1 independent nucleons, where A is

20:28
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130 Dipole approach to high parton density QCD

;o
LT

Fig. 4.3. The four diagrams contributing to dipole interaction with a single nucleon at the
lowest nontrivial (two-gluon) order in the high energy approximation and an abbreviated
notation for their sum.

G0Q0000000000

the atomic number of the nucleus.! Any correlations between the nucleons are suppressed
by powers of the large parameter A: hence our approximation corresponds to summing
the leading powers of A. In evaluating the forward dipole-nucleus scattering amplitude
NGEL, by, Y) we will follow the strategy originally outlined by Glauber and by Gribov
(Glauber 1953, Franco and Glauber 1966, Gribov 1969b, Glauber and Matthiae 1970,
Gribov 1970) and implemented in QCD by Mueller (1990).

4.2.1 Scattering on one nucleon

First we consider the case when the dipole interacts with only one nucleon in the nucleus.
Assuming that the interaction is entirely perturbative, we see that the lowest-order contri-
bution to the forward high energy scattering amplitude comes from a two-gluon exchange.
The relevant diagrams are shown in Fig. 4.3. This lowest-order scattering process was
calculated in Sec. 3.2. Employing the results of that section (see Eq. (3.25)) we can write
down the total dipole-nucleon cross section as

iN 2ralCr , 1

aaN 1 ; 4.25
3 Nc XL xi A2 ( )

In arriving at Eq. (4.25) we have assumed that the dipole is perturbatively small, x; <
1/A gcp, and that the nucleon can be modeled as another dipole of transverse size 1/A >
x,, with A some soft QCD scale of order A gcp. We have also assumed that the nucleus
is sufficiently large that the cross section does not depend on the dipole’s orientation in the
transverse plane, over which we therefore average.

At the same two-gluon order the unintegrated gluon distribution function of the nucleon
can be found using Eq. (3.92) with the lowest-order BFKL Green function (3.59). This
gives
Q!;CF 2
K’
where we have assumed that k; 3> A. The factor 2 on the right-hand side of Eq. (4.26)
simply counts the number of quarks in the dipole representing the nucleon. It should be

oy kT Y= (4.26)

! Strictly speaking A is called the mass number of the nucleus; nevertheless, we will follow the standard jargon in the
high energy field and refer to it as the atomic number.



