SHec ke FereHTons

| cka ) |
Faz 22— ("4 g5
20(6"1

% ¥+A
2w F = & 6_7,

: qzldfﬁ

N

(Ivz dz-ne heeo @ PQ/’J_‘T"‘ W“’M FZ:’zk/:!:
=) GL&*‘A is  Sc.atd . )

A Meed  do Lol @*25“(5)5) A QCD is Therg.



M) W A A/éjé,sy

A= - g] :)L/t/()s,é/s): 1-R S(x¢,s)

E (ks)-zjofé/u(zg é;)j

é/%(r@.—— GV‘Céov— M/‘/l-«.,b%/z MMMC//&
V%Cc.){iwbtj Wﬁ_

I""’L‘\’.,é/(:‘f\.ﬂ_ e 5&«?/&—— Mu@_ﬂﬂ fmﬂ
~C T

6/3? Zi.‘o(a " 5; 5 < - ..
XJ_ 41}(.-"/\1 (p-%"‘_;)

Tuwﬂaamﬁrﬁm%q% Aﬂ?@ 67(

d‘rcwswe/v&x Sc 22 /{L>) K_L.)




P1: SFK Trim: 247mm x 174mm Top: 13.707mm Gutter: 18.98mm

CUUKI1947-04

CUUKI1947/Kovchegov 978 0521 11257 4 March 23, 2012

4.2 GGM multiple-rescatterings formula 129

zero-transverse-size dipoles do not interact with the nucleus (they have zero scattering cross
section) and so such configurations do not contribute to the DIS structure functions.
Fourier-transforming Eq. (4.19) into transverse coordinate space yields

g oo -eZ
v THGELD = 2—;[7,(1 — 21%2 §,20(1 — 850V Ko(x1ay), (4.20)
F

so that the longitudinal wave function squared, again with all summations performed, is
(Bjorken, Kogut, and Soper 1971, Nikolaev and Zakharov 1991)

P aEMZZ
W TG = 2N Y ——L40%P (1 - 2 [Kotraap]' Ch2D)
f

To obtain the phase-space integral in Egs. (4.6) or (4.12) we remember that the two-
particle momentum phase space given in Eq. (1.82) is (remembering that in our case the
quarks are not identical)

f dz k. (4.22)
2z(1—2) @m)? ’
After Fourier-transforming the wave function into transverse coordinate space the integral
becomes
dz  d*xy
f 2z(1—z) 2 ° (4.23)

in agreement with Eqs. (4.6) and (4.12).

We have now completed the calculation of the QED part of DIS in the dipole picture.
Equations (4.18) and (4.21), when used in Eq. (4.12), give us the transverse and longitudinal
DIS cross sections, which, in turn, when used in Eqgs. (4.10) and (4.11) give us the structure
functions. The interesting physics of strong interactions is contained in the dipole—nucleus
scattering cross section o,f,?A(J'E 1, ¥): most of this chapter is dedicated to calculating this
quantity.

4.2 Glauber-Gribov—Mueller multiple-rescatterings formula

We begin by employing Eq. (3.119a) to rewrite the total dipole-nucleus scattering cross
section as

ol ' F1, ¥) = 2[ d®b N(%1,by,7), (4.24)

where N(¥ 1,5 1, Y) is the imaginary part of the forward scattering amplitude for a
dipole of transverse size ¥, interacting with the nucleus at impact parameter b, and
with net rapidity interval ¥. Hence to find the cross section J,‘,’,?A we need to calculate
N@Fi, by, ).

To find N(¥,, BJ_, Y) let us consider the following (Glauber) model. Assume that the
nucleus is very large and dilute and is made out of A > 1 independent nucleons, where A is

20:28
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Fig. 4.3. The four diagrams contributing to dipole interaction with a single nucleon at the
lowest nontrivial (two-gluon) order in the high energy approximation and an abbreviated
notation for their sum.

the atomic number of the nucleus.! Any correlations between the nucleons are suppressed
by powers of the large parameter A: hence our approximation corresponds to summing
the leading powers of A. In evaluating the forward dipole-nucleus scattering amplitude
N(EL, by, Y) we will follow the strategy originally outlined by Glauber and by Gribov
(Glauber 1955, Franco and Glauber 1966, Gribov 1969b, Glauber and Matthiae 1970,
Gribov 1970) and implemented in QCD by Mueller (1990).

4.2.1 Scattering on one nucleon

First we consider the case when the dipole interacts with only one nucleon in the nucleus.
Assuming that the interaction is entirely perturbative, we see that the lowest-order contri-
bution to the forward high energy scattering amplitude comes from a two-gluon exchange.
The relevant diagrams are shown in Fig. 4.3. This lowest-order scattering process was
calculated in Sec. 3.2. Employing the results of that section (see Eq. (3.25)) we can write
down the total dipole-nucleon cross section as

2
an 5, 202G 5 1
o9V x5 In ——-.
N, x]A?

(4.25)

In arriving at Eq. (4.25) we have assumed that the dipole is perturbatively small, x; <
1/A gcp, and that the nucleon can be modeled as another dipole of transverse size 1/A >
x1, with A some soft QCD scale of order Apcp. We have also assumed that the nucleus
is sufficiently large that the cross section does not depend on the dipole’s orientation in the
transverse plane, over which we therefore average.

At the same two-gluon order the unintegrated gluon distribution function of the nucleon
can be found using Eq. (3.92) with the lowest-order BFKL Green function (3.59). This
gives
(s CF 2
where we have assumed that k; >> A. The factor 2 on the right-hand side of Eq. (4.26)
simply counts the number of quarks in the dipole representing the nucleon. It should be

i O o 4.26)

! Strictly speaking A is called the mass number of the nucleus; nevertheless, we will follow the standard jargon in the
high energy field and refer to it as the atomic number.
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replaced by N, if one wanted to model the nucleon more realistically, as consisting of N
valence quarks. Using Eq. (3.93) the corresponding lowest-order gluon distribution of an
onium (a nucleon) turns out to be

. o,C 03
omu x( Q,L.) s F21 A2 (427)
Comparing Eq. (4.27) and Eq. (4.25), we can rewrite the latter as
ot 1
o 9N N x_‘_xGN (x, Xi) . (4.28)

where xGy is the gluon distribution in the nucleon (presently modeled as an onium).?
Equation (4.28) has an advantage over Eq. (4.25): it is valid for any nonperturbative gluon
distribution in the nucleon and is therefore more general. We will use these equations
interchangeably, though.

To find the dipole-nucleus scattering cross section at a given impact parameter we
need to average the dipole-nucleon scattering amplitude over all possible positions of the
nucleon inside the nucleus and to sum over the A nucleons in the nucleus, all of which may
participate in the interaction. We have

a'aqqA do9iN
= | dbyd* palby — by 2 4.29
b f 1o4lby — A 7 (4.29)
where dbid?b| = db is the three dimensional volume element and ,0,4(5 1, b3) is the

nucleon number density, with b'j_ = (b1, by). In a simplified model, of the nucleus has a
constant nucleon number density ps = A/ V, where V is the volume of the nucleus in its
rest frame. In the general case pu (E_‘; 1, b3) is given by the Woods-Saxon parametrization of
the nuclear density (Woods and Saxon 1954).

Equation (4.29) gives the cross scctmn fora d:pole at impact parameter by scattering
on a nucleon at impact parameter by — b’ (where b is its transverse distance from the
dipole), convoluted with the nucleon density p, which, in turmn, is proportional to the
probability of finding a nucleon at Bl — E’J_ (see Fig. 4.4). To simplify Eq. (4.29) we note
that the perturbative scattering cross section falls off as do??¥ /d?b’ ~ 1/b} at large impact
parameter, as can be seen for instance from Eq. (3.139) in Exercise 3.3 (after averaging
over the azimuthal orientations of one dipole; this mimics an unpolarized nucleon, without
any preferred direction). At nonperturbatively large impact parameter »', 2, 1/A gcp one
expects an even steeper falloff, do?9" /d*b’ ~ exp(—2mb')) (cf. Eq. (3.113)). Hence the
cross section da938/d%l is localized at small impact parameters &', < 1/A gcp.

In the large-A approximation that we are employing, one assumes that the nuclear wave
function and hence the density pA(B 1, b3) does not change significantly over distances of
order 1/A gcp, which is small compared with the size of the nucleus, so that the nucleon
has an approximately equal probability of being anywhere within this transverse range.

2 We would like to stress here that in order to conform to the standard notation we write the gluon distribution with
Bjorken x in its argument, but throughout this section the gluon distribution is taken at the lowest (two-gluon) order
and is therefore x-independent.
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dipole

by — b

nucleon

nucleus

Fig. 4.4. The geometry of dipole-nucleus scattering in the transverse coordinate plane. To
illustrate the notation of Eq. (4.29) the diagram places the dipole far from the nucleon: in
reality b, < 1/Agcp-

Therefore, for large nuclei we can approximate pa(b, — 5"_]_, b)as oabi, b%) and recast
Eq. (4.29) by integrating over &', as

—T@e, =2 N (4.30)

where we have defined the nuclear profile function T(E 1) by
o0
160 = [ dbapatBu. b 43D
—00
For a spherical nucleus of radius R with constant nucleon number density p4 = A/V one
has T(b1) = 2044/ R2 — B2.
Comparing Eq. (4.30) with Eq. (4.24) and employing Eq. (4.28) we obtain

2

- S 0 2% A TP 1
Nro(Xi, by, Y)= 2N, T )xixGy (X, E)
JTO!_? C_r;' - 2 1

=T T(b.)x3 In T (4.32)
where in the last line we have modeled the nucleon by a single quark with gluon distribution

a,Cp Q?

G(x, 1) = —In=.
xG(x, Q1) - Az

We now have the forward dipole-nucleus scattering amplitude for the case when only
one nucleon in the nucleus interacts with the dipole. This case has a problem akin to that
of linear BFKL evolution: if we increase the dipole size x; in Eq. (4.32), at some point we
get Npo > 1, violating the black-disk limit, which states that

NG b, Y) <1 (4.33)
(see Eq. (B.37) in Appendix B).

20:28
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Fig. 4.5. Dipole—nucleus scattering in the Glauber—Gribov—Mueller approximation in the
Feynman gauge. The disconnected gluon lines at the top denote the sum over all possible
connections of the gluon lines to the dipole, as depicted in Fig. 4.3.

Let us stress again here that the transverse dipole size x is preserved in high energy
interactions. This makes the S-matrix diagonal not only in the impact parameter b, as
we saw in Egs. (3.119) and also in Appendix B, but also in the dipole size ¥, . Therefore,
the relations (3.119) between the cross sections and the S-matrix can also be written down
for dipole—nucleus scattering with a fixed dipole size X;. The unitarity conditions (the
optical theorem), which in momentum space are written as complicated convolutions (see
e.g. Eq. (B.19)), become simple products of the amplitudes in (¥, b 1)-space (see e.g.
Eq. (B.30)). For this reason we think of color dipoles (or any other objects in the transverse
coordinate representation) as the correct degrees of freedom for high energy scattering.

4.2.2 Scattering on many nucleons

When the probability of interaction with one nucleon becomes large, interactions with
multiple nucleons also becomes likely and should be taken into account. Now we will
see how multiple rescatterings of the dipole on different nucleons cure the problem of
black-disk-limit violation by Eq. (4.32).

Let us consider the case when any number of nucleons can interact, restricting the inter-
action with each nucleon to the lowest nontrivial order. For this calculation will be working
in the standard Feynman perturbation theory using the Lorenz 8, A* = 0 (Feynman) gauge.
(Once we have separated the DIS cross section into the light cone wave function squared
and the dipole-nucleus cross section, we can calculate the latter using any technique that is
convenient.) We start by stating the diagrammatic answer for the many-nucleon interaction
case: in the Feynman gauge, the dipole-nucleus interaction becomes a series of succes-
sive independent dipole-nucleon rescatterings, as shown in Fig. 4.5. There each nucleon
(denoted by an oval at the bottom, just as in Fig. 4.3) interacts with the dipole via a two-
gluon exchange: the disconnected gluon lines at the top of the diagram denote all possible
connections to the quark and the antiquark lines in the dipole, as defined in Fig. 4.3.

The diagram in Fig. 4.5 implies that in the covariant gauge there is no direct “cross-talk”
between the nucleons and that all the nucleons interact sequentially in the order in which
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k k—l+q

Q0000000000
Q0000000000

A 4A_F A

Fig. 4.6. Examples of diagrams that can be neglected for dipole-nucleus scattering in the
covariant (Feynman) gauge.

b Ie z‘.@?% q

pRp+IRp+i—q p %, pHi-a

il U+ " =

Fig. 4.7. Diagrammatic illustration that for a color-singlet object such as a nucleon, the
coupling of two gluons to a single quark line is equivalent to the coupling of each gluon
to a quark line that is on mass shell both before and after the quark—gluon interaction. The
solid vertical line in the rightmost graph indicates an effective cut.

the dipole encounters them, i.e., according to their ordering along the x*-axis. The dipole-
nucleon interactions in the covariant gauge of Fig. 4.5 are localized inside the nucleons,
on distance scales much shorter than the nuclear radius. While for a large dilute nucleus
these assertions seem natural, we still need to prove them. To do so, it is convenient to
change the frame slightly by giving the nucleus a slight boost, so that it moves along the
light cone in the minus direction with a large P~ momentum. At the same time the boost
preserves the virtual photon’s motion along the plus light cone, with four-momentum as
shown in Eq. (4.1). Thus both the dipole and nucleus in this new frame move along their
respective light cones, as shown in Fig. 4.8. In the calculations below we will assume that
the gluon—nucleon coupling is perturbatively small.

To illustrate why the graphs in Fig. 4.5 dominate the scattering, let us show that the
diagrams in Fig. 4.6, demonstrating “cross-talk” (A) and the violation of x*-ordering (B),
are suppressed and can be neglected. Before we do that, let us carry out a simple exercise
elucidating the nature of the coupling of two gluons to a nucleon. Consider two gluons
coupling to a quark line in a nucleon, as shown in Fig. 4.7. This can be a part of any diagram
in Figs. 4.6 and 4.5. Note that one has to include a crossed diagram, as illustrated in Fig. 4.7.
Since the nucleon is a color singlet, the color factors of the two graphs on the left in Fig. 4.7
are identical (say, owing to a color trace), so that the difference between the two diagrams
is only in the propagators for the internal quark line. Adding the two propagators (using the
momentum labels from Fig. 4.7) and remembering that p~ is the largest momentum in the
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2w, Mt At

nucleus
dipole

Fig. 4.8. Space-time picture of the dipole-nucleus scattering.

problem, we obtain

ip+1+my) (P — 4 +my)
(p+1P—ml+ie (p—qP—=mltic

~ip (P‘l+1+ i€ £ —p‘ql*' + ie) =g2ris(p7l). (4.34)
We have used the fact that the outgoing quark is on mass shell, (p +1 —g)* = mg, so that
gt = I with eikonal accuracy (see Sec. 3.2 for similar estimates). We conclude that (with
eikonal accuracy) [T = ¢ = 0. The é-function in Eq. (4.34) puts the internal quark line in
the leftmost of Fig. 4.7 on mass shell. The result (4.34) can be summarized by replacing
the internal quark line by the cut line, as shown in the rightmost graph of Fig. 4.7: the cut
enforces /™ = 0. What is essential to us is that neither gluon carries any plus momentum.

Now we are ready to evaluate the diagrams in Fig. 4.6. Note that, owing to the large size
of the nucleus we are considering, even after the boost the nucleus is still somewhat spread
out in the x *-direction, as demonstrated in Fig. 4.8, where different nucleons correspond
to different straight lines parallel to the x— light cone. Hence each nucleon in the nucleus
is located at a different x ™ coordinate. We thus need to Fourier-transform the diagrams in
Fig. 4.6 into coordinate x*-space by integrating over [,

Starting with Fig. 4.6A we see that the /~-dependence can be contained only in the
propagator of the gluon carrying momentum [ that is exchanged between the nucleons
there. However, as we have just shown when considering the diagrams in Fig. 4.7, [T =0
with eikonal accuracy, so that the diagram in Fig. 4.6A is proportional to

T gmilaxt T emiraxt

l
—oo —00 €

X

Il
=
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k k41
[— ql
K
__________________ >
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Fig. 4.9. Forward amplitude for a dipole scattering on two nucleons.

for nonzero light cone separations between the two nucleons, i.e., Ax* # 0. Hence diagram
A is negligible in the covariant gauge in which we are working.® Let us stress that in arriving
at the result (4.35) we have restricted ourselves to I~ « p~: if we relaxed this constraint
then the integral in Eq. (4.35) would be nonzero, though it would still be suppressed for
large atomic numbers A (Kovchegov 1997).

Similarly, in Fig. 4.6B one has [t = g* = 0, so that the / ~-dependence can be contained
only in the quark propagator of the (k — [ 4 g)-line. Since the light cone momentum of the
quark k* is large, we see that the diagram in Fig. 4.6B is proportional to

oo oo

e—u-Ax* e—H‘AJ:*
A" %fd!“ 5w =0
“i (k—14+qg)?+ie ol ktk— —1—+q)— (kL — 1L +41)*+ie
(4.36)

for Ax* = 0, as the pole of the propagator is in the upper half-plane while the contour
needs to be closed in the lower half-plane. For Ax* < 0 the integral in Eq. (4.36) is not
zero, but then we would obtain zero from the integral over the minus momentum carried
by the other pair of f-channel gluon lines. We thus can neglect diagram B as well.

The arguments used in proving that diagrams A and B in Fig. 4.6 are zero can be gener-
alized to more complicated diagrams in the same general categories. We have succeeded in
demonstrating that in the covariant gauge and in the approximation of two gluon exchanges
per nucleon the dipole-nucleus interaction is given by the graphs in Fig. 4.5. We now need
to resum these diagrams. To do this, we first consider dipole scattering on two nucleons
ordered in x*, as shown in Fig. 4.9. Unlike the diagram in Fig. 4.6B, the graph in Fig. 4.9
has the correct x*-ordering of the nucleons. Instead of giving zero it yields (note that k~ is
very small for a quark on a plus light cone)

I T it o 1
f 2 (k+ 02 +ie Nf 2 k- — (B +10)% +ie Kkt ¢37)

—0o0 —00

3 Note that diagram in Fig. 4.6A is nonzero in the A~ = 0 light cone gauge even in the eikonal approximation,
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T S

Fig. 4.10. Diagrammatic representation of Eq. (4.40) resumming all the diagrams
from Fig. 4.5.

where at the end of the calculation we have neglected the phase of the exponential since it is
proportional to Ax*/k* ~ 1/(k* p™), which is suppressed by the center-of-mass energy.
It is important to note that in picking up the pole in Eq. (4.37) we put the propagator of
the quark carrying momentum k + [ on mass shell. Therefore, the diagram factorizes into a
product of two independent dipole-nucleon scatterings; the quark and the antiquark in the
dipole effectively go on shell between the scatterings. (The factor 1/k* left in Eq. (4.37)
serves to normalize the dipole-nucleon cross section for the nucleon on the right.) The
numerator of the quark propagator can be absorbed into two separate scattering amplitudes
using the property that (neglecting the quark mass) ¥+ =, us(k + Diig(k + 1): the
factor u, (k + 1) is absorbed into one amplitude, while i, (k + [) is absorbed into the other.
Comparing this result with the standard normalization factor for the 2 — 2 cross section
at high energy (see Egs. (B.22) and (B.23)), we conclude that to resum the diagrams in
Fig. 4.5 we simply need to iterate the dipole—nucleus cross section.

Define the forward matrix element of the S-matrix for the dipole-nucleus scattering by
(cf. Eqg. (B.34))

SGEL, B =1—N@, b, Y. (4.38)

Suppressing the arguments b, and Y, we can define the S-matrix (the “propagator”)
s(¥., b™*)foradipole to travel through the nucleus up to a point &, so that S(¥ 1) = s(¥, L)
with 7 € (0, L) defines the extent of the nucleus along the x* axis. Going to transverse
momentum space we have

with £, tht}\relative transverse momentum of the quark and the antiquark in the dipole. As
we demonstrated above, all the integrations over the minus momenta in the diagrams in
Fig. 4.5 are done straightforwardly. Hence the b -evolution of §(k_, b*) is also clear: in

one step in b the dipole may interact with one nucleon. Denoting §(kL, bt by a circle,
we illustrate this statement in Fig. 4.10.

5(kL,bT) = f dx e~ FeRig3 by, (4.39)
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Summing over all possible connections of the ¢-channel gluons to the dipole in Fig. 4.10
we obtain the following equation (Mueller (1990), see also Baier et al. (1997)):

95(ky, b) _ m(bl,bﬂ f d2ly 4ol ..
ab+ @r):  d

x [25(1@, bty —§(ky — I, b%) — 5k, + 105 m] ; (4.40)

where the minus signs outside the last two terms come from the coupling of one gluon
to the quark and the other to the antiquark. The differential cross section do qq% . Jd?l
is the momentum-space expression for the two-gluon exchange cross section in quark—
quark scattering, as given in Eq. (3.18), and the factor 1/2 is needed to convert it to the
forward amplitude. (Again we are modeling the nucleons as single valence quarks.) The
nucleon density factor p4 (5 L. bT) (now, in the boosted-nucleus frame, equal to the number
of nucleons per unit volume element db*d%b, ) gives the probability of finding a nucleon
at a given location in the nucleus. Again we assume ,oA(l; 1, b%) to be constant on the
perturbatively short transverse distance scales relevant to Eq. (4.40). The overall minus
sign in Eq. (4.40) reflects the fact that we are calculating a variation of the S-matrix that
differs from the variation of the forward amplitude by a sign, as follows from Eq. (4.38).
Fourier-transforming Eq. (4.40) into transverse coordinate space we obtain

G LYY oAb BBy o L
£ Loy 7 = c1s(xL, b™) (4.41)

with

aN _ d*ly daqq—*qq

o = | TR ), 42

exactly the dipole—nucleus cross section of Egs. (4.25) and (4.28). (The factor 2 difference
in comparison to Eq. (4.25) is due to the fact that in Eq. (4.25) the nucleon is modeled as a
dipole whereas in our present calculation it is taken to be a single quark for simplicity.)

One can readily see from Eq. (4.41) that in transverse coordinate space Eq. (4.40)
becomes trivial. An important consequence of this triviality is that, for the first time, we see
explicitly that the transverse size of the dipole x, does not change in the interactions with
the nucleons (and the nucleus). This is demonstrates the argument presented in Sec. 4.1.

Equation (4.41) has the following simple physical meaning: as the dipole propagates
through the nucleus it may encounter nucleons, with the probability of interaction per unit
path length db* given by the product of the nucleon density p4 and half the interaction
probability ¢4" from Eq. (4.28). The initial condition for Eq. (4.41) is given by a freely
propagating dipole without interactions, for which s(X,, 5 = 0) = 1. Solving Eq. (4.41)
with this initial condition yields

bt =
'+
s, b )y =exp{— f db”’%a“” . (4.43)
0
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Going back to the nuclear rest frame and remembering that S(¥)) = s(¥, L), we obtain
qqN
2

S(EL, b1, Y =0) :exp{—U T(I;L)]. (4.44)
Note that o?9" does not depend on the energy of the collision (and therefore on its net
rapidity): to underscore this we have put ¥ = 0 in the argument of the S-matrix in Eq. (4.44).
This will delineate this expression from the energy-dependent version that results from
incorporating small-x evolution into this picture.

Using Eq. (4.44) along with Eq. (4.28) in Eq. (4.38), the imaginary part of the forward
scattering amplitude in the Glauber-Gribov—Mueller (GGM) model (Mueller 1990) is
given by

w3 T+ 1
N, by, Y=0)=1—exp{— Th)x1xGy | % = |- (4.45)
X

2N, q
This is the GGM multiple-rescattering formula. Note again that the nucleon’s gluon
distribution function xGy in Eq. (4.45) is taken at the lowest, two-gluon, level and is thus
independent of x, so that the amplitude N in Eq. (4.45) is independent of energy.
Equation (4.45) has aremarkable property: one can see that it implies N < 1 for all (per-
turbative) x . This means that the resulting forward scattering amplitude obeys the black-
disk limit constraint (4.33), correcting the problem of the single rescattering amplitude
from Eq. (4.32). We see that multiple rescatterings unitarize the scattering cross section,
preserving the black-disk limit. The lesson we learn from the Glauber-Gribov—Mueller
model is that to unitarize a cross section it is important to include multiple rescatterings!
Equation (4.45) allows us to determine the parameter corresponding to resummation of
the diagrams like that shown in Fig. 4.5. Using the gluon distribution from Eq. (4.27) in
Eq. (4.45), and noting that for large nuclei the profile function T'(b,) scales as A3, we
conclude that the resummation parameter of multiple rescatterings is (Kovchegov 1997)

aZA'S, (4.46)

The physical meaning of the parameter o> A'/3 is rather straightforward: at a given impact
parameter the dipole interacts with ~ A'/3 nucleons, exchanging two gluons with each.
Since two-gluon exchange is parametrically of order «? we obtain a2 A'/? as the resumma-
tion parameter.

4.2.3 Saturation picture from the GGM formula

Multiple nucleon interactions become important in Eq. (4.45) when the dipole size becomes
of order x; ~ 1/Q;, where the saturation scale Q is defined by the following implicit
equation (cf. Eq. (3.133)):

2
& r(BxGalx, OY. (4.47)

2epyi
0;(b1) = 2N,

Note that for a cylindrical nucleus, as considered in Sec. 3.4.2, one has T(B =A/S,
so that, taking into account that the nuclear gluon distribution is x G4 = AxGy (which is
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Fig. 4.11. The imaginary part of the forward amplitude of the dipole-nucleus scattering
N plotted as a function of the transverse separation between the quark and the anti-
quark in a dipole x, using Eq. (4.51). (Reprinted from Jalilian-Marian and Kovchegov
(2006), with permission from Elsevier.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

true at the two-gluon level considered here), one can recast Eq. (4.47) in almost the exact
form of Eq. (3.133). The difference N./Cr between the saturation scales in (4.47) and in
(3.133) is due to the fact that the saturation scale (4.47) we have just found is that for a quark
dipole, whereas the saturation scale in Eq. (3.133) was obtained solely for gluons. If we
were to replace the quark dipole in Fig. 4.5 with a gluon dipole, we would need to modify
the exponent in Eq. (4.45) by the ratio of the adjoint and fundamental Casimir operators
N./CF, putting Eq. (4.47) in exact agreement with Eq. (3.133). With this proviso, we see
that, at least at the lowest order considered, Eq. (4.47) gives the same saturation scale as
what follows from the GLR-MQ equation.
Inserting the lowest-order single-quark gluon distribution function,

p C 2
xGLa w00 = 2 (4.48)
into Eq. (4.45), we can rewrite it as
iy Ty o2Crm - 1
N(@E1, b, Y =0)=1—exp {— N, T(by)x: 1nH} : (4.49)

Defining the quark saturation scale (note the factor 4 difference compared with Eq. (4.47)
and the absence of a gluon distribution in this definition),

S 47:’:152 Cr

Q3(by) = —

c

T(b,), (4.50)
we rewrite Eq. (4.49) as

i 2 02(h 1
N(fL,bL,Y=0)=1—exp{—%1nn—A . (4.51)

The dipole amplitude N from Eq. (4.51) is plotted schematically in Fig. 4.11 as a function of
x1. One can see that, at small x, i.e., x; <« 1/Q;, we have N ~ x}_ so that the amplitude
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