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4.2 GGM multiple-rescatterings formula 139

Going back to the nuclear rest frame and remembering that (X 1) = s(¥,, L), we obtain

qqN

S(EL,BJ_,Y:O)zexp{MU T(EJ_)]. (4.44)
Note that o9%" does not depend on the energy of the collision (and therefore on its net
rapidity): to underscore this we have put ¥ = 0 in the argument of the S-matrix in Eq. (4.44).
This will delineate this expression from the energy-dependent version that results from
incorporating small-x evolution into this picture.

Using Eq. (4.44) along with Eq. (4.28) in Eq. (4.38), the imaginary part of the forward
scattering amplitude in the Glauber-Gribov—Mueller (GGM) model (Mueller 1990) is
given by

o

2N,

This is the GGM multiple-rescattering formula. Note again that the nucleon’s gluon
distribution function xGy in Eq. (4.45) is taken at the lowest, two-gluon, level and is thus
independent of x, so that the amplitude N in Eq. (4.45) is independent of energy.
Equation (4.45) has a remarkable property: one can see that it implies N < 1 for all (per-
turbative) x ;. This means that the resulting forward scattering amplitude obeys the black-
disk limit constraint (4.33), correcting the problem of the single rescattering amplitude
from Eq. (4.32). We see that multiple rescatterings unitarize the scattering cross section,
preserving the black-disk limit. The lesson we learn from the Glauber-Gribov—Mueller
model is that to unitarize a cross section it is important to include multiple rescatterings!
Equation (4.45) allows us to determine the parameter corresponding to resummation of
the diagrams like that shown in Fig. 4.5. Using the gluon distribution from Eq. (4.27) in
Eq. (4.45), and noting that for large nuclei the profile function T(!; 1) scales as A3 we
conclude that the resummation parameter of multiple rescatterings is (Kovchegov 1997)

L= = 1
N1 ,b,,Y=0)=1—exp [— T(bl)xixGN (x, —2)} . (4.45)
x

1

a?A'R, (4.46)

The physical meaning of the parameter 2 A'/? is rather straightforward: at a given impact
parameter the dipole interacts with ~ A'/3 nucleons, exchanging two gluons with each.
Since two-gluon exchange is parametrically of order a? we obtain o> A'/? as the resumma-
tion parameter.

4.2.3 Saturation picture from the GGM formula

Multiple nucleon interactions become important in Eq. (4.45) when the dipole size becomes
of order x; ~ 1/Q;, where the saturation scale Q; is defined by the following implicit
equation (cf. Eq. (3.133)):

2
sTT

o
2N,

0%(by) = T(h)xGy(x, 0F). (4.47)

Note that for a cylindrical nucleus, as considered in Sec. 3.4.2, one has T(E 5) = AL
so that, taking into account that the nuclear gluon distribution is xG4 = AxGy (Which is
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Fig. 4.11. The imaginary part of the forward amplitude of the dipole-nucleus scattering
N plotted as a function of the transverse separation between the quark and the anti-
quark in a dipole x,, using Eq. (4.51). (Reprinted from Jalilian-Marian and Kovchegov
(2006), with permission from Elsevier.) A color version of this figure is available online at
www.cambridge.org/9780521112574.

true at the two-gluon level considered here), one can recast Eq. (4.47) in almost the exact
form of Eq. (3.133). The difference N./Cr between the saturation scales in (4.47) and in
(3.133) is due to the fact that the saturation scale (4.47) we have just found is that for a quark
dipole, whereas the saturation scale in Eq. (3.133) was obtained solely for gluons. If we
were to replace the quark dipole in Fig. 4.5 with a gluon dipole, we would need to modify
the exponent in Eq. (4.45) by the ratio of the adjoint and fundamental Casimir operators
N./CF, putting Eq. (4.47) in exact agreement with Eq. (3.133). With this proviso, we see
that, at least at the lowest order considered, Eq. (4.47) gives the same saturation scale as
what follows from the GLR-MQ equation.
Inserting the lowest-order single-quark gluon distribution function,

Cp . 02
unark ' 208 Ay s 4.48
XG0 (x QJ_) e n 7%, ( )
into Eq. (4.45), we can rewrite it as
S, o Crm _ - 1
N(xj_,bi,Y:O)= l—exp{—S—Nc—T(bL)xilnxL—A} (449)

Defining the quark saturation scale (note the factor 4 difference compared with Eq. (4.47)
and the absence of a gluon distribution in this definition),

- dgolC 25
Qib1) = ——T(by). (4.50)
C
we rewrite Eq. (4.49) as
2 N2h
N(>[._Q(__>_] s
4 .JC_LA

The dipole amplitude N from Eq. (4.51) is plotted schematically in Fig. 4.11 as a function of
x1 . One can see that, at small x,i.e.,, x) <« 1/Q;, we have N ~ xi so that the amplitude
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4.3 Mueller’s dipole model 141

is zero for zero dipole size. This result is natural, since in a zero-size dipole the color
charges of the quark and the antiquark cancel each other, leading to the disappearance
of interactions with the target. This effect is known as color transparency (Kopeliovich,
Lapidus, and Zamolodchikov 1981, Nikolaev and Zakharov 1991, Heiselberg er al. 1991,
Blaettel et al. 1993, Frankfurt, Miller, and Strikman 1993).

The amplitude (4.51) is a rising function of x at small dipole size. However, at large
dipole size x; 2 1/Q;, growth stops and the amplitude levels off (saturates) at N = 1.
As mentioned earlier, this regime corresponds to the black-disk limit for dipole-nucleus
scattering: for large dipoles the nucleus appears as a black disk. The transition from N ~ x?
to the black disk-like (¥ = 1) behavior in Fig. 4.11 occurs at around x; ~ 1/Q;. For dipole
sizes x) 2 1/Q; the amplitude N saturates to a constant. This translates into saturation of
the quark distribution functions in the nucleus, since xg + x§ ~ F» (see Eq. (2.46)) and
the saturation of N implies the saturation of F», as follows from Egs. (4.10a), (4.12), and
(4.24). Thus the saturation of N can be identified with parton saturation, justifying the
name saturation scale for Q;, Eq. (4.50).

Note that since T(5,) ~ A'/? the saturation scale ZrOWS as

Q2 ~ A (4.52)

with atomic number A. If A is large enough, O, becomes perturbatively large, O > Agcp,
justifying the use of perturbation theory. The scaling in Eq. (4.52) is consistent with
Eq. (3.135), which we obtained from analyzing the GLR equation.

4.3 Mueller’s dipole model Al Aon Lewean Smell-x 5"06.2(061,

The amplitude N given by the Glauber-Gribov—Mueller formula (4.51) is independent of the
energy of the collision (see also Eq. (4.49)) and therefore cannot be the final answer for the
high energy scattering problem at hand. It turns out that the energy dependence comes into
the dipole—nucleus scattering amplitude through quantum evolution corrections, much as the
two-gluon exchange amplitude in the onium—onium scattering in Sec. 3.2 acquires energy
dependence through the BFKL evolution of Sec. 3.3. To incorporate small-x evolution into
dipole-nucleus scattering we begin by rewriting the evolution in the language of LCPT, in
which it can be completely absorbed into the light cone wave function, with the help of
Mueller’s dipole model (Mueller 1994, 1995, Mueller and Patel 1994).

4.3.1 Dipole wave function and generating functional

Let us consider the light cone wave function of an ultrarelativistic meson consisting of a
heavy quark and antiquark (an onium), with no sea quarks and gluons present before the
small-x evolution, as shown in Fig. 4.12. We can safely apply perturbative QCD to the
onium wave function since here typical transverse distance x is about 1/m g, where mg
is the large mass of the heavy quark; the strong coupling constant is clearly small at such
distances.

We will denote the “bare” onium light cone wave function by W%, (k1 , z) (cf. Eq. (4.19)),
where & is the relative transverse momentum of the g pair, z = k¥ /p* is the fraction of
the light cone momentum p* of the whole onium carried by the quark, while ¢ and o’ are
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o1
p—Fk

Fig. 4.12. The onium light cone wave function before small-x evolution.

the polarizations of the quark and the antiquark (see Fig. 4.12). The onium is moving in the
light cone plus direction. As usual we suppress the color and flavor indices, assuming that
they will be properly summed over when necessary. As we will shortly see, the transverse
size of the dipole remains invariant during the small-x evolution: therefore we will work in
a mixed representation where we use the transverse coordinates and longitudinal momenta
to describe dipoles. We thus Fourier-transform the onium wave function, using

d*k,
(2m)?

where X191 = ¥11 — Xo_ is the transverse size of dipole, the quark being located at X;; and
the antiquark at %o, (see Fig. 4.12).
As the initial onium state contains only the g4 pair its normalization is (cf. Eqs. (1.70)

W (%9, 2) = ek rig@ ¢ o), (4.53)

and (1.82))
d*k, - 2
G2 =1, 4.54
fz(l—z)[z(znp oo (k1 2) 39
which, in transverse coordinate space becomes
d?x - 2
f f 23 \yg";,(xm,z)‘ =1, (4.55)
z(l - 2)

a,a

We are interested in modifications to this wave function under small-x evolution in the
LLA approximation; thus we need to resum the terms containing o, In 1/x corrections.
Throughout this section we will work in the A* = 0 light cone gauge. As for the DGLAP
evolution of Sec. 2.4.2, one step of LLA small-x evolution consists of the appearance of a
single gluon in the wave function: the gluon can be emitted either from the quark line or
from the antiquark line, as shown in Fig, 4.13. (Just as in the case of BFKL evolution, quark
loops and the emission of g4 pairs are beyond the LLA, contributing subleading corrections
of order af In1/x.) The corresponding modification of the onium wave function due to
the gluon emissions in Fig. 4.13 is easier to calculate than in the DGLAP case. We assume
that the light cone momentum k; of the emitted gluon is small, k&5’ < ki, p™ — k{ (see
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Fig. 4.13. One step of small-x evolution in the onium wave function. The dotted lines
denote the intermediate states.

Fig. 4.13 for the explanation of the momentum and coordinate labeling). At the same
time we impose no ordering on the transverse momenta of the quarks and the gluon.
The kinematics is different from the DGLAP case (cf. Sec. 2.4.2): here the longitudinal
momenta are ordered while in the DGLAP case the transverse momenta were ordered.
In analogy with Eq. (2.68), we can write down the following expression for the ¢GG
(one-gluon) contribution to the onium light cone wave function in the A* = 0 gauge at
order g:

W (kyL, ko, 21, 22)
_ gt0(ky)
Btk —k—8)—p

Z [Ea(kl)y < € (ka)ugn ey + ka)
ki 4+ ks

WO (e +Far, z1+22)

o=l

_ Uge(p — k)Y - € (k)Vor(p — ki — k2)
pt—ki

v, zl):| . (4.56)

Here a is the gluon color index, o, o', and ¢ are the quark and antiquark polarizations,
and A is the gluon polarization z; = k5 /p* and z; = k{7 /p™.

To simplify Eq. (4.56) we first remember that we have assumed that & < k', pt — kff
(that is zz < z1, 1 — zy) and that all the transverse momenta are comparable. In this kine-
matics the light cone energy of the gluon, k, = k3, / k5, dominates the energy denominator,
just as in the DGLAP case (cf. Eq. (2.69)), only now this is due to longitudinal momentum
ordering. We can write

: VL. | (4.57)
ky kit (p—ki—k) —p= kK '

To evaluate the Dirac matrix elements in Eq. (4.56) we use Table A.1 along with Eq. (A.2),
again keeping in mind thatkf << k;7, p* — k7. For instance, the contents of the first matrix
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element in the square brackets of Eq. (4.56) simplify to

1
g (k))y - €5 (kp)ugr(ky + ka) = Eaﬂ(kl)y+“c"(kl + ka)e; (ka)*

ZAhE E Zhk E
= 2gon/kF (ki + ki ___elkJr e W N o =,
2 2,
(4.58)

Performing a similar approximation for the second matrix element in Eq. (4.56) and insert-
ing the result along with Egs. (4.57) and (4.58) back into Eq. (4.56) yields

T
‘P;;n(ku,ku,ZhZz)

Ak L
€ koo, 2 07
~ 28102 Lt [ W (e + Has 2 = W iz, @59)
21
where we have also neglected z; in comparison with z; in the argument of one wave
function.
In the transverse coordinate space representation, Eq. (4.59) has the form

hy i dP s & i
kyy- kay- 0
—————=¢Mrmtiivo gt (kL ko), 71, 22)

@m)* :
gt 4 = X1 Xa
= l—\I’;OG),,(Xm, Z;) 6_}!'_* 3 (—2 - —2) » (4.60)

r X X

D o _
W (X105 X20, 21.22)-—[

where 320 = i:QJ_ - .f[)_]_, 221 = EZ_L B fu_, and Xij = |f,j| as defined after Eq. (1.87). The
gluon has transverse coordinate X, , as illustrated in Fig. 4.13. We have used Eq. (A.10) to
obtain Eq. (4.60) from Eq. (4.59).

Squaring the coordinate-space one-gluon wave function from Eq. (4.60) and summing
over the quark and gluon polarizations and colors yields

%,

a0’ ha

g 2 _ 4a;Cr xfo

oo’

4.61
T x220x§] o o0
To calculate the probability of finding one extra gluon in the onium wave function we have
to integrate Eq. (4.61) over the gluon’s phase space, which, in the 7z, € z;,1 —z; € 1
approximation, is (cf. Eq. (4.23))*
“‘3“{21.1—21}(1 7
o (i ] (4.62)
22 4

Z0

where zg is some lower cutoff on the z,-integral, imposed to make the integration finite;
the exact value of zy depends on the physical process corresponding to the wave function
we are constructing. The order-a;, contribution to the probability of finding one gluon inthe

4 One may ask why, if our calculation is valid for z; < z;, | — z;, we can extend the z;-integral all the way up to z; or
1 — z;. While indeed our approximation breaks down for z; close to z; or 1 — zy, putting z; or 1 — z; as the upper
integration limit gives the correct leading-logarithmic contribution,



P1: SFK Trim: 247mm x 174mm Top: 13.707mm Gutter: 18.98mm

CUUK1947-04

CUUKI1947/Kovchegov 978 0521 11257 4 March 23, 2012

4.3 Mueller’s dipole model 145

o[ W N —
Ll L

[ @_ _] _[7T%
. L& L

Fig. 4.14. Virtual contribution to small-x evolution in the onium wave function. The quark
transverse coordinates in the onium are not changed by the corrections.

onium wave function is then (Mueller 1994)

min{zy, l—zl]d 2 5 min{zl‘l_zlld C 5 5
b4 x z o X
Yk - [ Rt Tl
&) i X20%21 &g
’A, 20 o0
(4.63)

Note that the modified wave function in Eq. (4.63) contains a power of ¢, and a logarithmic
integral over zp, which would give us finally In 1/x. We see that the modification we have
calculated brings in a factor e, In 1 /x. Another feature of Eq. (4.63) is that the ¥, -integral
in it contains UV divergences at xap = 0 and x,; =~ 0. For now we will regulate these
divergences by a UV cutoff p, such that x39, x3; > p: in the end no physical quantity
depends on the value of this cutoff.

Before we proceed let us point out that, as for the Glauber—Gribov—Mueller model (see
e.g. Eq. (4.41)), the expression (4.63) completely factorizes transverse coordinate space
into the square of the “bare” onium wave function times the probability of emission of the
extra gluon. The emission of an extra gluon does not change the coordinates of the initial
quark and the antiquark, yet again illustrating our above argument about the convenience of
the transverse coordinate representation. This property also gives Eq. (4.61) a very simple
physical meaning, resulting from the probabilistic interpretation of the light cone wave
functions: the contribution to the onium wave function due to the emission of an extra
gluon is equal to the product of the probability of finding a dipole with size xg inside the
onium (~ ]w;‘ij,x-’-) multiplied by the probability that the dipole emits a gluon at ¥ .

The one-gluon corrections to the dipole wave function need not be limited to the “real”
gluon shown in Fig. 4.13; they should also include virtual corrections, where the gluon
is both emitted and absorbed in the onium wave function, again like in the DGLAP case
in Sec. 2.4.2. The virtual diagrams giving the LLA contributions are shown in Fig. 4.14,
where, in accordance with the LCPT rules introduced in Sec. 1.3, the crossed lines denote
instantaneous terms. From the sheer number of graphs in Fig. 4.14 one can see that direct
calculation of all the virtual corrections can be a daunting task (see Chen and Mueller
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