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144 Dipole approach to high parton density QCD
element in the square brackets of Eq. (4.56) simplify to

1
it (k)y - € (kaJugr(ky + k2) ~ ‘iﬁa(kl)y+ua”(kl + ka)e; (k2)*

2k ]‘c‘ A J_c'
= 2yonkF (kT + ) Eik—j’i ~ 25,,3.,k1+51k—+“.
2 2
(4.58)

Performing a similar approximation for the second matrix element in Eq. (4.56) and insert-
ing the result along with Eqgs. (4.57) and (4.58) back into Eq. (4.56) yields

m 7 Z
W ki, kat, 21, 22)

EA* . Eu o4 i 4
~ zgrﬂa(z.z)iT” [wgez.m + ko, z1) — OOk, zi)] ; (4.59)
21

where we have also neglected z; in comparison with z; in the argument of one wave
function,
In the transverse coordinate space representation, Eq. (4.59) has the form

Mz = kud’hal i s 7. T
W o (X10, X205 21, 22) = _(_2—75)4—6 g C ke, ko, 21, 22)
L8t ) a 2 ¥ Xw
=i—v G E (5 -5 ), (4.60)
T X1 X

where Xx0 = ¥21 — Xo1, X21 = ¥21 — X11, and x;; = |¥;;| as defined after Eq. (1.87). The
gluon has transverse coordinate X, , as illustrated in Fig. 4.13. We have used Eq. (A.10) to
obtain Eq. (4.60) from Egq. (4.59).

Squaring the coordinate-space one-gluon wave function from Eq. (4.60) and summing
over the quark and gluon polarizations and colors yields

Z 2 _ 40tsCF x,zo Z ‘\D(OJ.

A
oo’ h.a

(1)

go’

(4.61)
T XX o,

To calculate the probability of finding one extra gluon in the onium wave function we have
to integrate Eq. (4.61) over the gluon’s phase space, which, in the zp € 77,1 — 21 € 1
approximation, is (cf. Eq. (4.23))*
min(zl,lﬁzdd e
£ ﬁ’ (4.62)

2 4
Zn

where zg is some lower cutoff on the z-integral, imposed to make the integration finite;
the exact value of zg depends on the physical process corresponding to the wave function
we are constructing. The order-«; contribution to the probability of finding one gluon inthe

4 One may ask why, if our calculation is valid for z» < z;, 1 — z;, we can extend the z;-integral all the way up to z; or
1 — z;. While indeed our approximation breaks down for z, close to z; or 1 — z;, putting z; or I — z; as the upper
integration limit gives the correct leading-logarithmic contribution.
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Fig. 4.14. Virtual contribution to small-x evolution in the onium wave function. The quark
transverse coordinates in the onium are not changed by the corrections.

/S —

onium wave function 1s then (Mueller 1994)

minfz;,1-z1) min{z;,1—z;}

dza [ d*x m|? dzn [ 5 O‘-’sCF xlO ©
.[ \IJUU" = 22 d”x ”2 JC2 Z|\.IJ

a0’ l a 20)(2] o0’

20

(4.63)

Note that the modified wave function in Eq. (4.63) contains a power of «; and a logarithmic
integral over z, which would give us finally In 1/x. We see that the modification we have
calculated brings in a factor ¢; In 1 /x. Another feature of Eq. (4.63) is that the X1 -integral
in it contains UV divergences at x50 =~ 0 and x;; =~ 0. For now we will regulate these
divergences by a UV cutoff p, such that x0, x21 > p: in the end no physical quantity
depends on the value of this cutoff.

Before we proceed let us point out that, as for the Glauber—Gribov—Mueller model (see
e.g. Eq. (4.41)), the expression (4.63) completely factorizes transverse coordinate space
into the square of the “bare” onium wave function times the probability of emission of the
extra gluon. The emission of an extra gluon does not change the coordinates of the initial
quark and the antiquark, yet again illustrating our above argument about the convenience of
the transverse coordinate representation. This property also gives Eq. (4.61) a very simple
physical meaning, resulting from the probabilistic interpretation of the light cone wave
functions: the contribution to the onium wave function due to the emission of an extra
gluon is equal to the product of the probability of finding a dipole with size xjo inside the
onium (~ |~1:§?;. |#) multiplied by the probability that the dipole emits a gluon at X3 .

The one-gluon corrections to the dipole wave function need not be limited to the “real”
gluon shown in Fig. 4.13; they should also include virtual corrections, where the gluon
is both emitted and absorbed in the onium wave function, again like in the DGLAP case
in Sec. 2.4.2. The virtual diagrams giving the LLA contributions are shown in Fig. 4.14,
where, in accordance with the LCPT rules introduced in Sec. 1.3, the crossed lines denote
instantaneous terms. From the sheer number of graphs in Fig. 4.14 one can see that direct
calculation of all the virtual corrections can be a daunting task (see Chen and Mueller
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Fig.4.15. Large-N,. limit in the onium wave function (top two panels) and the wave function
squared (bottom panel). The curly brackets in the top panel denote the daughter dipoles
generated by the gluon emission. The right-hand brace in the middle panel denotes the

parent dipole remaining intact after a virtual correction. The thin vertical line in the bottom
panel separates the wave function from its complex conjugate.

—

/
/

(1995) for an outline of the calculation). Instead we will follow Mueller (1994) and use
the unitarity argument presented in Sec. 2.4.2 (see Eq. (2.86)) to write down the following
expression for the order-e; virtual correction to the onium wave function:
min{z;,1—z;} 2

@ d%x %_C_ﬁ_{m__ \Pf,oﬁ.(fm. z1)
Ola) 2 22 T XX O(a?)

20 <‘—-
—
min{z;,1—z;}

ZC!'-CF Xo1 d22 s
——n = e ¥ (10, 21) (4.64)

(¥) -
‘I’f(,;(xw, 71)

= In
n P

0(ad)
i) :

The integral over X, is carried out in appendix section A.3 with p the UV regulator
introduced above.

Having obtained the one-gluon corrections we would now like to derive an equation
resumming the higher-order gluon emissions and virtual gluon corrections that bring powers
of a; In 1/x into the wave function, (Remember that quark loops do not contribute leading
logarithms of x.) This turns out to be a rather difficult problem. A major simplification
occurs if we consider the onium wave function in the 't Hooft large-N, limit ("t Hooft
1974), taking N, to be very large while keeping os N, constant. In the large-N, limit the
single gluon line is replaced by a double line, corresponding to replacing the gluon by a
quark—antiquark pair in the color-octet configuration. This is illustrated in Fig. 4.15. In the
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Fig. 4.16. Two steps of small-x evolution in the onium wave function squared (left) and their
large-N, limits (right). The top panel shows a nonplanar diagram, which is N2-suppressed
compared with the leading-N,. planar diagram shown in the bottom panel.

large-N, limit it is convenient to talk about color dipoles instead of gluons. The original
onium is a color dipole consisting of a quark at ¥1 and an antiquark at Xp, . The emission
of a gluon in the onium wave function, taken in the large-N, limit, corresponds to the
splitting of the original dipole with size xo into two dipoles with sizes x5 and xz9: the
dipole the size x;, consists of the original quark at ¥;, and the antiquark part of the gluon
line at X5, , while the quark part of the gluon line at ¥, along with the original antiquark at
¥q. form the dipole with size xap (see the top and bottom panels of Fig. 4.15). The virtual
gluon corrections leave the original dipole intact, as can be seen in the middle panel of
Fig. 4.15.

Another important feature of the large-N, limit is that only planar diagrams contribute;
the nonplanar diagrams are suppressed by powers of N, for fixed ey N,. This means that
different color dipoles generated by gluon emissions do not “talk” to each other: subsequent
emissions happen independently in each dipole. This is illustrated in Fig. 4.16, where in
the top panel we show an example of a diagram where a gluon emitted in one dipole in
the amplitude connects to another dipole in the complex conjugate amplitude. As can be
seen from Fig. 4.16, such diagram is indeed nonplanar; hence, it is 1/N2-suppressed (as
can be checked explicitly) and can be neglected in the large- N, limit. At the same time,
the diagram in the lower panel of Fig. 4.16, while of the same order in «; In 1/x, is also
planar: in it the gluon from one dipole does not interact with the other dipole, remaining
instead in its own dipole. This second diagram in Fig. 4.16 is of leading order in N, and has
to be resummed by large-N, dipole evolution. (Strictly speaking, the diagram in the lower
left panel of Fig. 4.16, when written in double-line notation, also contains a nonplanar
subleading-N, correction, in which the quark line in the longer gluon interacts with the
quark of the original dipole: this correction is not shown in Fig. 4.16.)

Note that, in order to obtain the leading-ln 1/x contribution to the wave function, the
softer gluons (those with smaller z) have to be emitted later (to the right in our LCPT
diagrams) than the harder gluons, with larger values of z. For instance, consider an onium
wave function with two gluon emissions, as shown in Fig. 4.17. Assume further that the
gluon emitted earlier is softer than the gluon emitted later, i.e., that z3 < z2, where, as

20:28
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Fig. 4.17. Two gluons emitted in the onium wave function: if one assumes that the gluon
emitted earlier is softer, z3 < z,, then the square of this diagram will not give a leading-
In 1/x contribution.

usual,

k'
Zi = —-

pt

A simple calculation of the wave function in Fig. 4.17, in the z3 < z, approximation, car-
ried out along the steps outlined above for a single emission would yield a wave function
proportional to z3/z3 as far as the longitudinal momentum dependence is concerned. Squar-
ing this wave function and integrating the result over z; and z3 with z; 3> 2, 3 23 > 2o
yields an answer proportional to

T dz, [do 2

22 732 21

a:ff — | =2 =_a?ln —.
20

(4.65)

22 3 z3 T9E 2o 4.66)
0

‘We see that we have only one longitudinal logarithm per two powers of the coupling a;:
this is not a leading logarithmic contribution. Hence the square of the diagram in Fig. 4.17
is subleading in In 1/x and does not contribute to the leading-In1/x evolution we are
considering here. It does contribute when one attempts to calculate the NLLO corrections to
the evolution we are about to construct (see Chapter 6). Using similar arguments, one can
show that the diagram in Fig. 4.17 does not contribute to the LLA, even when we take its
overlap with the wave function resulting when gluon 3 is emitted after gluon 2. In fact one
can also show that no diagram with inverse time-ordering like that in Fig. 4.17 contributes
in the LLA approximation. We thus come to another important conclusion: to obtain LLA
evolution in the wave function, the gluon emissions with

b 1> A N> (4.67)

must be ordered in time, with the harder (larger-z) gluons emitted before the softer (small-z)
gluons.

Now the structure of the small-x light cone wave function becomes manifest: in one
step of evolution a gluon is emitted. It can be a real gluon, like those in the top and bottom
panels of Fig. 4.15, which would split the initial (parent) dipole 10 (“one-zero”) into two
new (daughter) dipoles 12 and 20. The subsequent o In 1/x evolution is driven by further
gluon emission: this would happen independently (and in parallel) in both daughter dipoles.
An example of two-gluon emission is shown in the second panel of Fig. 4.16. Alternatively,
the emission in the initial dipole can be virtual, as shown in the middle panel of Fig. 4.15;

20:28
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Fig. 4.18. Definition of an abbreviated notation for the sum of all large-N, diagrams
contributing to the real-gluon emission in the square of an onium wave function.

then the initial dipole remains intact, any subsequent evolution occurring within the initial
dipole at later times.

As we can see from Eqgs. (4.63) and (4.64), in the mixed representation in which we
are working, each step of the evolution factorizes from the previous one, simplifying
the construction of the gluon wave function. To illustrate this, let us consider two steps
of small-x evolution due to two consecutive real-gluon emissions, including all possible
LLA diagrams. It is convenient to introduce the shorthand diagram notation presented
in Fig. 4.18, where the sum of all four (large-N,) diagrams corresponding to real-gluon
emission in the onium wave function comprises one diagram, that in the upper left of the
figure. The diagrams in Fig. 4.18 give us the correction to the dipole wave function in
Eq. (4.63). The kernel of this correction can be decomposed as follows:

2 - -
OESCF Xio _ Q'SCF ( 1 X21 " X20 1 )

(4.68)

y e
2 2 2 2 2
5 X5pX5; 4

3 X31%3 X3
where the first and the last terms on the right-hand side of Eq. (4.68) correspond to the
last two graphs in Fig. 4.18, while the first two (interference) diagrams on the right of
Fig. 4.18 give the second term on the right of Eq. (4.68). The very first diagram in Fig. 4.18
corresponds to the full emission kernel on the left of Eq. (4.68).

Using the notation of Fig. 4.18, the square of the large- N, onium wave function with two
real gluons in it in the LLA approximation can be represented simply by the two diagrams

depicted in Fig. 4.19, with the gluons ordered in longitudinal momenta such that z 3 z3.

20:28
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Fig. 4.19. Two real gluons in the LLA approximation and in the large-N, limit contributing
to the square of an onium wave function. The length of the lines is driven by light cone
time-ordering.

According to the rules outlined above, the gluon carrying momentum fraction z; has to be
emitted before the gluon carrying z3, as shown in Fig. 4.19. The emission of gluon 2 splits
the original dipole 10 into two dipoles. The subsequent emission of gluon 3 can occur either
in dipole 12 (Fig. 4.19A) or in dipole 20 (Fig. 4.19B). (Note that gluon 3 is emitted from
gluon 2 via a three-gluon vertex.) Iterating Eq. (4.63) twice, we see that the sum of the graphs
A and B in Fig. 4.19 brings into the onium wave function squared the following factor:

dz dzs o C x2 x2 x2
f 2 f f dz d2x3 ( ZF) . 102 ( - 122 + - 202 . (4-69)
T X% \X31¥32 X3pX3

(For simplicity of notation we have put z; as the upper cutoff of the zs-integration,
since at LLA accuracy one cannot see any significant difference between z; and 1 — z;.)
Equation (4.69) demonstrates that the small-x evolution in the onium wave function
consists of consecutive emissions ordered in rapidity and light cone time, with the
transverse dynamics included in a factorized way.

To describe the onium wave function formally including s In1/x corrections to all
orders it is convenient to define the dipole generating functional Z(¥X\g, oL, Y: u) by

Z(Er0, bor, Ysu) Y WS, (Gro, 20) 2

ago! O(a.?)

zfd2r1d251|‘1’m(?u_,gu, V)PuiL, bis)

1 L.
+ o d*rid?byd%ryd by |\ W7y L, by o, oy, by, VI

X u(Fie, br)ulFar, bar) + -

[ee]
1 5 - " o
= Z al fdzf'ldzbl o drd?by [ WM F L By Frd By, V)P

X uFiL, br1)- - u(ar, bud). (4.70)
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J 4 eee
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Fig. 4.20. An abbreviated notation for the sum of all large-¥, diagrams contributing to the
virtual gluon correction to the onium wave function,

J:: +
.

40
ay

-
-

ﬁl

0

Fig. 4.21. Diagrammatic representation for the evolution equation of the generating func-
tional Z (denoted by a shaded circle).

|1D[”>”(Y — ())l2 =0 and
w = s Pl A T
|wmvumuJY=mF:#(hl+{§—xu)ﬁ(ml—{;—xm), (4.75)
such that

Z G0, bor, ¥ = 0;u) = u(Er0, bou). (4.76)

Now that we have the initial conditions for Z-evolution, it is straightforward to write
down an evolution equation for Z. The main principle was stated several pages ago: in one
step of evolution a gluon is emitted in the dipole wave function: the gluon may be real,
splitting the parent dipole into two daughter dipoles, or it may be virtual, leaving the parent
dipole intact. In the former case the subsequent evolution continues independently in the
two daughter dipoles, while in the latter case evolution continues in the parent dipole. This
statement is illustrated diagrammatically in Fig. 4.21, where the generating functional Z
is represented by a shaded circle. The first graph on the right of Fig. 4.21 corresponds
to real-gluon emission, while the remaining two graphs represent the sum of all virtual
corrections, as shown in Fig. 4.20.

Guided by Fig. 4.21, and employing Eqgs. (4.63) and (4.64) while replacing Cr by N./2
in the large- N, limit, we can write down the following evolution equation for the generating

20:28
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so that
m? | 2P0 | 152 |1 — . (4.128)
P1o Por

4.4 The Balitsky—Kovchegov equation

We now return to the DIS process in the dipole picture of Sec. 4.1. As follows from
Eqs. (4.12) and (4.24), in order to find the DIS structure function all one needs is to
find the imaginary part of the dipole-nucleus forward scattering amplitude N (X, b, ¥
In Sec. 4.2 we constructed such an amplitude in the Glauber-Gribov—Mueller multiple
rescattering approximation. The resulting forward amplitude has no energy dependence,
as one can see from Eq. (4.49), and therefore cannot be a realistic description of the
high energy asymptotics of dipole-nucleus scattering. At the same time, the approach of
Sec. 4.2 is valid only when the small-x evolution emissions are not important, that is, only
for o, ¥ < 1. At higher energies, corresponding to rapidities Y satisfying o, ¥ 2 1, small-x
evolution becomes important and can no longer be neglected.

We see that we need to resum the LLA corrections to the dipole-nucleus scattering
amplitude (4.49). As usual we are interested in quantum evolution corrections that resum
the powers of o, In 1/x ~ o, Y.7 Just as in Sec. 4.2 we will be working in the rest frame
of the nucleus, but this time we choose to work in the light cone gauge of the projectile
dipole, A* = 0, if it is moving in the light cone plus direction. One can show by explicit
calculation that for the multiple rescatterings in Fig. 4.5 this gauge is equivalent to the
covariant gauge (9, A* = 0, see Sec. 3.3.1); therefore, our discussion in Sec. 4.2 remains
valid in this new gauge. As in Sec. 4.2 we will be working either in the nucleus rest frame
or in the frame in which the dipole is moving in the light cone plus direction while the
target nucleus is moving in the minus direction.

We need to identify radiative corrections that bring in powers of o, Y. As we saw in
Sec. 4.2, multiple rescatterings bring in only powers of «, not enhanced by factors of ¥ (but
enhanced by powers of A; the resummation parameter was a2 A'/?). Therefore, additional
t-channel gluon exchanges with new nucleons would not generate any powers of ¥ but
would bring in only extra factors of «;. These are not the corrections we are trying to
resum now. Other possible corrections in the light cone gauge of the projectile dipole are
modifications of the dipole wave function, The incoming dipole may have some gluons
(and “sea” quarks) present in its wave function. For instance, the dipole may emit a gluon
before interacting with the target; then the whole system of quark, antiquark, and gluon
would rescatter in the nucleus, as shown in the upper panel of Fig. 4.23. The dipole may
emit two gluons, which would then interact with the nucleus, along with the original g4
pair, as shown in the lower panel of Fig. 4.23. In principle there could be many extra
gluon emissions, as well as the generation of extra g4 pairs in the incoming dipole’s wave
function. As we will shortly see, these gluonic fluctuations from Fig. 4.23 actually do bring
the factors of o, enhanced by powers of rapidity Y, i.e., they do generate leading logarithmic

7 Quantum evolution is defined as the variation of a physical quantity with 0% and/or x owing quantum variations.
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< 2R >

Fig. 4.23. Quantum evolution corrections to dipole-nucleus scattering due to one-gluon
(upper panel) and two-gluon (lower panel) emissions. The lower panel also shows the
coherence time scale for gluon emission x}, and the nuclear size 2R. At high energy

x>}, > 2R: the figure does not fully reflect this scale difference.

corrections. Just as with the BFKL evolution, fluctuations leading to the formation of gg
pairs actually enter at the subleading logarithmic level, bringing in powers of ¢2Y, and are
not important for the leading logarithmic approximation used in this chapter.

Several times above (see the discussion around Egs. (2.156), (3.126), and (4.2)), we
have used the fact that owing to the uncertainty principle, for an incoming dipole moving
in the light cone plus direction a gluon with momentum k* in its wave function would have
coherence length

(4.129)
along the xT-axis. Note straight away that /-channel gluon exchanges between the dipole

and the nucleons in the nucleus, in the Glauber—Gribov—Mueller approximation of Sec. 4.2,
have k* = 0 with eikonal accuracy (i.e., up to corrections suppressed by powers of the

20:28
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Fig. 4.24. A diagram with a gluon emission between the dipole interactions with two
nucleons.

energy). Thus these ¢-channel gluons have x, = 0 and are instantaneous in the x “time”
direction in our eikonal picture. These are the instantaneous or Coulomb gluons. The
instantaneous nature of these gluons explains why the dipole rescatiers on the nucleons
sequentially: as the nucleons are assumed to be separated in x T, the dipole interacts with
a nucleon as it crosses the latter’s x*-range, with interactions that are out of order, like
that in Fig, 4.6B, not allowed by causality. The nucleons span the whole nucleus; thus the
x*-time interval filled with the instantaneous interactions of Fig. 4.5 is of the order of the
nuclear radius R in the nuclear rest frame.

Consider now the gluon modifications to the incoming dipole’s wave function shown
in Fig. 4.23. If a gluon’s k™ is large enough, as is the case at high energy, the coherence
lengths of these gluons would be much larger than the nuclear radius, x}, > R, so that
each gluon would coherently rescatter on the nucleons in the nucleus, just like the original
dipole in Fig. 4.5. This is indeed what is shown in Fig. 4.23.

Note that gluons are emitted by the incoming dipole only before the multiple rescattering
interaction (and absorbed back, after the interaction, into the forward amplitude). Emissions
during the interaction are suppressed by the inverse powers of the center-of-mass energy
of the scattering system. This can be checked via an explicit calculation in the covariant
Feynman perturbation theory. Imagine a diagram with the gluon emitted or absorbed
between the rescatterings, as shown in Fig. 4.24. As in our analysis of the graph in Fig. 4.9
above, we concentrate on the contribution of quark propagators to the /~-integral. We see
that the diagram is proportional to

o0

dl- o—ilmBx*
f 27 [(p+ D2 +iell(p +1 — k)% + i€l
—0Q
T di- —il=Ax
= f . —— . (4.130)
o [pti-— 12 iell(pt — k) (k= +17)— L2 +i€)

—03
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dd 2 d J

ey

Fig. 4.25. Forward amplitude for dipole-nucleus scattering including small-x evolution:
the incoming dipole develops a cascade of daughter dipoles, each of which interacts with
the nucleus independently.

where | and L’ denote the appropriate transverse momenta, whose exact values are not
important to us here. We have used the fact that /* = 0 and assumed for simplicity that
p~ = 0. We also changed the frame to that where the nucleus is moving along the negative
light cone. Closing the integration contour in the lower half-plane we obtain

+( :i k*) 111 L2 [e_ii%m* _eui(_kwpﬁ )Aﬂ]
Pt k) k- + 4 - A
P P =kt
oo Tt (il 1
= (1-¢2) S o (4.131)

where we have used the fact that p* > k™ and, more importantly, Ax* ~ 1/p'~ with p'~
the large light cone momentum of a nucleon in the nucleus (such that s = p*p'~ is the
dipole-nucleon center-of-mass energy). This allowed us to expand the exponential in the
second line of Eq. (4.131). Comparing with the rescatterings without gluon emission given
in Eq. (4.37) (identifying k* in (4.37) with p* here), we see that gluon emission between
rescatterings brings in suppression by a power of the energy s and can thus be neglected.

Alternatively we can consider this calculation in light cone perturbation theory. In this
case, the emission of a gluon is allowed and is equally probable at any point throughout the
coherence length of the parent dipole ng: = p*/p?, with p the momentum of the dipole
and p* very large. The probability of emission of a gluon inside the nucleus (in the nuclear
rest frame) is then proportional to R /xffh+ ~ 1/p*t ~1/s;1ie., again, just as in Eq. (4.131)
it is suppressed by a power of the center-of-mass energy s compared with emission outside
the nucleus and can be neglected in the eikonal approximation considered here.

Our goal, therefore, is to resum the cascade of long-lived gluons that the dipole in
Fig. 4.23 develops before interacting with the nucleus and then to convolute this cascade
with the interaction amplitudes of the gluons with the nucleus. To resum the cascade we
will assume the large-N, limit and use Mueller’s dipole model, presented in Sec. 4.3. In
the large-N, limit the gluon cascade translates into a dipole cascade, examples of which
are shown in Figs. 4.19 and 4.22. As we have seen above, in the LLA gluon emissions do
not change the transverse coordinates of the quark and antiquark lines in the parent dipole.
Therefore, the color dipoles have the same transverse coordinates throughout the whole
process: once they are created their transverse coordinates do not change. Resummation
of the dipole cascade reduces to the set of diagrams represented in Fig. 4.25, which is
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a generalization of Fig. 4.5 to the case of quantum evolution corrections. The incoming
dipole develops a cascade of daughter dipoles through evolution according to Mueller
dipole model.

The evolved system of dipoles interacts with the nucleus. The interaction is brief and
does not change the transverse coordinates of the dipoles. In the large- N, limit no dipole
interacts with any other dipole during the evolution that generates all the dipoles. For a
large nucleus the daughter dipole—nucleus interaction was calculated above in the GGM
approximation and is given by Eq. (4.51). That result resums powers of a2 A'/3. Analyzing
the diagrams for the interaction of several dipoles with the nucleus we see that the GGM
interaction of, say, two dipoles with a single nucleon is suppressed by extra powers of o
not enhanced by A3 and is therefore subleading and can be neglected. The interaction
of two dipoles with two nucleons in the large-N, limit is dominated by diagrams where
each dipole interacts with only one nucleon (assuming both dipoles interact). In general
one can argue that, in the large-N, limit and at the leading order in A (or, equivalently,
resumming powers of a>A'/%), the interaction of any number of dipoles with the nucleus is
dominated by the independent interactions of each dipole with a different set of nucleons
in the nucleus through multiple rescatterings of the type in Fig. 4.5. This is depicted in
Fig. 4.25: there each dipole present in the dipole wave function may have interacted, by
the time it hits the nucleus, with different nucleons in the nucleus by exchanging pairs
of gluons. (It can be shown that only some dipoles thus interact.) Therefore, the dipoles
are completely mutually noninteracting: they do not exchange gluons in the process of
evolution, since those corrections would be suppressed by powers of N, and they interact
with different nucleons in the nucleus; the last statement is correct at leading order in A
(Kovchegov 1999).

Summation of the dipole cascade of Fig. 4.25 now becomes straightforward. Instead
of calculating the forward dipole—nucleus scattering amplitude N (¥, b 1, ¥) we start with
the S-matrix S(X_, b 1, Y), which is related to N via Eq. (4.38). We write it here again for
completeness:

S, by, Y)=1=N@E, by, 7). (4.132)

As follows from the above discussion, S(¥1q, 50 1, ¥) can be written as a convolution of the
dipole cascade and the dipole interactions with the target, as shown in Fig. 4.25. Namely, it is
a sum of the probability of finding one daughter dipole in the parent dipole, convoluted with
the S-matrix for dipole-nucleus scattering in the GGM approximation, and the probability
of finding two dipoles, convoluted with their multiple rescattering interactions with the
nucleus, etc. We write (Kovchegov 1999)

I 1
S(x10, by, Y)= E F[dzrldzth v dzi’kdzbk
=10

¥ Z(F0, by, Yiu)

Su(Fie, bio) - - - Su(es, bes) lu=o

so(F1L, b1e) -« - So(FiL, bro).

(4.133)

20:28

®



P1: SFK Trim: 247mm x 174mm Top: 13.707mm Gutter: 18.98mm
CUUK1947-04 CUUKI1947/Kovchegov 9780521 112574 March 23, 2012 20:28

6

168 Dipole approach to high parton density QCD

331;——( D w:
NP

+@ 1

Fig. 4.26. Diagrammatic representation for the evolution equation of the S-matrix for
dipole-nucleus scattering, denoted by a shaded circle. The vertical broken lines denote the
interaction with the target.
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¥ Z (G0, b1, Y5 u)

Su(Fii, bry) - duFey, bit)

(4.134)

u=0

gives the probability of finding exactly k daughter dipoles in the parent dipole wave function
(cf. Eq. (4.71)), and

’ ; 202(b 1
501, BL) = SCMBRY = 0) = exp | #1201 1 ETRED)
4 XJ_A
as follows from Eqs. (4.51) and (4.132).
Summing the series in Eq. (4.133) yields (see Eq. (4.70))
SGi0,bi, V) =2 (5510, by, Yiu= So) (4.136)

(Kovchegov 1999). This relation shows that both the dipole—nucleus S-matrix and the
generating functional Z obey the same nonlinear evolution equation. The initial condition
for Z in (4.76) is replaced by Eq. (4.135).

We see that the evolution of S(¥,, b 1, Y) is the same as the evolution of the generation
functional Z in Sec. 4.3: it is illustrated in Fig. 4.26 (cf. Fig. 4.21). The dipole cascade and
its interaction with the target are denoted by a shaded circle. In one step of the evolution
in energy (or rapidity) a soft gluon is emitted in the dipole. If the gluon is real then the
original dipole is split into two dipoles, as shown at top right of Fig. 4.26; these dipoles
proceed to evolve and interact (or not) independently with the target (the S-matrix includes
the noninteraction term, the “1” in Eq. (4.132)). Virtual corrections, given by the two lower
diagrams in Fig. 4.26, lead only to the parent dipole’s subsequent evolution and interaction
with the target. We obtain an evolution equation for the S-matrix (Balitsky 1996, Kovchegov
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BY 10: Y1,

2
o5 Ne 2 *io
) dx——
T X302

% [s (5512, by + "zﬂ Y) S (im, by + %1 Y) — S(F10, b, Y)] . (4.137)

The initial condition for this evolution equation is given by S(¥1g, EL, Y = 0)inEq. (4.135).
Asusual by = (11 + %o.)/2.

Using Eq. (4.132) in Eq. (4.137) we derive an evolution equation for the imaginary part
of the forward dipole-nucleus scattering amplitude N (Balitsky 1996, Kovchegov 1999):

.. 2 o N, f 5 &n
— N, b1, ¥) = d
gy e N =g | W g

X [N (512, by + %, Y) +N (5520. by + % Y) — N(Xo, by, Y)

2

This is the Balitsky-Kovchegov (BK) evolution equation. The initial condition for the BK
evolution is given by Eq. (4.51):

-N (flz,gL-l-x—;U.Y)N(fzn,EJ_-i-xil,Y):|- (4.138)

(4.139)

=+ 2 12 E 1
N(ZL,bL,Y =0)=1—3Xp[—x-LQ"'O( J_)ln ]‘

4 XiA

where we have replaced Q%(E 1) from Eq. (4.51) by QEO(E; 1) to underscore that this is
the saturation scale in the initial condition for the evolution. (As we will see shortly,
the saturation scale is modified by the nonlinear BK evolution equation: in particular it
becomes dependent on the rapidity ¥.) Equation (4.138) resums all powers of the multiple
rescattering parameter ¢2 A'/3, along with the leading logarithms of energy in the large-N,
limit given by powers of at; N Y.

Below we will sometimes use a more compact notation for the dipole-nucleus amplitude,

N1, 2o, ¥) = N, by, 7). (4.140)

Using this notation, we can rewrite Eq. (4.138) as

d B, o N, x32
—N(xm,xm,Y)= i ,JL fdzxz 2102
oY 2= X3p%X3)

X [N(J?u_,fu! ¥)+ N(X21, %o, ¥) — N(X11, X1, ¥)

— N(X11, %21, YIN(X21, KoL, Y)]- (4.141)
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Fig. 4.27. Diagrammatic representation of the BK evolution equation for the forward
dipole-nucleus scattering amplitude N, denoted by a shaded circle. Only one virtual term
is shown, for brevity.

The BK equation is represented diagrammatically in Fig. 4.27. Balitsky—Kovchegov
evolution has a simple physical meaning. At fixed rapidity a colorless dipole with size xy
decays into two dipoles with sizes xj; and xa9. Either one dipole proceeds to evolve and
interact with the target while the other dipole remains a spectator (the first two, linear,
terms after the equals sign in Fig. 4.27) or both dipoles evolve and interact with the target
(the nonlinear term in Fig. 4.27). The minus sign in front of the nonlinear term reflects
the fact that taking into account two independent interactions overestimates the result.
The nonlinear term corresponds to the shadowing corrections in the GGM approach: for
instance, expanding Eq. (4.45) in powers of interactions with the nucleons we see that the
quadratic term enters with a minus sign. The reason for that minus sign is the same as
the reason for the minus sign in the last term of Eq. (4.138).

Equation (4.138) was originally derived by Balitsky (1996) in the framework of the
effective theory of high energy interactions and, independently, by one of the present
authors (Kovchegov 1999) using the formalism of Mueller’s dipole model (Mueller 1994,
1995). It was rederived by Braun (2000a) using the large-N, limit of the expression for
the triple pomeron vertex from Bartels and Wusthoff (1995) in a resummation of the fan
diagrams in Fig. 3.23.

Comparing the linear part of the BK equation (the first three terms on the right of
Eq. (4.138)) with Eq. (4.87), we see that the linear terms in the BK equation give the
coordinate-space BFKL equation. As already mentioned, the nonlinear term can be obtained
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from the triple-pomeron vertex in the large- N, limit (Braun 2000a). Hence Eq. (4.138) has
the overall structure of the GLR equation and corresponds to fan diagram resummation in
the conventional Feynman perturbation theory, It is natural to expect that the BK evolution
leads to the same physical effects as the GLR equation: for a given fixed dipole size, the
dipole amplitude N would start out growing with rapidity owing to BFKL evolution (see
Eq. (4.102)); the nonlinear term would become important at higher rapidity and lead to
saturation and slowdown of the energy growth. In the next section we will see that this is
indeed the case.

In solving the BK equation (4.138) one often (but not always) assumes that the variation
in the amplitude N (%X, EL, Y) with the impact parameter EL is small when I-J'l varies over
distance scales comparable with the dipole size |¥;p|. This is indeed true for scattering on
a very large nucleus far away from its edges. This assumption allows to neglect the shifts
in the impact parameter on the right-hand side of Eq. (4.138). Moreover, assuming that the
nucleus is isotropic we may neglect the angular dependence of ¥1g. We thus may replace
N(x10, BJ_, Y) approximately by N(x¢, ¥) in Eq. (4.138), obtaining

il oy N, x2
— NG, ¥) === [ dx—52
Yy (x10, ) 272 f x2x§0x221

X |:N (x12, ¥) + N (x20, ¥) — N(x10, ¥) — N (x12, ¥) N (x20, Y)]-

(4.142)
Performing the Fourier transformation
2 d*k iky %1 Ky
NGy, Yy =x1 [ S—e™ 5 Nk, 1), (4.143)
we write (Kovchegov 2000)
NGk, Y)  _ i ) g o
—=ax |0,z |14+ —— ) | Nk, ¥)—a,N“(kL, V). 4.144
37 &x |92\ 1 s (kp, ¥Y) —a;N°(ky, ¥) (4.144)

This equation is useful for obtaining approximate solutions for the BK evolution that we
will present below. Also, note that making the identification

NeS1
o T2

rﬁ(x,kf_) = Nky,Y =1In 1/x) (4.145)
in Eq. (4.144) reduces it to the GLR equation (3.128). This is indeed remarkable: however,
there exists no physical justification for the Fourier transformation (4.143). At the lowest,
two-gluon-exchange, order the relation between the dipole amplitude N and the uninte-
grated gluon distribution ¢ should be of the form of Eq. (4.98) (with f there proportional
to ¢). In the region where multiple rescatterings and quantum evolution are important, the
exact relation between N and ¢ is not clear.
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