

Sustainable and affordable design

STRENGTH THROUGH COOPERATION

VDL FACTS AND FIGURES 2023

Family business VDL Groep was founded in 1953

75% of our products are exported to **112** countries around the world

We consist of more than 100 companies

Employees in 19 different countries

Combined revenue

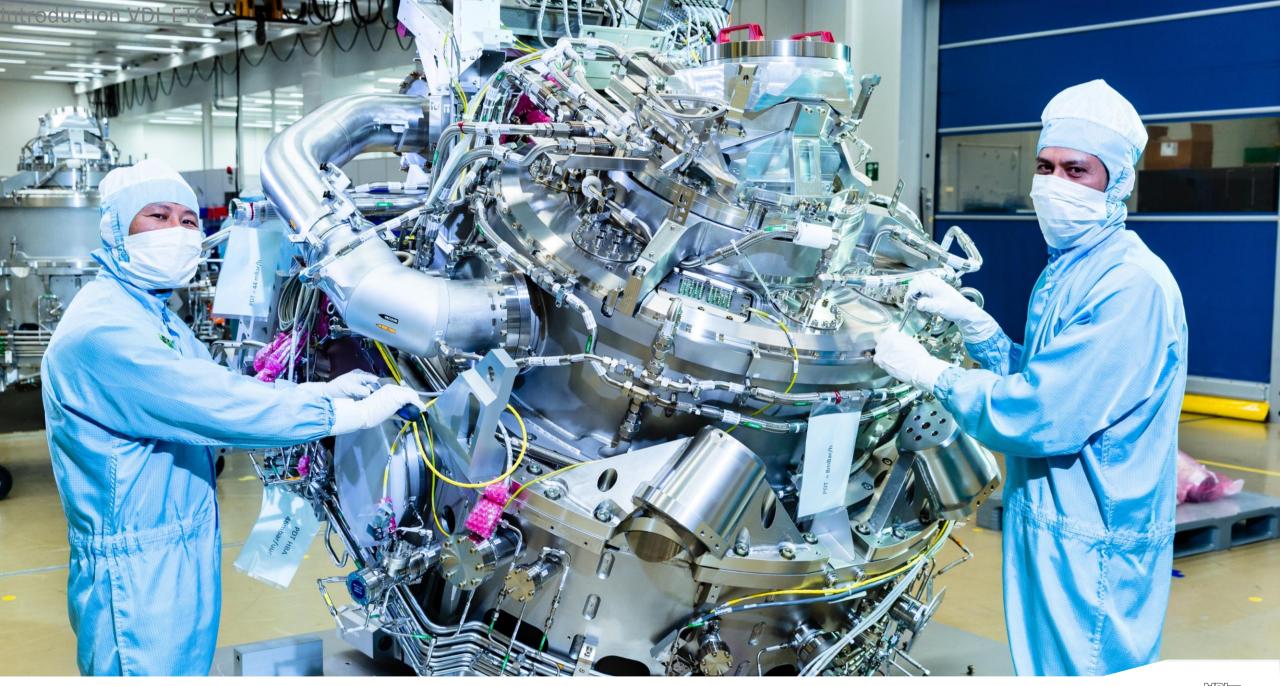
VDL Groep is in the top six on the Dutch reputation ranking

Source: RepTrak

THE WORLD OF VDL GROEP

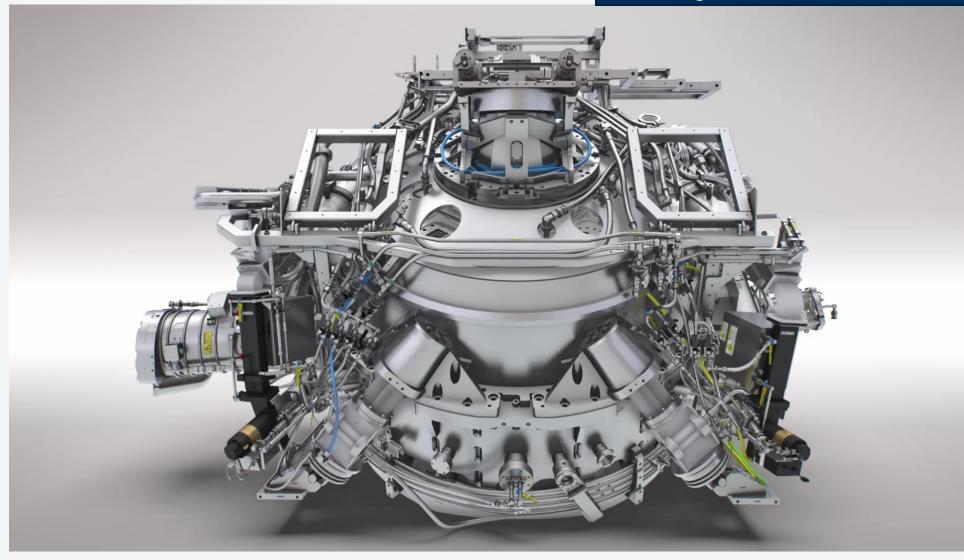
VDL ETG

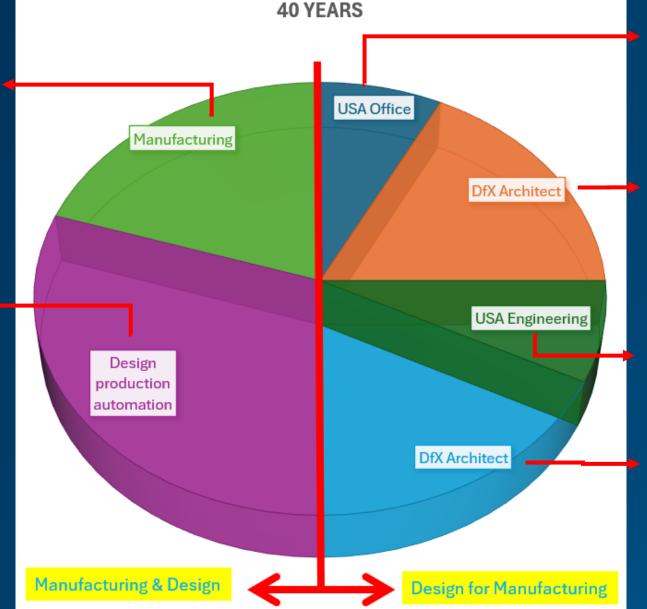
Extremely Large Telescope


123

Adaptive segmented main mirror

Product examples


Design and manufacturing of ElecronBeam systems


EUV light source

Light Source Vessel

How to machine the parts How to setup parts How to measure parts How to weld parts How to clean parts

Customer requirements Module requirements Part requirements Qualification requirements Assembly requirements Test requirements

Cost efficiency OEM localization Standard requirements Special process qualification

Understand functional requirements Translate to manufacturing technologies

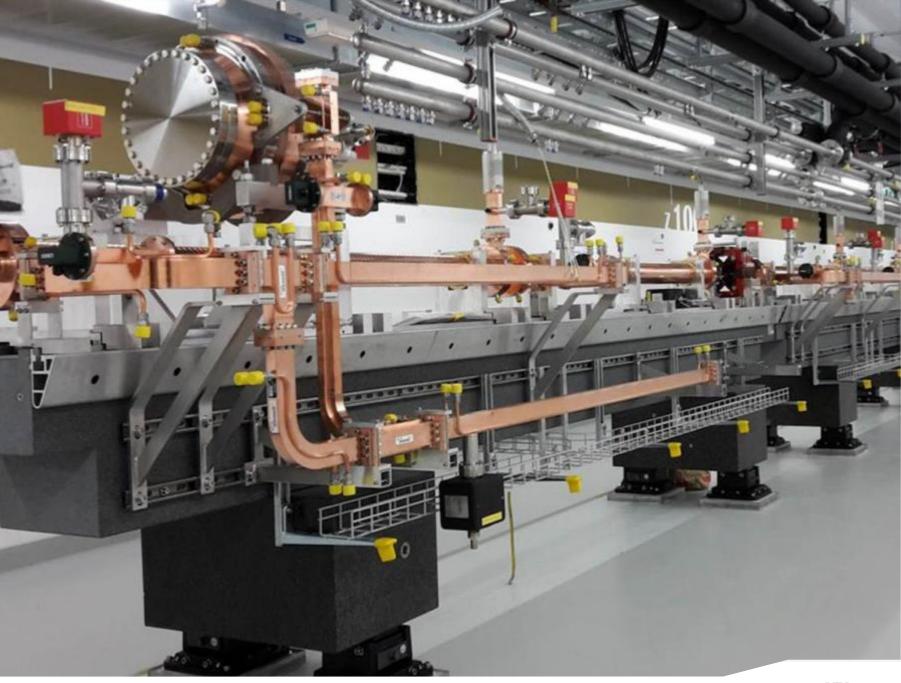
DfX with Customer engineering

Design with Customer designers Factory automation Feasibility studies

Particle contamination **Process requirements** System architecture Stiffness System architect **V**acuum **DfX** architect Hardware **D**ynamics **Environment Mechanical** Contamination Materials **Specialists** Architect Temperature Tolerances **Process** Faction (**Requirements Physicist** Machine control Data control Power supply **Power** Controls **Electronics** Diagnostics Motion control **Software** Drivers 2 Mallimorards 3 Bollabolt 2 Designed > tribology Architect Architect 3 Actantors Predictive Cabling maintenance

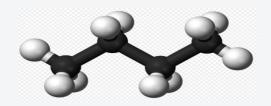
Frames

High-tech structures


- Structural dynamics
- **Seismic**
- Stability
- Changing loads
- > Thermal
- Advanced machining
- Kinematic interfaces
- **Tolerances**
- Cost

Vacuum & beam

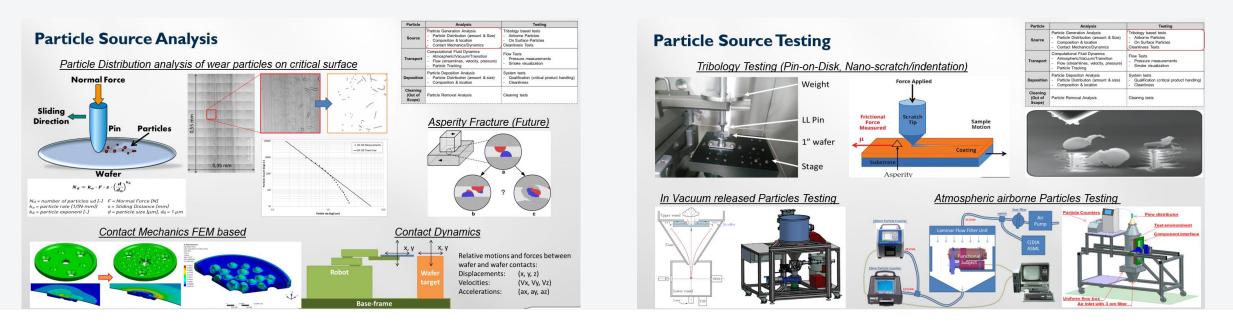
Cleanliness & high voltage


- **V**ltra-precision machining
- Brazing
- Diffusion bonding
- **R**F
- High-voltage
- Electro-magnetics
- Shielding
- Contamination control

Molecular contamination

Production introduced contaminiation

12

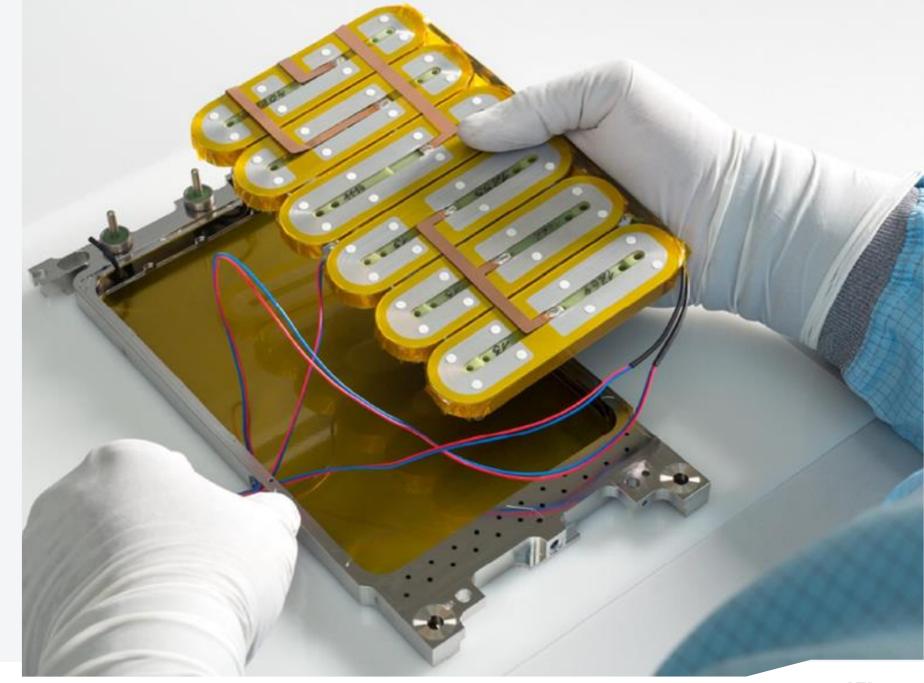

- > Organic cooling fluids, greases, finger prints, glues
 - → Problem: Vacuum quality issues
 - \rightarrow Measurement: RGA
 - →Cleaning strategy: Degrease, bake-out, assembly, RGA qualification

Particle contamination

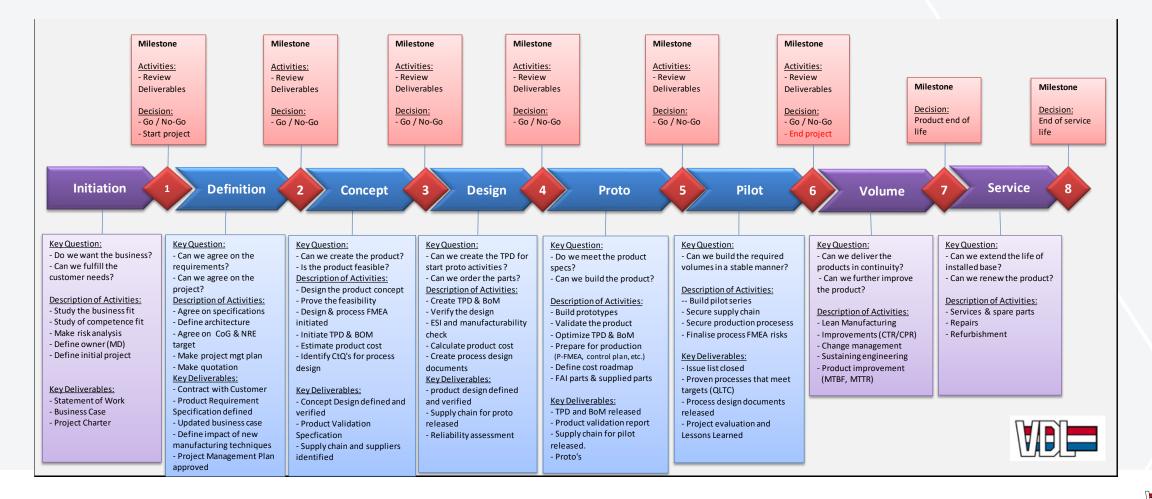
Introduction by Manufacturing or Handling in the system

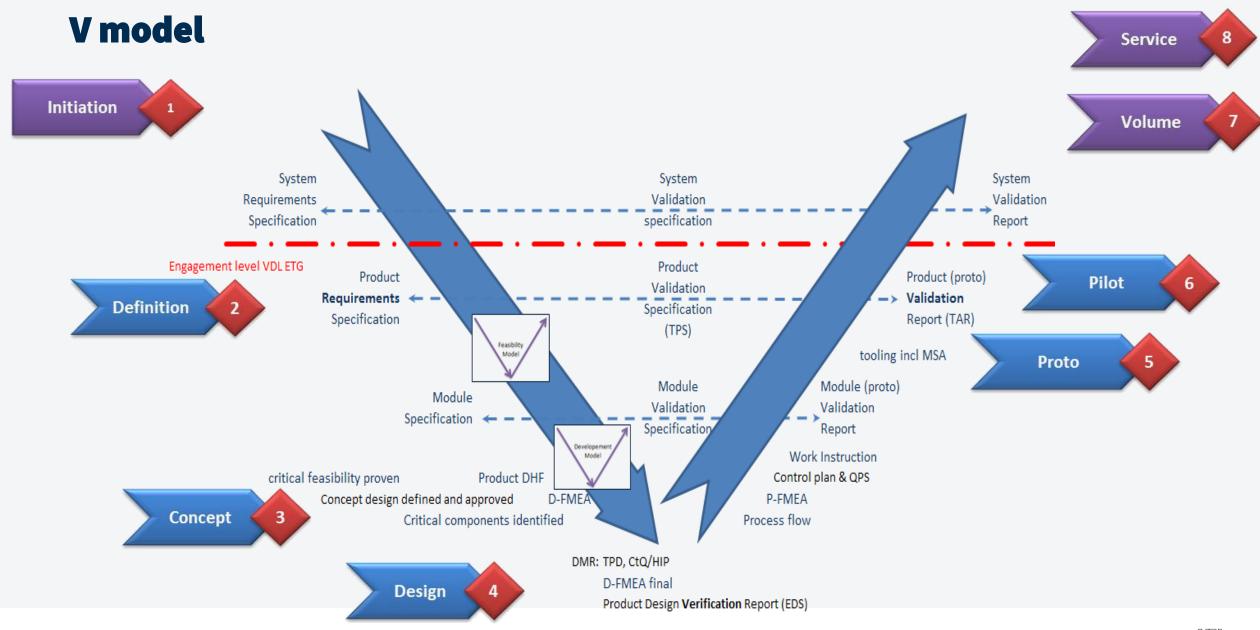
- Introduction by manufacturing should be removed mechanically, Brushing or Ultrasonic
- Introduction by Handling generated by contact between two materials. Avoid as much as possible. Big partical generators are gate valves because of the big contact surface.

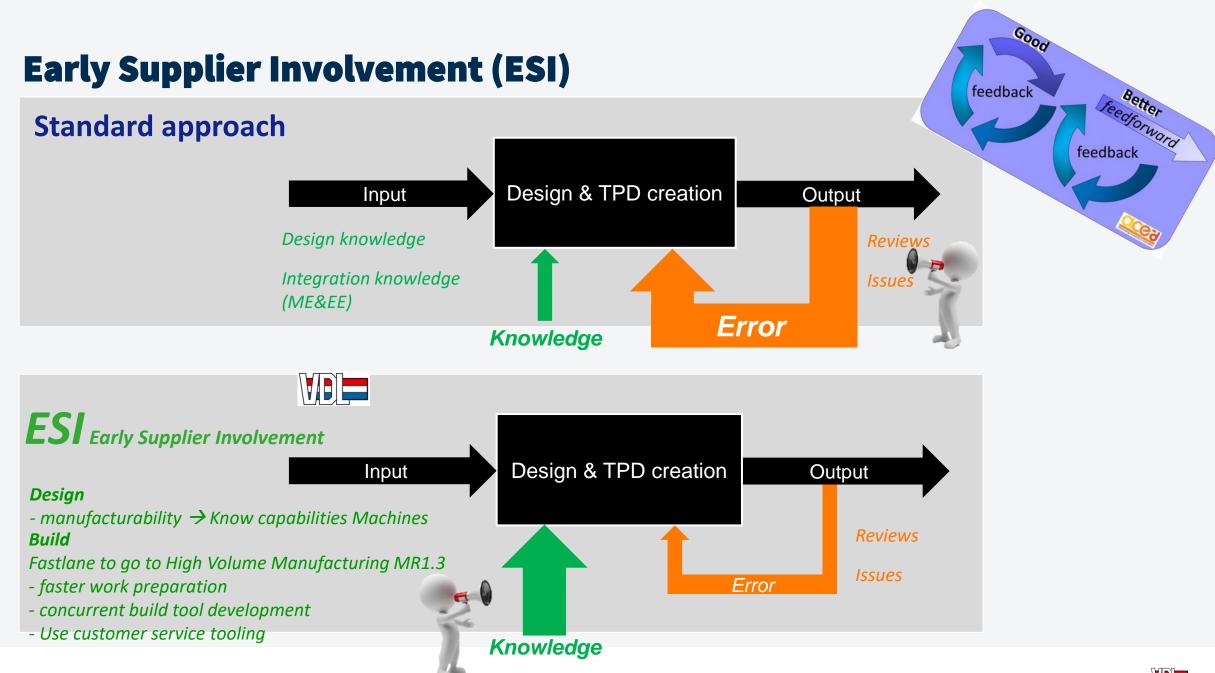
Ultimate control


- Motion control
- Machine logistics
- Reliability
- Contamination control
- Tribology
- Robots
- Load locks
- Diagnostics
- Cost

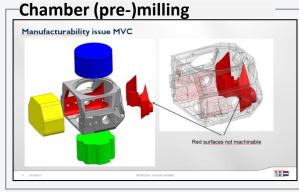
Positioning

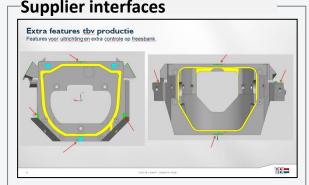

Ultimate control

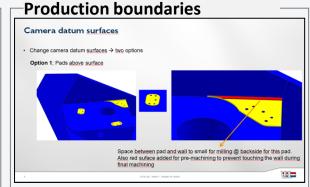

- Motion control
- Machine control
- Reliability
- Contamination Control
- Tribology
- Actuators
- Cost



Product Generation Process


Milestones in development and production

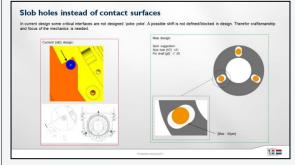




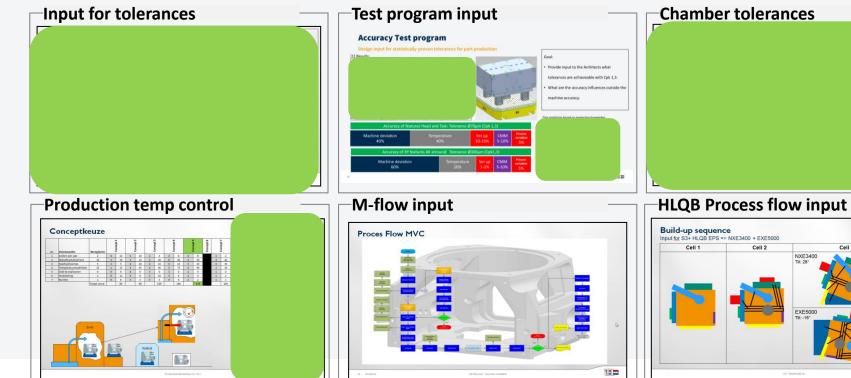

Shared manufacturability input amber (pre-)milling ______ Supplier interfaces _____

-Chamber tolerances

Set Up deformations


Assembly feedback

Cell 4


TEST

END

Cell 3

VDL-

Accuracy Test program

Design input for statistically proven tolerances for part production

[1] Results:

Goal:

• Provide input to the Architects what

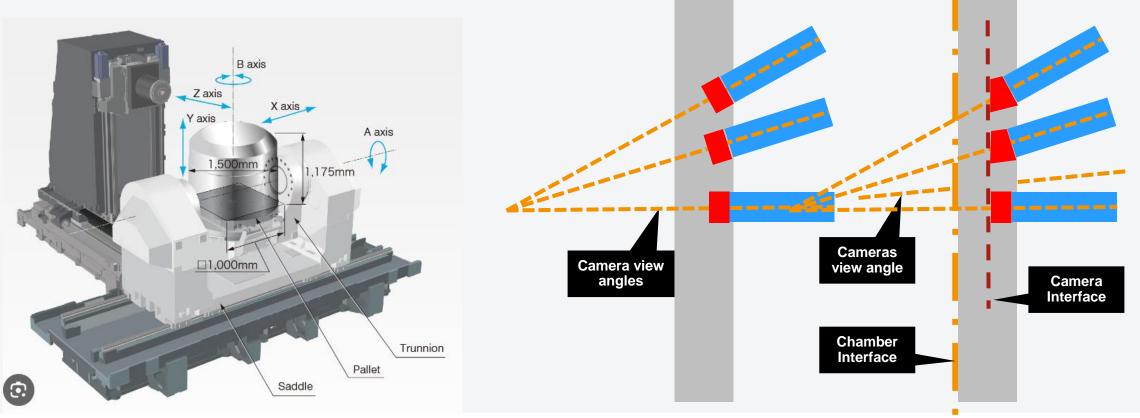
tolerances are achieveable with Cpk 1,3.

• What are the accuracy influences outside the

machine accuracy.

First prediction based on production knowledge

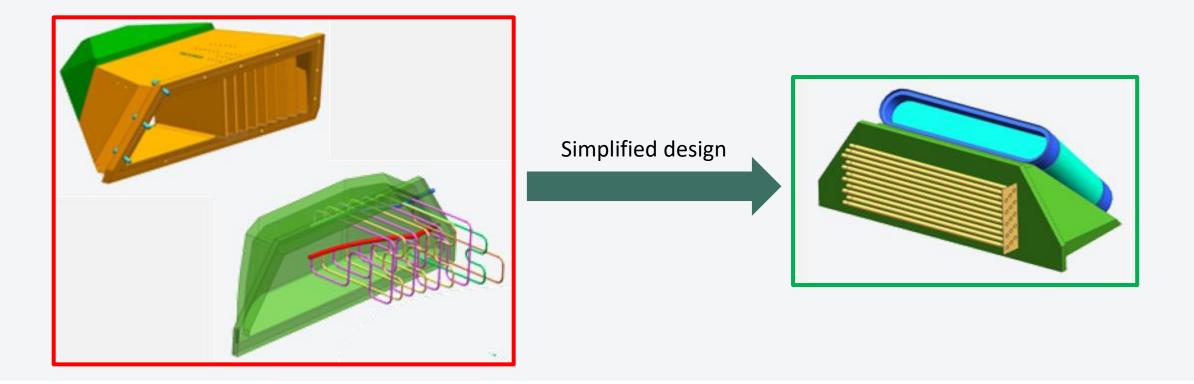
Accuracy of fea	atures Head and	Tale: Tolerance Ø70)μ <mark>m (</mark> Cpk 1	,3)	
Machine deviation 40%		erature 0%	Set up 10-15%	CMM 5-10%	Process variables 5%
Accuracy of XY	features All arro	und: Tolerance Ø30)0μm (Cpk1	L,3)	
Machine deviatior 60%	า	Temperature 20%	Set up 1-2%	CMM 5-10%	Process variables 5%



Camera interface solution

VDL: accurate interface using 4 of 5 axis machine

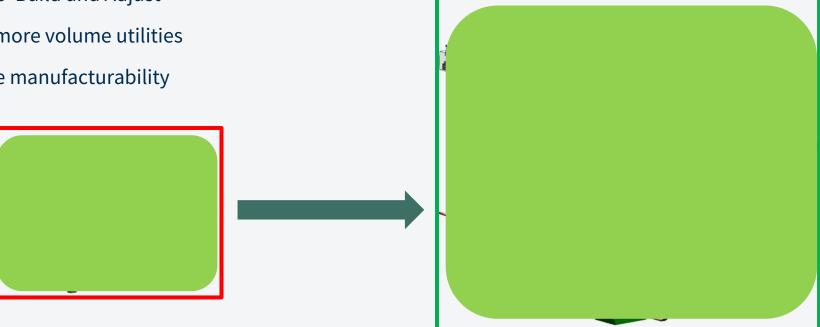
- Requirement is camera view angle in two directions
- Split accuracy between door and Camera brackets


- SPC analysis, gap analysis and process capability, provided data that was needed to define the metrology interface accuracy
- Therefore second angle was moved to the camera brackets
- At the start of the design this became clear.

Simplify the design during design

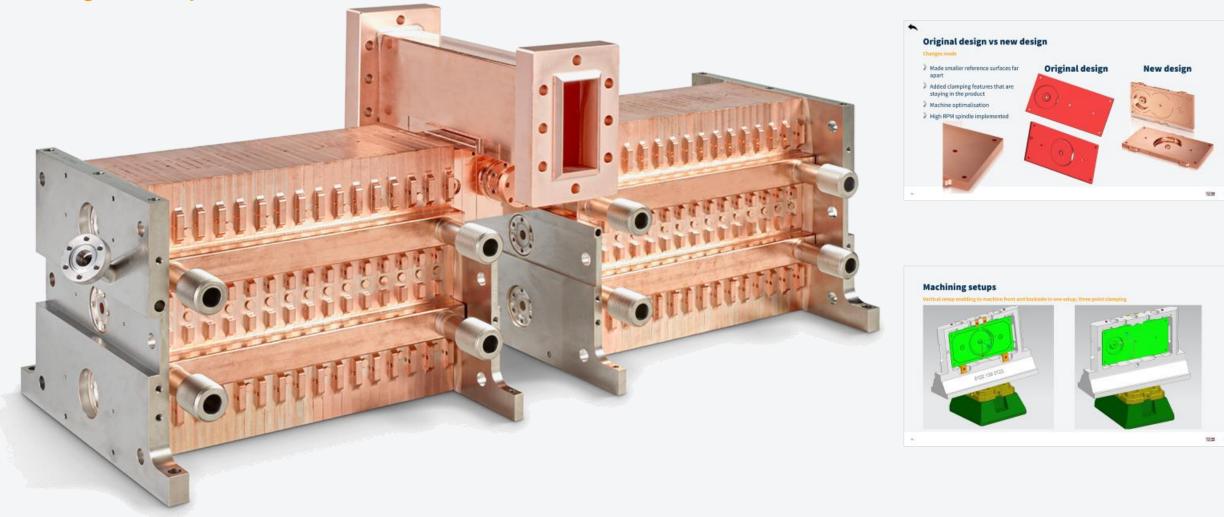
Close cooperation with cooler manufacturer and analyse what is available in the market

Complex gundrilling and bended design transferred into a straight tubular cassette design



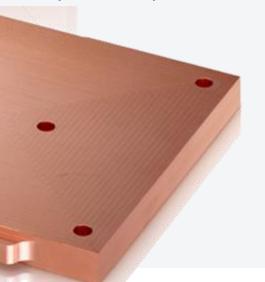
Structural frames with dynamic requirements

Transfer Tubular frame to Sheet metal frame


Proposed to change into sheet metal frame to:

- Separate the functions of SISO, Vibration Isolation and Seismic restraints
- Increase the stiffness of the frame to meet system dynamics requirements
- Improve 'Build and Adjust'
- Create more volume utilities
- Improve manufacturability

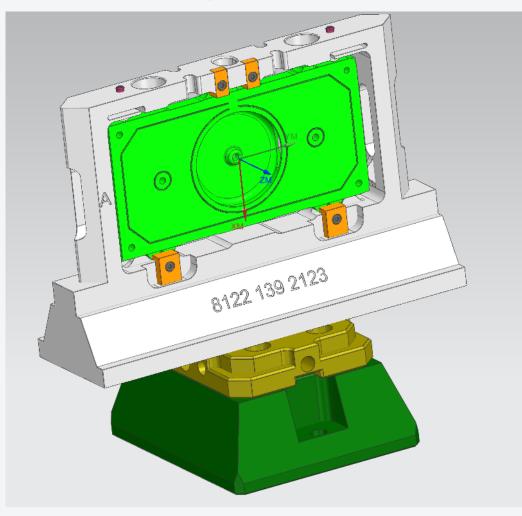
Total assy accellerator

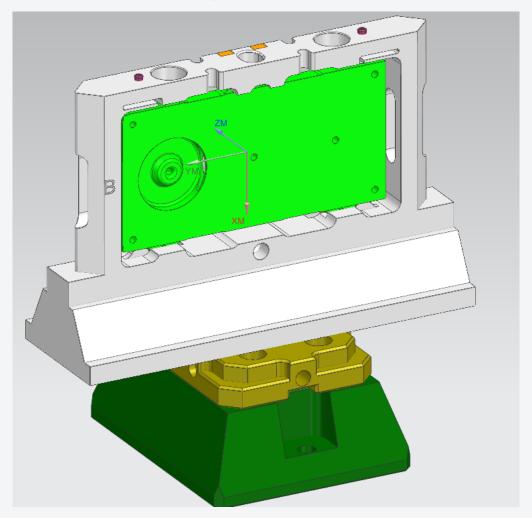

Length accuracy of



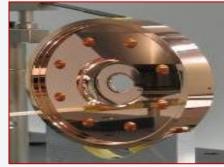
Original design vs new design

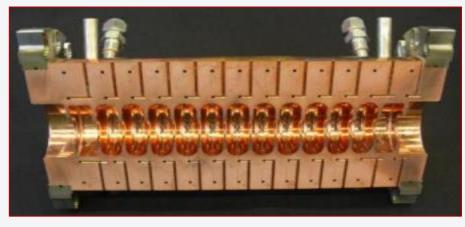
Changes made


- Made smaller reference surfaces far apart
- Added clamping features that are staying in the product
- Machine optimalisation
- > High RPM spindle implemented

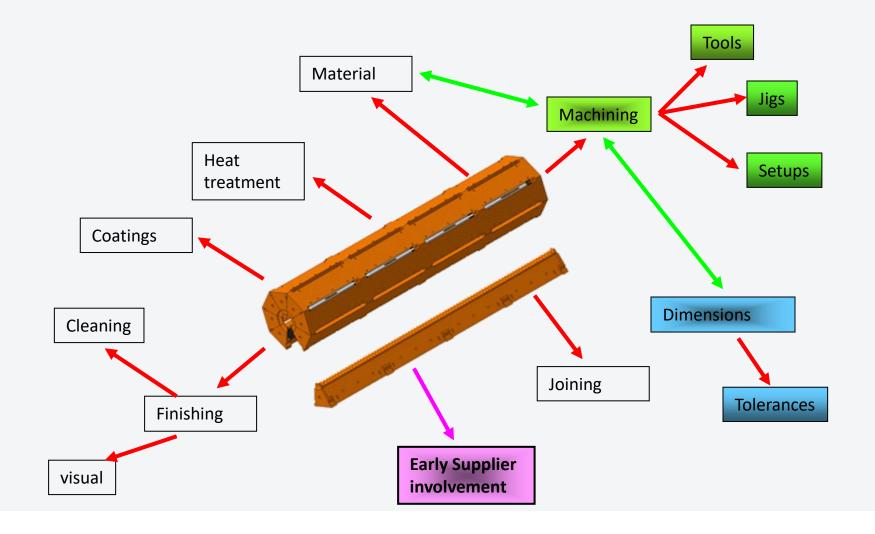


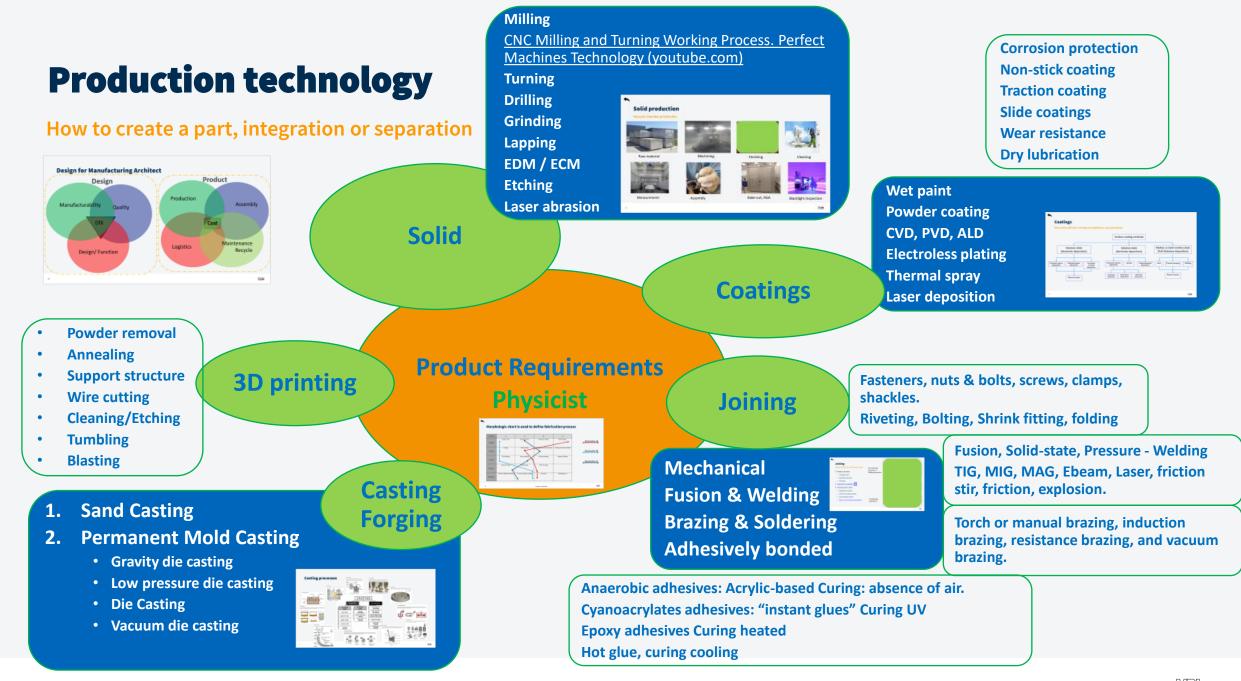
Machining setups


Vertical setup enabling to machine front and backside in one setup, three point clamping

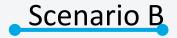


Mechanical positioning and alignment


Accelerator technology


- Vltra high precision machining
 - Shape accuracy typically < 1 μm
 - Surface roughness typically < 25 nm
 - Optical mirror finish without polishing
 - Milling and grinding ceramics, EDM, Brazing
- Reduction of high-voltage breakdown rate due to low surface roughness
- > UHV (< 10-9 mbar) compatibility

Design of a Part



Morphologic chart is used to define fabrication process

Functions	1	2	3	4
Heating	Heater rods	Heating wires	Induction heater	Band heater
Cooling	Tubing	Pillow plate	Seeling channels machined	Cooling channels welded
Joining	TIG Welding	Laser welding	Orbital welding	Ebeam Welding
Vacuum	Calrez O-rings	Metal seals	Viton O-rings	
Materials	Titanium Nitride Coating	Tunsten carbide coating	Ceramics	Molybdenum

Solid production

Vacuum chamber production

Raw material


Measurement

Machining

Assembly

Finishing

Bake-out, RGA

Cleaning

Blacklight Inspection

Guide for CNC-production tolerances

ISO 2768; Year: 1989

 Table 1 – Permissible deviations for linear dimensions except for broken edges (external radii and chamfer heights, see table 2)

Tolera	nce class		Permissible deviations for basic size range										
Designation	Description	0,5 ¹⁾ up to 3	over 3 up to 6	over 6 up to 30	over 30 up to 120	over 120 up to 400	over 400 up to 1 000	over 1 000 up to 2 000	over 2 000 up to 4 000				
f f	fine	±0,05	±0,05	±0,1	±0,15	±0,2	±0,3	±0,5	_				
m	medium	±0,1	±0,1	±0,2	±0,3	±0,5	±0,8	±1,2	±2				
c	coarse	±0,2	±0,3	±0,5	±0,8	±1,2	±2	±3	±4				
v	very coarse	-	±0,5	± 1	±1,5	±2,5	±4	±6	±8				

1) For nominal sizes below 0,5 mm, the deviations shall be indicated adjacent to the relevant nominal size(s).

Ta	able 1 —	General	toleran nd flatne	ess	traightne Values in 1	
Toler- ance class	Straig up to 10	over 10 up to 30			ices for ra	
н	0,02	0,05	0,1	0,2	0,3	0,4
к	0,05	0,1	0,2	0,4	0,6	0,8
L	0,1	0,2	0,4	0,8	1,2	1,6

	Table	2 – Genera	al tolerances	s on perpend Value	licularity s in millimetre					
	Toler- ance			rity tolerances for ranges of engths of the shorter side						
	class	up to 100	over 100 up to 300	over 300 up to 1 000	over 1 000 up to 3 000					
Γ	н	0,2	0,3	0,4	0,5					
I	к	0,4	0,6	0,8	1					
I	L	0,6	1	1,5	2					

Values in millimetres

 Table 4 — General tolerances on circular run-out

Values in millimetres

Tolerance class	Circular run-out tolerances
н	0,1
К	0,2
L	0,5

Та	ble 3 – Ger	neral toleran	ces on sym	metry						
			Value	s in millimetres						
Toler- ance	3									
class	up to 100	over 100 up to 300	over 300 up to 1 000	over 1 000 up to 3 000						
н		0	,5							
к	0,6 0,8 1									
L	0,6	1	1,5	2						

32

Company Confidential

ISO 286-2 (DIN 7154); ISO system of limits and fits (IT grades)

General tolerances found on drawings compared with accuracy grades

								IT (Tol	erance c	lass)								General to	loranco
Dimens	sion	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	General to	lerance
								Т	olerance	!								±0.1 mm	±0.2 mm
[mm]								[µm]									[µm	1
From	То								[µm]									ίμm]
1	3	2	3	4	6	10	14	25	40	60	100	140	250	400	600			200	400
3	6	2.5	4	5	8	12	18	30	48	75	120	180	300	480	750			200	400
6	10	2.5	4	6	9	15	22	36	58	90	150	220	360	580	900	1500		200	400
10	18	3	5	8	11	18	27	43	70	110	180	270	430	700	1100	1800	2700	200	400
18	30	4	6	9	13	21	33	52	84	130	210	330	520	840	1300	2100	3300	200	400
30	50	4	7	11	16	25	39	62	100	160	250	390	620	1000	1600	2500	3900	200	400
50	80	5	8	13	19	30	46	74	120	190	300	460	740	1200	1900	3000	4600	200	400
80	120	6	10	15	22	35	54	87	140	220	350	540	871	1400	2200	3500	5400	200	400
120	180	8	12	18	25	40	63	100	160	250	400	630	1000	1600	2500	4000	6300	200	400
180	250	10	14	20	29	46	72	115	185	290	460	720	1150	1850	2900	4600	7200	200	400
250	315	12	16	23	32	52	81	130	210	320	520	810	1300	2100	3200	5200	8100	200	400
315	400	13	18	25	36	57	89	140	230	360	570	890	1400	2300	3600	5700	8900	200	400
400	500	15	20	27	40	63	97	155	250	400	630	970	1550	2500	4000	6300	9700	200	400
500	800			34	50	79	122	195	314	500	790	1200	1950	3140	5000	7900	12200	200	400
800	1280			41	60	95	147	235	378	600	950	1430	2350	3780	6000	9500	14700	200	400
1280	2048			48	70	111	172	275	442	700	1110	1660	2750	4420	7000	11100	17200	200	400
2048	3277			55	80	127	197	315	506	800	1270	1890	3150	5060	8000	12700	19700	254	400

Machine type required

							Pro	duction	method	les								
										I.T.	(Tolera	ance cla	ass)					
			Min.	Max.														
	Min.	Max.	Ru	Ru														
	IT	IT	(µ")	(µ").	IT 3	IT 4	IT 5	IT 6	IT 7	IT 8	IT 9	IT 10	IT 11	IT 12	IT 13	IT 14	IT 15	IT 16
Honen																		
Holes	3	6		32	2			32										
Flat	4	6	4	32		4		32										
Grinding																		
Round	3	5	4	32	4		32											
Centerfalse	4	6	16	125		16		125										
Flat (horizontal)	4	6	4	32		4		32										
Flat (vertical)	7	8	32	125					32	125								
Turning																		
<200	6	8	32	125				32		125								
>200	7	9	63	125					63		125							
Automatic	6	8	32	125				32		125								
Ultra precision	3	3	0	0	<2													
Milling																		
<500	9	11	32	125							32		125					
>500	10	12	63	500								63		500				
Ultra precision	3	3	0	0	<2													
Bore																		
Bore	6	8	32	125				32		125								
Bore + Reaming	6	8		125				32		125								
Drilling																		
Small	9	11	63	250							63		250					
Small + Reaming			32	250				32					250					
Big	10	13	63	250							63				250			
Big + Reaming	10	13	63	250							63				250			

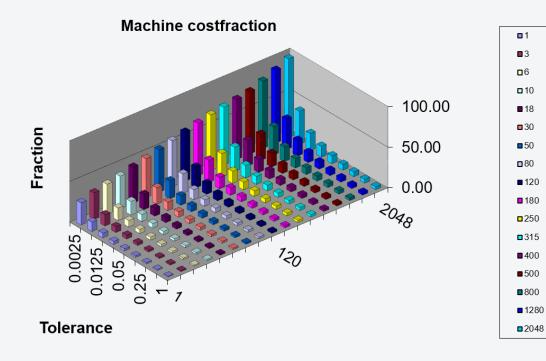
Remark for the production methode

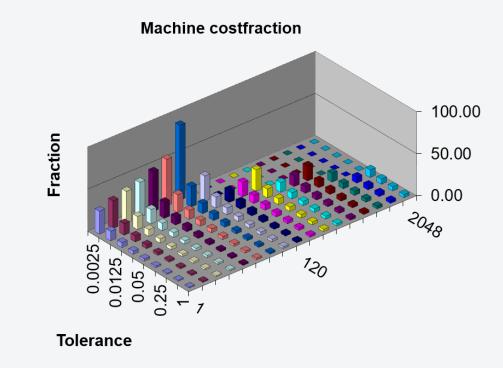
Without preparation (normal production methode)

With preparation

With preparation and a lot of attention to realize Not to realize with this production methode

Max. IT	Normal production tolerance
Min. IT	With preparation and a lot of attention to realize
Max. Ru.	Normal production roughness
Min. Ru.	With preparation and a lot of attention to realize

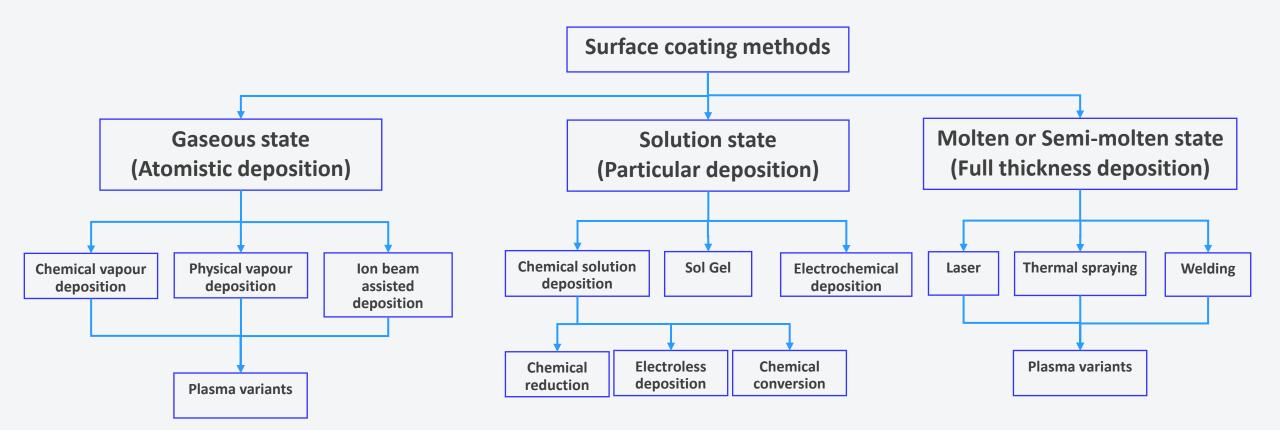

Machining, tolerances, material and temperature

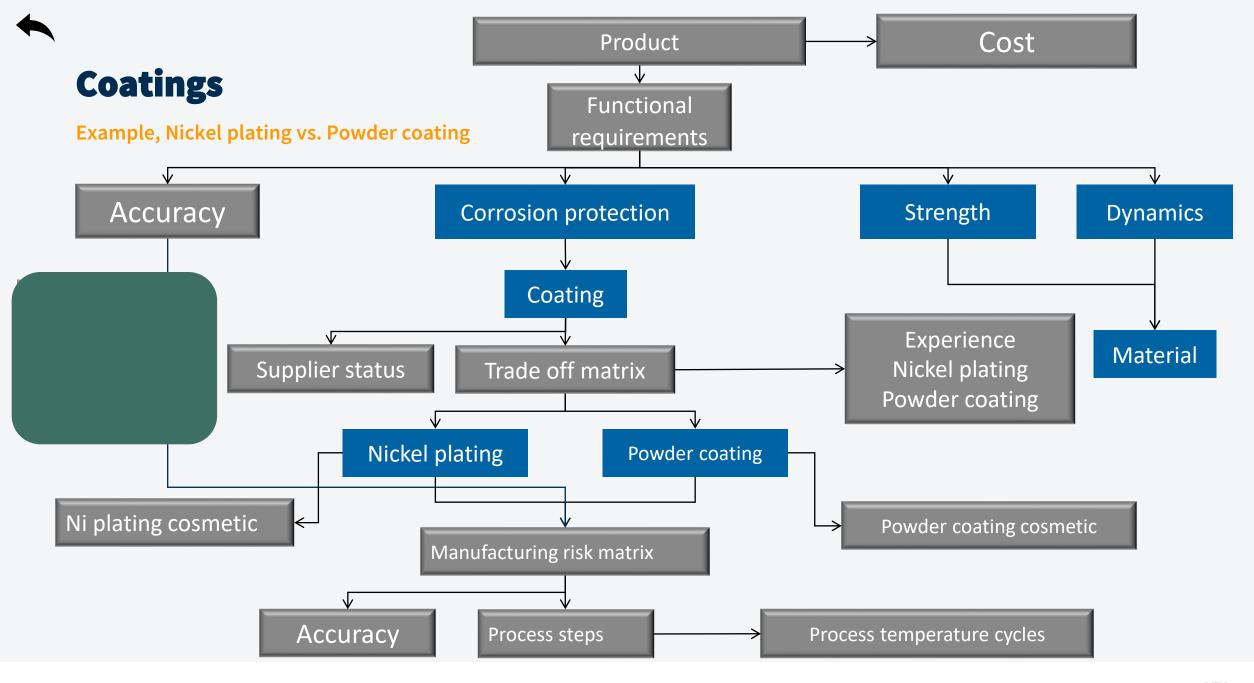

				Tole	erance fie	eld				Temp	AL	2.40E-05
					[mm]					expansion	ST	1.20E-05
Dim.	1.000	0.400	0.200	0.100	0.040	0.020	0.0050	0.0020	0.0010	dimension	StSt	1.70E-05
[mm]			Mach	nining (pro	oduction)	costfrac	tion			(")		
<0,04	1.00	1.15	1.24	1.37	1.60	2.01	2.82	4.69	9.99		^Temp	1.00E+00
1.00	1.00	1.34	1.62	2.01	2.73	3.85	6.83	13.22	31.60	0.000001	Mat	2.40E-05
3.00	1.20	1.61	1.94	2.41	3.28	4.63	8.20	15.88	37.96	0.000003		
6.00	1.35	1.81	2.18	2.71	3.68	5.20	9.21	17.83	42.63	0.00006		
10.00	1.47	1.97	2.37	2.95	4.01	5.66	10.03	19.42	46.45	0.000009		
18.00	1.62	2.17	2.62	3.25	4.42	6.24	11.06	21.43	51.29	0.000017		
30.00	1.76	2.37	2.85	3.54	4.82	6.80	12.05	23.36	55.96	0.000028		
50.00	1.92	2.58	3.10	3.86	5.24	7.40	13.13	25.47		0.000047		
80.00	2.08	2.79	3.35	4.17	5.67	8.01	14.21	27.62		0.000076		
120.00	2.22	2.98	3.59	4.47	6.07	8.57	15.23			0.000113		
180.00	2.38	3.19	3.84	4.78	6.50	9.17	16.32			0.000170		
250.00	2.51	3.37	4.06	5.05	6.86	9.69				0.000236		
315.00	2.61	3.50	4.21	5.25	7.13	10.08				0.000298		
400.00	2.71	3.65	4.39	5.46	7.43	10.50				0.000378		
500.00	2.82	3.78	4.55	5.67	7.71	10.90				0.000472		
800.00	3.05	4.09	4.92	6.13	8.35	11.82				0.000756		
1280.00	3.30	4.43	5.33	6.64	9.05					0.001209		
2048.00	3.56	4.79	5.77	7.19						0.001935		
3277.00	3.86	5.18	6.24	7.79						0.003096		

Costfraction, size, tolerance, temperature relation

Influence of the size of the part and tolerance is directly translated in cost


- Size of the part has a big influence on the tolerances that can be achieved.
- Definition of Reference A-B-C is extremely important
- When size of parts increase make local references to create local accurate patterns


Tolerances discussions


Z (also leads to Rx and Ry)

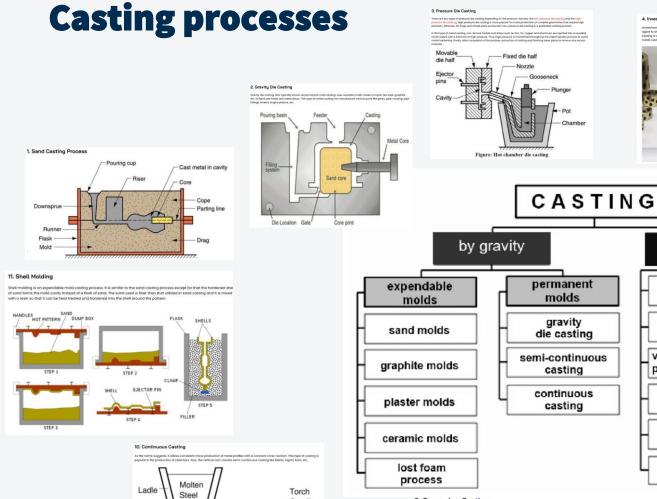
Many, Many different coatings and appliances, very specialized

Joining

Welded chamber to machined from solid

- Welded chamber
 - Leakage issues
 - Build up tolerances
 - Finishing
- Solid block available

- Machined from solid
 - Redesign necessary
 - Lead time reduction 6wks
 - Cost reduction (29%)
 - Return on investment 18 products


3 machining operations

24 machining

operations +

Welding operation

Cutoff

Point

Submerged Entry

Meniscus (Liquid Level)

Length

000000

Metallurgical

0000

Support roll Solidifying Shell

Nozzle

Tundish

Mold

Liquid

Spray

Strand

Cooling

Pool

9. Squeezing Casting

3. Pressure Die Casting

Liquid forging or squeeze casting is a hybrid metal forming process that merges permanent mold casting and die forging in a single step. In this process, a specific amount of molten metal alloy is injected into a die, and pressure is applied to shape it. Then, the metal part is heated over melting temperature and extracted from the die.

4. Investment Casting

by pressure

low pressure

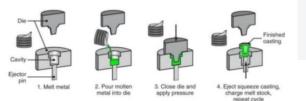
die casting

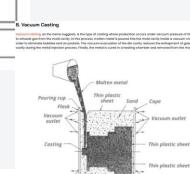
high pressure

die casting

vacuum-assisted high

pressure die casting


squeeze casting


semi-solid

casting

centrifugal

casting

Thin plastic

sheet

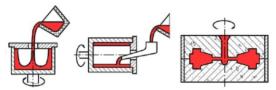
Vacuum outlet

Drag

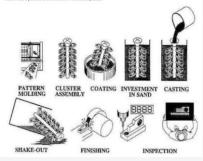

Vacuum

outle

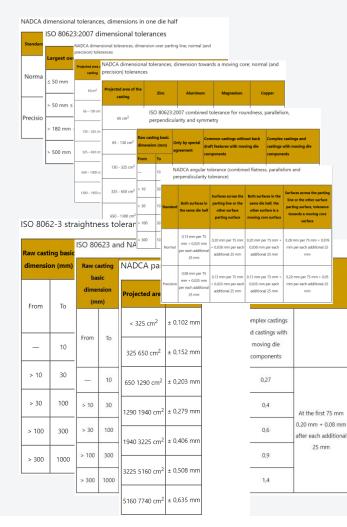
5. Plaster Casting


- P.

similar to sand casting, except that the mold and heat capacity of plaster, it cools the meto


6. Centrifugal Casting

Centrifugal casting, also known as roto casting, is a process for industrially manufacturing cylindrical parts with centrifugal forces. This type of metal casting uses a preheated spinning die in which the molten metal is poured. The centrifugal forces help to distribute the molten metal within the die at high pressure


Lost-foam casting method is similar to in Once the pattern is formed, coating with repattern is formed, coating with a refractory ceramic takes metal is pound into the mold to form the desired product.

Tolerancing High pressure Die castings

ISO 8062-1...3

The table presents the grades and dimension intervals, which are workable for high pressure die castings.

Raw cast dimensi	ing basic on (mm)	Dimensional casting tolerance grade DCTG									
From	То	1	2	3	4	5	6	7	8	9	10
_	10	±0,09	±0,13	±0,18	±0,26	±0,36	±0,52	±0,74	±1	±1,5	±2
10	16	±0,1	±0,14	±0,2	±0,28	±0,38	±0,54	±0,78	±1,1	±1,6	±2,3
16	25	±0,11	±0,15	±0,22	±0,3	±0,42	±0,58	±0,82	±1,2	±1,7	±2,4
25	40	±0,12	±0,17	±0,24	±0,32	±0,46	±0,64	±0,9	±1,3	±1,8	±2,
40	63	±0,13	±0,18	±0,26	±0,36	±0,5	±0,7	±1	±1,4	±2	±2,
63	100	±0,14	±0,2	±0,28	±0,4	±0,56	±0,78	±1,1	±1,6	±2,2	±3,
100	160	±0,15	±0,22	±0,3	±0,44	±0,62	±0,88	±1,2	±1,8	±2,5	±3,
160	250	_	±0,24	±0,34	±0,5	±0,7	±1	±1,4	±2	±2,8	±4
250	400	_	-	±0,4	±0,56	±0,78	±1,1	±1,6	±2,2	±3,2	±4,
400	630	_	-	_	±0,64	±0,9	±1,2	±1,8	±2,6	±3,6	±5
630	1 000	_	-	_	_	±1	±1,4	±2	±2,8	±4	±6
1 000	1 600	_	-	_	_	_	±1,6	±2,2	±3,2	±4,6	±7

ISO 8062:1994 Casting tolerance grades (CTG)

The tolerance grade is described with CT. It varies depending on the casting method and also on used material and alloy. Normal high pressure die casting tolerance grade is CT 57 for aluminum and magnesium, CT 68 for copper and CT 46 for zinc.

Raw casting basic dimension (mm)		Casting tolerance grade CTG										
From	То	4	5	6	7	8	9	10	11	12	13	14
0	10	0,26	0,36	0,52		1,00	1,5	2,0	2,8	4,2	-	-
10	16	0,28	0,38	0,54	0,78	1,10	1,6	2,2	3,0	4,4		
16	25	0,30	0,42	0,58	0,82	1,20	1,7	2,4	3,2	4,6	<mark>6</mark> ,0	8,0
25	40	0,32	0,46	0,64	0,90	1,30	1,8	2,6	3,6	5,0	7,0	9,0
40	63	0,36	0,50	0,70	1,00	1,40	2,0	2,8	4,0	5,6	8,0	10,0
63	100	0,40	0,56	0,78	1,10	1,60	2,2	3,2	4,4	<mark>6,</mark> 0	9,0	11,0
100	160	0,44	0,62	0,88	1,20	1,80	2,5	3,6	5,0	7,0	10,0	12,0
160	250	0,50	0,70	1,00	1,40	2,00	2,8	4,0	5,6	8,0	11,0	14,0
250	400	0,56	0,78	1,10	1,60	2,20	3,2	4,4	6,2	9,0	12,0	16,0
400	630	0,64	0,90	1,20	1,80	2,60	3,6	5,0	7,0	10,0	14,0	18,0
630	1000	1,00	-	1,40	2,00	2,80	4,0	6,0	8,0	11,0	16,0	20,0
1000	1600	1,6	-	-	2,2	3,0	4,6	7,0	9,0	13,0	18,0	23,0

Tolerance ± mm

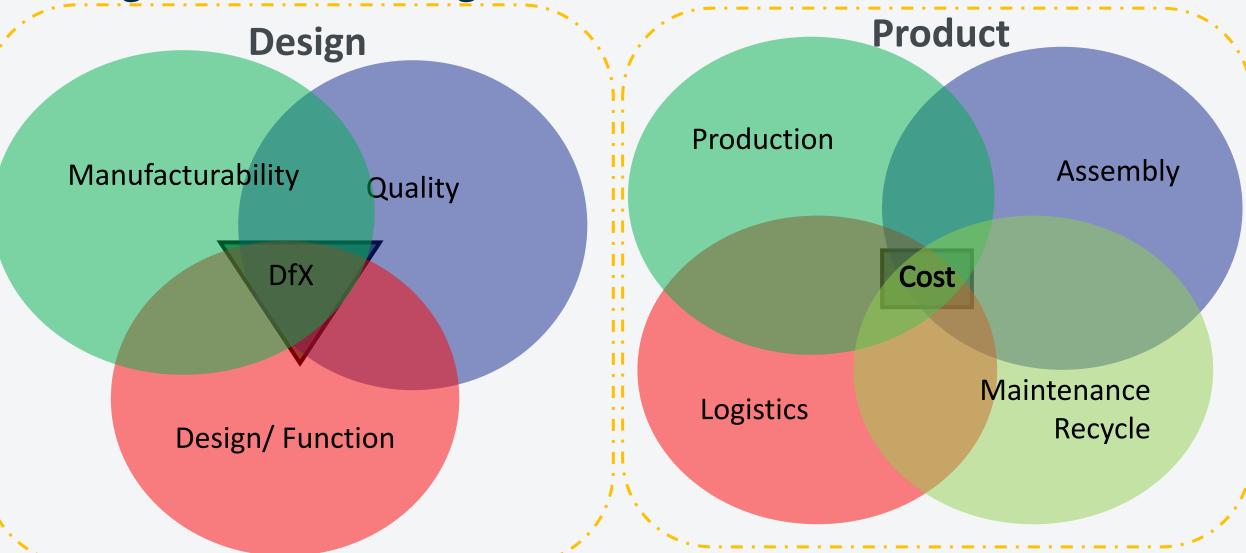
25 mm

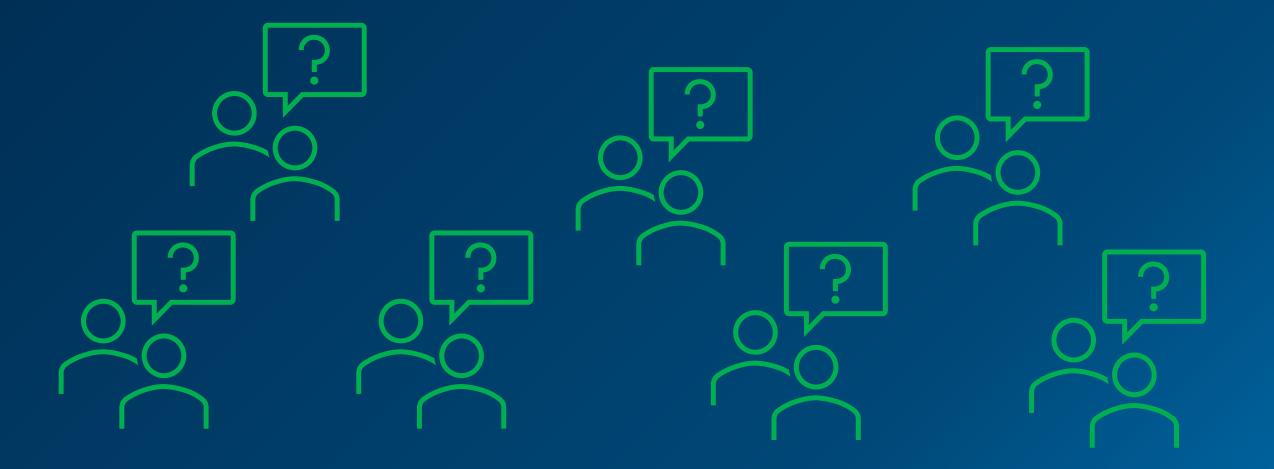
Tolerance ± mm

Casting example

Process steps

- Sand mold top and bottom
- Core production
- Assembly
- Casting
- Brake out part & cores
- Remove cast extensions
- Dot peening
- Cleaning
- Quality inspectoin





Design for Manufacturing Architect

Questions

