

Standards and Safety

(Luca Dassa - 2 June / 15 June 2024, Sint-Michielsgestel, Netherlands)

MECHANICAL & MATERIALS BIGINEERING FOR PARTICLE ACCELERATORS AND DETECTORS

DISCLAIMER

CHECK WITH EXPERTS

THE APPLICABLE RULES AND STANDARDS

IN YOUR FACILITY AND IN YOUR COUNTRY

OUTLINE

Why safety?

- Risk analysis
- Safety and rules/directives

Standards for pressure and cryogenic equipment

- Pressure Equipment Directive
- Harmonised standards
 - Material selection
 - Desing
 - Manufacturing
 - Inspection
 - Tests
- Safety devices
- Documentation
- Specificities for accelerator equipment

Standards for machinery

- Machinery directive
- Harmonised standards
- Automation
- Documentation

Standards for lifting equipment

Standards for big structures (buildings...)

Conclusions

Introduction

Introduction

Safety

04/06/2024

i

WHY SAFETY AND STANDARDS?

Banagar A., Swamy R., 2015/03/01, Modelling, Stress and Welding Strength Analysis of Pressure Vessel, International Journal of Analytical, Experimental and Finite Element Analysis (IJAEFEA)

Heavy industrial robot collision (youtube.com)

Luca Dassa - CAS - Mechcanical Engineering - Safety and Standards

We're going to need a bigger crane: Giant 630ft vehicle topples over in Scottish harbour | Daily Mail Online

Hazards shall be managed to reduce risks as much as possible

Risk analysis

From 'REGULATION (EC) No 765/2008 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products and repealing Regulation (EEC) No 339/93'

Article 20

...

Products presenting a serious risk

2. The decision whether or not a product represents a serious risk shall be based on an appropriate **risk assessment** which takes account of the nature of the hazard and the likelihood of its occurrence. ...

From 'Pressure Equipment Directive (PED) 2014/68/EU Annex I'

1.2. In choosing the most appropriate solutions, the manufacturer shall apply the principles set out below in the following order:

- *eliminate or reduce hazards* as far as is reasonably practicable;
- *apply appropriate protection measures* against hazards which cannot be eliminated;

— where appropriate, **inform users of residual hazards** and indicate whether it is necessary to take appropriate special measures to reduce the risks at the time of installation and/or use.

Risk analysis

Table 1 - Failure mode factor evaluation criteria (edms 1114042)

Different methodologies for risk analysis are available: **FMEA** is one of them.

Reference is IEC 60812:2018 - Failure modes and effects analysis (FMEA and FMECA)

Risk priority number (RPN) = Severity (of the event) × probability (of the event occurring) × detection (probability that the event would not be detected before the user was aware of it).

EDMS 2142606 FAILURE MODES AND EFFECTS ANALYSIS FOR THE LHC CRAB CRYOMODULE

4.3 ... In this study, the "mean" triplet (S,0,D) = (2,2,2) gives an RPN=2*2*2=8 and is the threshold value of RPN. It means that mitigation measures shall be defined and implemented for all failure modes leading to RPNs equal or higher than 8.

Additionally, the failure modes having one of the three factors equal to 4 shall also be mitigated.

		FMEA Matrix factor												
F Ra	actor anking level	Occurre	ence	Probability	Se	everity	Detection							
	4	Frequent	Likely to occur; happened more than 5 times over the last 10 thermal cycles	>0.5	Critical	Death from injury or illness, permanent disability or chronic irreversible illness	Low	Low chance the design control will detect potential cause/mechanism and subsequent failure mode before it reaches the final user						
	3	Probable	Incident may occur; happened 5 times over the last 10 htermal cycles	0.5	High	Injuries or temporary, reversible illnesses resulting in hospitalization of variable but limited period of disability.	Moderate	Moderate chance the design control will detect potential cause/mechanism and subsequent failure mode before it reaches the final user						
	2	Occasional	Unlikely to occur; happened once over the last 10 thermal cycles	0.1	Medium	Injuries or temporary, reversible illnesses not resulting in hospitalization and requiring only minor supportive treatment.	High	High chance the design control will detect potential cause/mechanism and subsequent failure mode before it reaches the final user						
	1	Improbable	Extremely unlikely to occur. Never happened over the last 10 thermal cycles	<0.1	Negligible	Slight injuries, no treatment needed	Almost certain	Design control will almost certainly detect a potential cause/mechanism and subsequent failure mode before it reaches the final user						

Risk analysis

Crab cryomodule example

ID	Lifecycle step	Sub-Function	Associated	Potential failure modes	Potential failure effects		Potential causes	Current design Exist		Existing conditions			Recom- Respon	Responsi bility and	Action results			
					Local	Final	Detection methods	Detection methods	Occ	Sev	Det	RPN	actions	target completi on date	Oc c	Sev	Det	APN
10.8.1.3			Helium vessel	Overpressure in the helium vessel due to loss of insulation vacuum and heat transfer	Air in leak, cryo- condensation on the helium cryostat surface, heating of liquid helium	Opening of the safety devices of the helium vessel, He release in the tunnel, asphyxiation, cold burn	Mechanical shock of the vacuum cryostat during maintenance activities	As 10.8.1.1	1	3	1	3	No further measures required					
10.8.1.3*				Helium in leak to outer insulation vacuum due to full rupture of an inner bellow	Pressure increase in outer insulation vacuum	Opening of external insulation vacuum volume safety device, He release in the tunel	Mechanical fatigue of the bellows due to cyclic loads	Calculation note for the sizing of the vacuum vessel safety valve [11] + as 10.8.1.1	1	4	1	4	The vacuum vessel safety device shall be sized considering this failure as the MCI	SY-RF	1	2	1	2

https://edms.cern.ch/ui/file/2142606/1.0/FMEA_Crab_Cavities_1.0.pdf

WHY SAFETY AND STANDARDS?

Banagar A., Swamy R., 2015/03/01, Modelling, Stress and Welding Strength Analysis of Pressure Vessel, International Journal of Analytical, Experimental and Finite Element Analysis (IJAEFEA)

Heavy industrial robot collision (youtube.com)

Rules and directives

<u>We're going to need a bigger crane: Giant 630ft vehicle topples over in</u> <u>Scottish harbour | Daily Mail Online</u>

'Communities of people' decided to regulate some hazardous equipment (often hazard is linked to stored energy):

they created regulatory contexts, legal frameworks, rules and directives to respect

TO REGULATE THE MARKET EXCHANGES

Governments created the rules

=> Focus on European Community

Rules and directives

Who shall apply the laws?

The CE mark means that the <u>manufacturer</u> <u>takes responsibility for the compliance of a</u> <u>product with all applicable European health,</u> <u>safety, performance and environmental</u> <u>requirements</u>.

CE stands for "Conformité Européenne", the French for European conformity.

Pressure and cryo eq.

Standards for pressure and cryogenic equipment

Pressure codes

Focus on the European approach

04/06/2024

Main content of Pressure Equipment Directive (PED) 2014/68/EU:

- Applies to internal pressure > 0.5 bar (gauge)
- Vessels must be designed, fabricated and tested according to the Essential Safety Requirements (ESRs) of Annex I (see next slide)
- The vessels are classified in different categories (SEP, I, II, III, IV), depending on the stored energy, expressed as Pressure x Volume (bar gauge x I) / Category IV represents the highest risk

Example: cryogenic He is classified in Group 2 (not-dangerous gas) / cryogenic liquids are treated as gas

04/06/2024

Desing your system to fall in the lowest possible category: minimise PS or V or both!

European PED

	risk	Catego ry	Conf. assessment module	Comment			
	ets heavier with	SEP	None	The equipment must be designed and manufactured in accordance with sound engineering practice. No CE marking and no involvement of notified body.			
	nent ge	I	Α	CE marking with no notified body involvement, self-certifying.			
	assessn	II	A1	The notified body will perform unexpected visits and monitor final assessment.			
	onformity	ш	B1+F	The notified body is required to approve the design, examine and test the vessel.			
4		IV	G	Even further involvement of the notified body.			

 Establishes the conformity assessment procedures, depending on the category. For Cat II, III and IV involvement of Notified Body is mandatory

 'manufacturer' means any natural or legal person who manufactures pressure equipment or an assembly or has such equipment or assembly designed or manufactured, and markets that pressure equipment or assembly under his name or trademark or uses it for his own purposes;

European PED

Annex I of the Pressure Equipment Directive (PED) 2014/68/EU:

The manufacturer is under an obligation to analyse the hazards and risks in order to identify those which apply to his equipment on account of pressure; he shall then design and construct it taking account of his analysis.

Some of the Essential Safety Requirements (annex I of Directive 2014/68/EU) concern

- Risk analysis
- Design for adequate strength / Calculation method
- Protection against exceeding the allowable limits of pressure equipment / Safety accessories
- Manufacturing procedures/ Permanent joining / Non-destructive tests / Heat treatment / Traceability
- Final assessment : Final inspection / Proof test
- Marking and labelling => CE marking
- Operating instructions
- Materials
- Specific quantitative requirements for some categories of pressure equipment : Allowable stresses / Joint coefficients / Hydrostatic test pressure (1.43 coefficient for test pressure)

•

Annex III

The manufacturer shall establish the technical documentation.

The technical documentation shall make it possible to <u>assess the conformity of the pressure equipment</u> <u>to the relevant requirements</u> ...

The pressure equipment shall be designed for loadings appropriate to its intended use and other reasonably foreseeable operating conditions. ... The allowable stresses for pressure equipment shall be limited having regard to reasonably foreseeable failure modes under operating conditions. To this end, safety factors shall be applied ...

We do not discuss here the MARKET implications: we assume that accelerator facilities are not impacted.

Technical standards

Rules / Laws / Directives	Standards			
Essential Safety Requirements / general statements		Fechnical detailed implementation	on (see next slides)	
	Harmonized Standard	ls	Not Harmonize	ed Standards
European Union Directive: <u>European Directive</u> <u>2014/68/EU</u> on the 'Approximation of the laws of the Member States concerning pressure equipment'	EN 13445 Unfired pressure vessels EN 13480 Metallic industrial piping. EN 13458 Cryogenic vessels. Static vacuum in EN 10028-1 Flat products made of steels for requirements EN 10028-7 Flat products made of steels for steels EN 10216-5 Seamless steel tubes for pressure delivery conditions. Stainless steel tubes EN 10217-7 Welded steel tubes for pressure conditions. Stainless steel tubes EN 10222-5 Steel forgings for pressure purpor and austenitic-ferritic stainless steels EN 10272 Stainless steel bars for pressure purpor	nsulated vessels. pressure purposes. General pressure purposes. Stainless e purposes. Technical purposes. Technical delivery oses. Martensitic, austenitic urposes on (europa.eu)	French CODAP, AD 20 Pressure Vessel Code	00-Merkblätter, ASME Boiler an (BPVC),
Mandatory / legal obligation	Not mandatory / not legal Presumption	on of Conformity with	Not mandatory / not legal obligation	Proof of conformity is at the

04/06/2024

Example

CO₂ pressure dumper for CMS Pixel detector upgrade

(a)

LHC cavity

More examples

The first 5.5 m long 11 T MBH dipole prototype in its cryostat at CERN ready to be transported to the test bench

S

Technical standards Afnor, Normes en ligne le 31/08/2015 à 16:41 NF EN 13445-1 V1:2014-12 Pour : CERN ISSN 0335-3931 NF EN 13445-1 V1 **French standard** 12 December 2014 Classification index: E 86-200-1 ICS: 23.020.30 Desing Design Unfired pressure vessels — Part 1: General solutions **Material Selection** F : Récipients sous pression non soumis à la flamme - Partie 1 : Généralités D : Unbefeuerte Druckbehälter - Teil 1: Allgemeines Calculations . French standard approved Welded joints by decision of the Director General of AFNOR Replaces the approved standard NF EN 13445-1 V5 of October 2009 and its amendment V5/A1, of March 2014. **Comprehensive** approach Correspondence The European standard EN 13445-1:2014 (version 1:2014-09) has the status of Inspections French standard. Documentation Summary This document defines the various types of unfired pressure vessels to which the six other parts of NF EN 13445 apply. It gives the terms, definitions, symbols and units used therein. It describes the rules for the application of standard NF EN 13445, the general principles on which the rules and preconditions for their application are based. It provides an index of important terms used in the standard EN 13445 with reference to the part in which they appear. All parts NF EN 13445-1 to NF EN 13445-6 and EN 13445-8 are intended to support Tests the essential requirements of the European Directive 97/23/EC "Pressure Maintenance Equipment". Use Descriptors Technical International Thesaurus: pressure vessels, specifications, design, manufacturing, inspection, quantities, symbols, safety devices. Modifications With respect to the replaced documents, rewritten as a new edition (see Annex Y). EN 13445 Unfired pressure vessels Corrections EN 13480 Metallic industrial piping. Published and distributed by Association Française de Normalisation (AFNOR - French standard institute) - 11, rue Francis de Pressensé -93571 La Plaine Saint-Denis Cedex - Tel.: + 33 (0)1 41 62 80 00 - Fax: + 33 (0)1 49 17 90 00 - www.afnor.org EN 13458 Cryogenic vessels. Static vacuum insulated vessels. Version of 2014-12-P © AFNOR — All rights reserved About 1200 pages! Luca Dassa - CAS - Mechcanical Engineering - Safety and 19 04/06/2024 Standards

Materials

• According to EN13445, select the right the stainless steel (be careful!).

Use Harmonized standards :

- Plates and Sheets
 - EN 10028-1 Flat products made of steels for pressure purposes. General requirements
 - EN 10028-3 Flat products made of steels for pressure purposes. Weldable fine grain steels, normalized
 - EN 10028-7 Flat products made of steels for pressure purposes. Stainless steels
- Tubes
 - EN 10216-5 Seamless steel tubes for pressure purposes. Technical delivery conditions. Stainless steel tubes
 - EN 10217-7 Welded steel tubes for pressure purposes. Technical delivery conditions. Stainless steel tubes
- Bars
 - EN 10272 Stainless steel bars for pressure purposes

... and many others!

- During design process, DON'T use real properties but properties you find in the harmonized standards.
- When you buy a commercial component: be careful! ASME materials: it is not impossible to use them but it is necessary to justify them!
- When a material is not considered in the standard, please discuss with experts.

Standard material certificate https://edms.cern.ch/nav/P:CERN-0000076703:V0/P:CERN-0000095883:V0/TAB3

"Particular Material Appraisal"

https://edms.cern.ch/nav/P:CERN-0000076703:V0/P:CERN-0000095881:V0/TAB3

See talks of Stefano Sgobba and Ignacio A. Santillana

Avoid ASME materials

Actions and load cases

- Following the EN 13445, here the main steps:
 - Select the actions loading the vessel
 - Select the proper action combinations: load cases
 - Classify in 'standard load case', 'test load case', 'accidental load case' => different safety factors!
 - Example of actions for a superconducting RF cavity
 - Pressure inside the vessel (with and without liquid)
 - Outer pressure (i.e. due to leak in insulation vacuum space)
 - Reactions at the supports (including seismic loads)
 - Loads imposed by piping
 - Shipping and handling
 - ...

- Example of load case for a superconducting RF cavity
 - Leak test
 - Pressure test
 - Transport
 - Cool-down
 - Steady state
 - Warm-up
 - ...

<u>The risk analysis is very useful to</u> <u>avoid overlooking important</u> <u>actions and load cases</u>

Main parameter to define: Maximum Allowable Pressure PS: it has legal implication, being it defined in the PED

Crab cavity

Design

Select the Design method*

Design

Design by formula

- The most standard approach and easiest to cross check
- Often long and tedious calculation procedures: spreadsheets are a must
- Only deals with pressure loads
- Rarely enough to calculate a magnet cryostat or a cryomodule (weight, interface loads, particular geometry, etc.)
- Stress analysis (ex: EN 13458-2 Annex A or EN 13445-3 Annex C)
 - Evaluation of stresses using a finite element code
 - Linear elastic analysis
 - Decomposition of stresses in primary, secondary, membrane, bending
 - Comparison with different allowable stresses depending on the load classification

Design by analysis – Direct route (EN 13445-3 Annex B)

- Applicable to any component under any action
- When manufacturing tolerances specified by the code are exceeded
- Finite element models including material and geometrical non-linearities

Based on FEA

* "Design checks" is actually a better term. The verification of the final design **must** be done through one of these routes but it may be practical to use other formulas/methods during the preliminary design phase.

10.4.4.1 Flat end welded directly to the shell

 $B_{1} := 1 - 3 \cdot \frac{f}{P} \cdot \left(\frac{e_{s}}{D_{i} + e_{s}}\right)^{2} + \frac{3}{16} \cdot \left(\frac{D_{i}}{D_{i} + e_{s}}\right)^{4} \cdot \frac{P}{f} - \frac{3}{4} \cdot \frac{\left(2 \cdot D_{i} + e_{s}\right) \cdot e_{s}^{2}}{\left(D_{i} + e_{s}\right)^{3}} = 0.912 \qquad \text{eq. 10.4-6}$ $A_{1} := B_{1} \cdot \left[1 - B_{1} \cdot \frac{e_{s}}{2 \cdot (D_{i} + e_{s})}\right] = 0.907 \qquad \text{eq. 10.4-5}$

$$C_1 := \max \left[0.40825 \cdot A_1 \cdot \frac{D_i + e_s}{D_i}, 0.299 \cdot \left(1 + 1.17 \cdot \frac{e_s}{D_i} \right) \right] = 0.375$$
 eq. 10.4-4

10.4.6 Calculation of the therm C2

$$\mathbf{g}_{f} \coloneqq \frac{\mathbf{D}_{i}}{\mathbf{D}_{i} + \mathbf{e}_{s}} = 0.988 \tag{eq. 10.4-16}$$

$$H_{f} := \sqrt[4]{12 \cdot (1 - \nu^{2})} \cdot \sqrt{\frac{e_{s}}{D_{i} + e_{s}}} = 0.203$$
 eq. 10.4-17

fmin = 108·MPa

 $P = 0.558 \cdot MPa$

ea. 10.4-18

$$I_{f} := \frac{3 \cdot f_{min}}{P} - \frac{{D_{i}}^{2}}{4 \cdot (D_{i} + e_{s}) \cdot e_{s}} - 1 = 560.204$$

$$U_{f} := \frac{2 \cdot (2 - \nu \cdot g_{f})}{\sqrt{3 \cdot (1 - \nu^{2})}} = 2.079$$

$$f_{1} := 2 \cdot g_{f}^{2} - g_{f}^{4} = 0.999$$

$$A_{f} := \left(\frac{3}{4} \cdot \frac{U_{f} \cdot D_{i}}{e_{s}} - 2 \cdot J_{f}\right) \cdot (1 + \nu) \cdot \left[1 + (1 - \nu) \cdot \frac{e_{s}}{D_{i} + e_{s}}\right]$$

$$B_{f} := \left[\left(\frac{3}{8} \cdot \frac{U_{f} \cdot D_{i}}{e_{s}} - J_{f}\right) \cdot H_{f}^{2} - \frac{3}{2} \cdot (2 - \nu \cdot g_{f}) \cdot g_{f}\right] \cdot H_{f} = -4.681$$

See talks of Martina Scapin and Federico Carra

Design

Manufacturing

Permanent joints

The most commonly used processes in cryostat fabrication are:

- Tungsten Inert Gas (TIG 141)
- Metal Inert Gas Welding (MIG 131)
- Electron-beam welding (51)

Vacuum Brazing is another process used for permanently joining different materials

Full quality assurance of welds involves:

- Specification of quality levels for imperfections suitable to the application
- Qualification test of welding procedures and welders
- Welding inspection

See talks of J. M. Krumenacker, R. Girard and S. Mathot

04/06/2024

Vacuum Chamber

Welding book

Manufacturing

Q	X				SPEC	CIFIC	PRO	OCEDUI	RE S)	NPS No Ref.: Date:	.: 2011-	079-AF
Prod. by: M. Redondas				-	Client: 0	ofells	Cape	tina		Ref. stand	180 154	514-1
Project HIE Isolds					Ref. spec.:					Exam, bo	ty:	
Location	Buil	ding	100		Ref. WPQR: 6	5701-06	-85				~	
Welding	process		141									
Shielding	gas typ	• 1	11			2				3		
Weaving	(yesino)		max_	mm			max.:	mm			ai.: n
Purging	gas type					limin						
Welding	position	P)	A			_						
Joint typ		B	utt weld	1								
Joint pre	paration	T	ubes					12	1		1 11	
Cleaning	method						1 4	5. F			I H	
Backing	_	_					-	1	144		н	
Single/D	ouble										1	_
Back gos	iging							V			1	\leq
Flux des	gnation							6			ТИ	-
Flux han	ding							11			1 1	<u> }</u>
Tungstee	n electro	de 1.	, 6			mm					1	1
Torch an	gle	-	0								1	
Stand of	distano	•				mm						
Nozzie d	lameter()	5)										
Tack wei	ding pro	c.			Rev.:							
Identi	ficatio	on of p	parent m	etal i	C max:	CE m	BC .	PCM ma	e IICm	aic	CE max:	PCM max
-		Name/G	rade		Standard		Group	De	livery cond.	Tho	[mm]	[mm]
1 1.	4306	6					8.1			2,0	-00	88,90-
11 1.	4429					3	8.1			4,0	- 00	88,90-
Identi	ficatio	on of t	filler met	al				_				
index		Trade	e name		Class	fication	2		Group		Filer handle	ng
1	ASN	5-IG	(SI)	GZ 1	8 16 5 M	L			-			0.00
2												
3												
Weldi	ng Pa	ramet	ters			- 22	1	Squipment			10	
Pass no.	Index	Dia. (mm)	Welding process	Wire feed speed Invinini	Current [A]		Volt [M]	Current / Polarity	Welding speed Imm/mint	Run Ou Length	Gas [Jimin]	Heat inp [k.lime
1		0,80	141	-	37 -	-	-	(-)	-	1.00	8	-
			1	-	-		-		-			
				-	-		-		-			-
		1		-	-		-		-	13	1	
				-	-		-		-			-
- 3				-	-		-		-	1		-
				-	-	-	-		-	-		-
_		_		-	-		-		-	-	-	-
		-		-	-		-		-			-
Heat	treatr	nent							Method:			
Preheat	min:	*C 1	Interpass tem	p. max:	*C Heat	treatment	t proc.:		Ter	np. control:		
PWHT m	in:	*C 1	max.:	*C 54	taking:	min	inn 1	Heating rate:	-0	h Coo	ing rate:	"Ch
Remarks										Date	sint encoded Signature (5.12.11 aroun1 Redo	NRM refere

WPS (Welding Procedure Specifications)

WQ (Welder Qualification)

04/06/2024

Non-destructive tests (NDTs)

Inspections and tests

From EN 13445-5: 2014 Section 4.1

<u>Each individual vessel shall be inspected during construction and upon</u> <u>completion</u>. Inspections shall be made to ensure that in all respects the design, materials, manufacturing, and testing comply with the requirements of this standard. <u>Documented evidence</u> shall be prepared to verify implementation of this requirement.

Different tipologies:

- Visual test: always 100% visual test on EU standards!
- Liquid penetrant test
- X-ray test
- Ultrasound test

Type and extents depend on materials and on joint coefficient (= depend on the design)

Performed

- by qualified testing personnel
- according to specific European Harmonized Standards

Remarks

Brazed joints shall be testes as well

04/06/2024

CO2 example https://edms.cern.ch/nav/P:CERN-0000076703:V0/P:CERN-0000095890:V0/TAB3

See talks of Gonzalo A. Izquierdo

Inspections and tests

Pressure test

For a component falling into the PED domain, the pressure test is MANDATORY!

The test pressure is **<u>derived</u>** from Maximum Allowable Pressure: according to EN 13445, usually (but not always) the test pressure is **1.43*PS**

The test procedure is given in the EN 13445.

Is not a pressure test enough to grant the safety of a vessel?

An overpressure test is not enough to ensure safe operation over the lifetime of the equipment! Cyclic loads are not simulated.

http://www.youtube.com/watch?v= AB9QvkvQuvM

http://www.youtube.com/watch?v= 2WJVHtF8GwI

CO₂ vessel https://edms.cern.ch/nav/P:CERN-0000076703:V0/P:CERN-0000095872:V0/TAB3

Safety devices

Annex I of the Pressure Equipment Directive (PED) 2014/68/EU Section 2.10:

Protection against exceeding the allowable limits of pressure equipment Where, under reasonably foreseeable conditions, the allowable limits could be exceeded, the pressure equipment shall be fitted with... suitable protective devices, unless the equipment is intended to be protected by other protective devices within an assembly.

2 types of devices:

- Closeable valve Cla-Val 50-01 Pressure Relief Valve 3D Animation (youtube.com)
- Burst disc Rupture Disc Burst (youtube.com)

04/06/2024

The set pressure shall be the Maximum Allowable pressure PS. Relief area is evaluated according to the Maximum Credible Incident (MCI).

Courtesy of Leser

Rupture disc - Wikipedia

04/06/2024

Safety devices

- Cryogenic vessels and lines and vacuum insulations volumes shall be protected by safety devices.
- Standards are available for sizing
 - EN ISO 4126-2013 / Safety devices for protection against excessive pressure
 - EN 13648:2008 / Cryogenic vessels Safety devices for protection against excessive pressure
 - ISO 21013:2016 Cryogenic vessels -- Pressure-relief accessories for cryogenic service

Ask always where they are installed

Annex III of the Pressure Equipment Directive (PED) 2014/68/EU, Section 2

The manufacturer shall establish the technical documentation.

The technical documentation shall make it possible to assess the conformity of the pressure equipment to the relevant requirements, ...

The technical documentation shall, wherever applicable, contain at least the following elements:

- a general description of the pressure equipment,

- conceptual design and manufacturing drawings and diagrams of components, subassemblies, circuits, etc.,

— descriptions and explanations necessary for an understanding of those drawings and diagrams and the operation of the pressure equipment,

- a list of the harmonised standards... applied in full or in part..
- results of design calculations made, examinations carried out, etc.,
- test reports.

DOCUMENTATION IS THE BASIS FOR THE COMPLIANCE WITH RULES!

Please keep in mind "Safety Folder" instead of "Safety File"! Foresee it since the beginning of the job!

04/06/2024

The "Safety Folder" is very useful also during design phase: you can store drawings, calculations, ...

Technical documentation

A CO2 Accessory for CMS	
Technical Description	
Drawings FO	or a small project
Maldina	
Weiding 1260656 (v 1) Receptivelitif des soudures pour bouteille A	
1209050 (v. 1) Recapitulatif des soudures pour bouteille R	
1203030 (V.1) Recapitulatin des soudures bouterie B 1270705 (V.1) DRAWING FOL DER - Welding Qualification	n Samilac
127675 (v.1) Welding Procedure Qualification Records /	(WPORs) for welds drawing CRNH7MW 1274
1276676 (v.1) Welders' qualification test certificates for w	alds drawing CRNHZMW_1274
1276677 (v.1) Welding procedure specifications (WPSs);	for welds drawing CRNHZMW_1274
Material Certificates	In weids drawing Orthinzinty_12/4
1270709 (v 1) MATERIAL CERTIFICATE - KOHLER end	-caps + seamless tube
1270711 (v 1) MATERIAL CERTIFICATE - BOHLER BOU	nd bar DN40
1270715 (v.1) MATERIAL CERTIFICATES - Swagelok V(CR Fittings
1272853 (v 1) MATERIAL CERTIFICATE - Namenlate EN	J 10088-1 4429
Procurement and Subcontracting	
Tooling	
Photos	
Inspection and test	
Tests	
▶ 🗇 Inspection	
1293086 (v.2) EC DECLARATION OF CONFORMITY	

https://edms.cern.ch/project/CERN-0000095872

Luca Dassa - CAS - Mechcanical Engineering - Safety and

Standards

If standards are applicable => follow the standard

If standards are not applicable => Some examples:

- Cryogenic equipment with magnet inside (huge mass inside a pressure vessel)
- Exotic materials (Niobium, Copper OFE...)
- Bolted vessel with leak tight welded joints (not structural)
- Special flanges (pressurized vacuum flanges)

Example: an accelerating cavity...

04/06/2024

Do not work alone! Rise the concern immediately!

Accelerator components

Essential Safety requirements are the reference

Discussion with Safety Unit to define the conformity approach

Inspiration from existing standards to find an approach to the design, manufacturing, inspection and testing which is granting the safety.

CRAB cavities

• Discussion and agreement with CERN Safety Unit (HSE)

Accelerator components

- Advanced calculations
- Test campaigns for material behaviour at room T and at cold
- Dummy vessel test for bolt behaviour
- Qualification of special joints
- Full SPS mock-up
- Detailed manufacturing follow-up
- Notified body required for external companies

Dummy vessel and bolt tests

Machinery

Standards for machinery

Focus on the European approach

Machinery **DIRECTIVE 2006/42/EC** OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast):

- applies to Machinery: 'an assembly, fitted with or intended to be fitted with a drive system other than directly applied human or animal effort, consisting of linked parts or components, at least one of which moves, and which are joined together for a specific application'
- Machinery must be designed, fabricated and tested according to the Essential Safety Requirements (ESRs) of Annex I (risk assessment is one of them)
- Notified Body is required only for specific machinery (Annex IV)
- Declaration of conformity, signed by the manufacturer, is mandatory
- ANNEX VII describes the Technical file for machinery

The EU Machinery Regulation 2023/1230 becomes legally binding in all EU states on 20 January 2027 (key date regulation)!

Machinery

04/06/2024

Technical standards

Rules / Laws / Directives	Standards	
Essential Safety Requirements / general statements	Technical detailed i	implementation (see next slides)
	Harmonized Standards	Not Harmonized Standards
European Union Directive: <u>Directive 2006/42/EC</u> of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast)	A-type standards specify basic concepts, B-type standards deal with specific aspects of machinery sa specific types of safeguard that can be used across a wide r categories of machinery. C-type standards provide specifications for a given category machinery Here the list: <u>Machinery (MD) - European Commission (europa.eu)</u>	afety or range of y of i.e. for some lifting device ASME B30.20, ASME B30.21, and many others
Mandatory / legal obligation	Not Mandatory / not legal obligation Essential Safety Requireme	with legal obligation Proof of conformity is at charge of the manufactu
	<u>Use</u>	Harmonised Standards
04/06/2024	Luca Dassa - CAS - Mechcanical Engineering - Safe	ety and35

Luca Dassa - CAS - Mechcanical Engineering - Safety and Standards

04/06/2024

• Machinery is today a mix of mechanics, electrics and electronics

 It is impossible to have a safe machine without a safe control system: control systems are classified according to their reliability (PL levels, SIL levels)

- The components of the control system shall be assembled with proper knowledge.
- Please contact always an experienced technician

Machine control systems

📁 Electric lift truck for Clean Room / Model: CERN-Alpha

- Imanagement
- a 🧔 technical file
- 🔺 📁 risk analysis

2213998 (v.0.5) Risk analysis for the clean room stacker

2214007 (v.1) Compliance with Essential Safety and Health Requirements according to Directive 2006/42/CE

a 🃁 design

- 2195055 (v.1) Study for the Electric / Power / Control scheme of a clean room stacker
- 2258015 (v.1.0) Strength assessment (mechanical) of the fork lift truck for clean room
- LHCACF_T0867 (v.0) LIFTER 2 CR SM18
- a 2314772 (v.0.4) Stability study
- 2314776 (v.1.0) Study of drivetrain, lifting and rotation chains
- LHCACF_T1233 (v.0) Lifter 2 CR SM18
- 2646446 (v.1) Manufacturing pieces Lifteur 2 V2
- LHCACF_T1294 (v.0) Lifter 2 CR SM18 V2
- LHC-ACF_T-DF-0060 (v.1) Drawing folder Lifter CR SM18 V2
- 2773638 (v.1.0) Welded joints for the lift truck frame

4 🧔 manufacturing

- 2194532 (v.1) Torque sensor Scaime
- 2194540 (v.1) Gearbox Wittenstein
- 2194543 (v.1) Vertical Drive Wheel Metalrota
- 2194547 (v.1) Front Wheel Blickle
- 2194552 (v.1) Linear Module Kynetic Systems
- 2194562 (v.1) Rigth Angle gearbox Dynabox
- 2194578 (v.1) Motor and control Kollmorgen
- 2194598 (v.1) Gearbox Apex Dyna
- 2194631 (v.1) Coupling Rotex
- 2195127 (v.1) Motor and control Siemens
- 2195156 (v.1) Linear guides SKF
- 2195165 (v.1) Screw + Nut France Lineaire Industrie
- 2195299 (v.1) Control command Compaut
- 2195312 (v.1) Slew drive Cone (provided by ALTEAD)
- 2262374 (v.1) Tansformer Murr Elektronik 86060
- 2428556 (v.1) Collecteur electrique tournant ATC Production CE060A
- 2693638 (v.1) Cooling Fan ebmpapst 634 HHU
- 2724440 (v.1.0) Documentation proceedings the manufacturing of the frame
- 2773981 (v.0.2) Electrical scheme
- 2774660 (v.0.2) Documentation related to control system
- 3064680 (v.1) Functional specifications for the control system (Perrin)
- inspection and test
- 🕨 💋 use
- EC declaration
- 📁 ownership
- Image: Provide the second s
- 2195060 (v.1) Electric lift truck for Clean Room: machine description

04/06/2024

Wired control system

Technical documentation

https://edms.cern.ch/project/CERN-0000198978

Lifting equipment

Standards for lifting equipment

Lifting equipment

04/06/2024

Machinery **DIRECTIVE 2006/42/EC** OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 on machinery

- Lifting accessories are a special case of Machinery directive, even if they are 'static', not motorized
- Most common category: <u>non-fixed load-lifting accessories</u>
- CE stamp required
- Technical file shall be delivered with the accessory
- ORR-02932 Palonnier SLINGSINTT pour aimant HL-LHC
 - 2781410 (v.1) Image for Asset CRR-02932
 - 2781797 (v.1) USER MANUAL R-2932
 - 2781798 (v.1) PLAN ENSEMBLE R-2932
 - 2781799 (v.1) CE CERTIFICATE R-2932
 - 2781800 (v.1) NOTE DE CALCUL R-2932
 - 2816117 (v.1) Rapport d'inspection de Sécurité Périodique de l'équipement CRR-02932
 - 2816117 (v.2) Rapport d'inspection périodique Sécurité Générale du Bâtiment de l'équipement CRR-02932

CRR-02932 - Palonnier SLINGSINTT pour aimant HL-LHC | Asset CRR-02932 (cern.ch)

Eurocodes

Standards for big structures (buildings,...)

Eurocodes

04/06/2024

Andrea CATINACCIO | M.Sc. Mech Eng | CERN, Genève | CERN | Physics Department (PH) | Research profile (researchgate.net)

- They are intended for structural design, mainly for civil engineering
- Application required for big structures at CERN
- WARNING: the legal context for the Eurocodes is slightly different from other European directives

Conclusions

Conclusions

Conclusions

- Many domains of engineering are covered by rules and directives: pressure equipment, cryogenic equipment, machinery, lifting accessory, buildings, ...
- **Rules and directives have a legal status**: be sure you know the applicable rules to your working institution
- Technical standards are not mandatory. Harmonized standards have a special importance, due to the presumption of conformity
- Standards impact the full lifecycle of the equipment: design, manufacturing, inspection, test, operation, maintenance, repair
- **Documentation is of paramount importance** to demonstrate the **compliance** with the applicable rules. Among others, risk analysis is of primary relevance

Thank you for your attention Questions?

Engineering Department

MECHANICAL & MATERIALS ENGINEERING FOR PARTICLE ACCELERATORS AND DETECTORS

Back-up slides

Back-up slides

Definitions

Laws are based on broad principles, while rules are based on narrow technicalities in their application to specific cases and people involved in different situations.

Danger

"Danger" has a few meanings. It can be used as a substitute for risk, for example.

A "danger" is something or someone that can hurt you.

Dangers usually involve immediacy.

This is different from "hazard," in which the **exposure** might be extremely low, but there is a higher chance of great harm or death.

Let's look more closely at "hazard" now.

Hazard

A "hazard" is a source of danger or harm to a person or environment.

"Hazard" is a known threat. Yet, there is an unpredictable element to a "hazard."

<u>A hazard is something that can harm you, while a risk is the probability or likelihood of a hazard harming you</u>

And in an accelerator facility?

At CERN

CERN Rules have priority on French and Swiss rules

Be aware! CERN is a special situation: it is SLIGHTLY DIFFERENT

Rules and directives

CERN rules

Publication date of the mechanical Safety rules: 9 June 2015

Somewhere else (at your facility, maybe)

Most likely you must comply with legislation of the country

CHECK APPLICABLE RULES WITH EXPERTS!

Pressure and cryo eq.

Standards for pressure and cryogenic equipment

EN 13445-3 annex A is a good reference for designing pressure bearing welds. EN 1708-1 is also a very useful harmonised standard. Some examples:

04/06/2024

B.2.2.5 Lowest minimum metal temperatures for austenitic stainless steels

Solution annealed austenitic stainless steels according to Table B.2-11 can be applied down to temperature $T_{\rm M}$ without impact testing, except when impact testing is required by the material standard. E.g. EN 10028-7 requires impact testing at room temperature above 20 mm thickness for use at cryogenic temperatures (below -75 °C according to EN 10028-7:2007).

Table B.2–11 — Austenitic stainless steels and their lowest minimum metal temperature $T_{\rm M}$

Material	Material number	T _M (in °C)
X1NiCrMoCu 31-27-4	1.4563	
X1CrNiMoN 25-22-2	1.4466]
X1CrNi 25-21	1.4335	
X2CrNiMoN 17-13-3	1.4429	
X2CrNiMoN 17-11-2	1.4406	272
X2CrNiMoN 18-12-4	1.4434	- 273
X2CrNiMo 18-15-4	1.4438	
X2CrNiN 18-10	1.4311	1
X2CrNiMo 18-14-3	1.4435	
X2CrNi 19-11	1.4306	1
X6CrNiTi 18-10	1.4541	
X1CrNiMoCuN 25-25-5	1.4537	
X1NiCrMoCuN 25-20-7	1.4529	
X1CrNiMoCuN 20-18-7	1.4547	
X1NiCrMoCu 25-20-5	1.4539	
X2CrNiMoN 17-13-5	1.4439	
X6CrNiMoTi 17-12-2	1.4571	
X3CrNiMo 17-13-3	1.4436	
X6CrNiMoNb 17-12-2	1.4580	
X2CrNiMo 17-12-3	1.4432	1 400
X5CrNiMo 17-12-2	1.4401	- 196
X2CrNiMo 17-12-2	1.4404	
X6CrNiNb 18-10	1.4550	
X5CrNi 18-10	1.4301	
X2CrNi 18-9	1.4307	
GX5CrNi9-10	1.4308	
GX5CrNiMo19-11-2	1.4408]
GX2NiCrMo28-20-2	1.4458	1
GX2CrNi19-11	1.4309	1
GX2CrNiMo19-11-2	1.4409	1

Not all the materials (304L, 316L, 316LN) are accepted for cryogenic use.

Harmonized standards:

- EN13445-2:2014 -> Table B.2-11
- EN13458: not really clear
- EN1252-1:1998: the most important property is the material toughness at low temperature → > 27 J at -196 °C

See talks of Stefano Sgobba and Ignacio A. Santillana

Materials

NDTs

HCACF A004-UK000001 - RFD Cryomodule Prototype HCACFVT004-UK000001 - RFD Vacuum Vessel Prototype HCACFWM004-UK000001 - RFD Warm Magnetic Shield Prototype HCACFTS004-CR000001 - RFD Thermal Shield Prototype HCACFCC004-CR000001 - Miscellaneous material for UK 🗄 🏡 HCACFQC004-UK000001 - RFD Cryogenic lines Prototype 🗄 🏡 HCACFMC004-CR000001 - RFD FPC Main Coupler 🗄 🚓 HCACFMC004-CR000002 - RFD FPC Main Coupler HCACFDC004-CR000001 - RFD Dressed Cavity Prototype CERN 🖶 🌇 HCACFHT004-CR000001 - RFD He Tank Prototype CERN (RFD Jacketed Cavity Prototype CERN) — HCACFHC006-CR000004 - CERN RFD V-HOM Coupler Prototype HCACFHC007-CR000003 - CERN RFD H-HOM Coupler Prototype - HCACFPU004-CR000001 - CERN RFD Pick-up Antenna Prototype HCVSSCA001-CR000005 - RFD BEAM SCREEN FULLASSEMBLY (WP4 RFD Proto) 🖶 🏡 HCACFDC004-CR000002 - RFD Dressed Cavity Prototype CERN HCVVGSC001-VT000001 - DN80 RF all-metal Gate Valve (WP4 RFD Proto) HCVVGSC001-VT000002 - DN80 RF all-metal Gate Valve (WP4 RFD Proto) BCVVGSC001-VT000003 - DN80 RF all-metal Gate Valve (WP4 RFD Proto) - 🚓 HCVVGSC001-VT000004 - DN80 RF all-metal Gate Valve (WP4 RFD Proto) HCVBMCC032-CR000001 - Short CWT Cavity line (SPS) - HCVBMCC033-CR000001 - Short CWT Secondary line HCVBMCC034-CR000001 - Long CWT Cavity line - A HCVBMCC035-CR000005 - Long CWT Secondary line HCVBMCI014-CR000001 - Inter Cavities RF Bridges (SPS RFD) HCVBMCI015-CR000001 - Inter Beam Screen RF Bridge (SPS RFD) – HCACFCC010-UK000001 - MLI RFD prototype HCACFAH037-UK000001 - RFD Blade Support Assembly HCACFAH037-UK000002 - RFD Blade Support Assembly HCACFAH037-UK000003 - RFD Blade Support Assembly HCACFAH037-UK000004 - RFD Blade Support Assembly HCACFAH051-UK000001 - Cavity Support System – HCACFAH051-UK000002 - Cavity Support System — HCACFAH055-UK000001 - RFD Cold-Warm-Transition Supports prototypes HCACFAH055-UK000002 - RFD Cold-Warm-Transition Supports prototypes HCACFAH055-UK000003 - RFD Cold-Warm-Transition Supports prototypes HCACFAH055-UK000004 - RFD Cold-Warm-Transition Supports prototypes HCACFQC456-CR000001 - CRAB SM18 M7 test - Jumper assembly - CRPSD-00517 - RD820 Crab Cavity CM RFD PROTO_Disque Elfab OE6 1.1Bar DN100 - 🏡 CRPSV-21449 - SV820B Crab Cavity CM RFD PROTO Soupape Circle Seal 532B 0.7Bar NPT 1"1/4M 🗕 🏡 CRPSV-21448 - SV820A Crab Cavity CM RFD PROTO_Soupape Circle Seal 532B 0.7Bar NPT 1"1/4M

MTF Application - Equipment Main Page (HCACF_A004-UK000001) (cern.ch)

04/06/2024

Technical documentation

For a big project: crab cryomodule

QUALITY AND SAFETY: complementary

Machinery

Standards for machinery

Partly compl. machinery

Machinery **DIRECTIVE 2006/42/EC** OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast):

'partly completed machinery' means an assembly which is almost machinery but which cannot in itself perform a specific application. A drive system is partly completed machinery. Partly completed machinery is only intended to be incorporated into or assembled with other machinery or other partly completed machinery or equipment, thereby forming machinery to which this Directive applies;

Machinery

Use in laboratories

Machinery Directive

DIRECTIVE 2006/42/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 on machinery, and amending

Directive 95/16/EC

Article 1

Scope

•••

...

2. The following are excluded from the scope of this Directive:

04/06/2024

(h) machinery specially designed and constructed for research purposes for temporary use in laboratories;

- What does 'temporary' mean?
- May an accelerator be qualified as a 'laboratory' following the Directive scope?

Lifting equipment

Standards for lifting equipment

The lifting procedure shall be studied carefully! => impact on the design and on the instruction => impact on safety!

Lifting equipment

Lifting procedure

04/06/2024

Eurocodes

Standards for big structures (buildings,...)

Figure 1. CAD view of the RFQ cavity and its equipment composed by pumps (Ions, Turbo, and NEG), instrumentation and tuner. The RF window, its support and the safety system are shown, as well as the sacks and jack pillars

Figure 5. Part of the horizontal design acceleration spectrum used for seismic assessment calculated form the Elastic Response Spectrum after considering the ductility of the structure and the torsional effects

Eurocodes

Earthquake loads

2591528 Report LB RFQ Safety Assessment V2 3 docx cpd f.pdf (cern.ch)

Figure 6. Vertical design acceleration spectrum used for seismic assessment

Welded joints

Calcul suivant Eurocode 3 DIMENSIONNEMENT Formation T47B DES ASSEMBLAGES Version 0.2 EN 1993-1-8:2005 Page 14 SOUDES Domaine d'application : bâtiments et ouvrages de génie civil en acier $\beta_{\mathrm{w}}\sqrt{\sigma_{\perp}^{2}+3\left(\tau_{\perp}^{2}+\tau_{\prime\prime}^{2}\right)} \leq \frac{f_{u}}{1}$ $\sigma_{\perp} \leq 0.9 \frac{T_u}{}$ et γ_{M2} $\gamma_{\rm M2}$ $f_u / \beta_w \gamma_{M2}$ f_u β_w f_u / γ_{M2} γ_{M2} S235 360 0.8 288 360 S275 0.85 385 410 328 S355 470 1.25 376 417 0.9 S420 520 416 416 1 S460 540 1 432 432 cetim

© CETIM 2020, toute reproduction, traduction ou interprétation des supports de formation communiqués par le CETIM est soumise à l'autorisation préalable et expresse du CETIM

04/06/2024

Eurocode 3 requires partial safety factors on loads (actions)

Guidelines

Guidelines

List of guidelines

Guidelines are available all around the word. Here some example of used guidelines at CERN

- US Military standards: MIL-STD-810H, MIL-STD-2073-2073-1
- NASA documentation: NASA Reference Publication 1228 (1990) Fastener Desing Manual
- ITER design handbook (restricted access): Remote Handlining Handbook
- VDI: see <u>https://www.vdi.de/en/home/vdi-standards</u> => VDI 2230

VDI 2230

- VDI 2230-1 Systematic calculation of highly stressed bolted joints / Joints with one cylindrical bolt
- Formula available for manual calculations

4 strategies for FE modelling of a bolt

VDI 2230-2 Systematic calculation of highly stressed bolted joints
 / Multi bolted joints

• See EDMS 1866760 Application of FE-analysis in Design and Verification of Bolted Joints according to VDI 2230 at CERN"

VDI 2230

Table 1. Outline of BJs (adapted from [2])

EN 13445-3

(W is the design bolt load for assembly

Eurocode 3 (EN 1993-1-8 Design of joints) and bolts: bolts not used in the same way! Bolts are mainly working in shear

