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Computer-Aided Design and Engineering (CAD/CAE)
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*The more time spent here, the less money and time spent later
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FEM Theory in a Nutshell

%

The displacements of all the points in a continuum
under the action of external forces depends on the
displacements of discrete points known as nodes.

This dependence is regulated by interpolating functions
known as shape functions.

To study a body with FEM, we must thus discretize the
continuum in a finite number of elements, each one
featuring a number of nodes which depends on the
type of element chosen.
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Element Types

The shape functions depend on the element type:
= Line elements model 1D structures like beams, rods or pipes.
= Surface elements are used to model large and thin surfaces like shells, plates.

= Solid elements are used to model three-dimensional bodies.

LINE elements SURFACE SOLID element:
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FEM Theory in a Nutshell

FEM: solving for the nodal displacements {s} {S} = [K]_l{F}
After calculation of {s}: [0] =

{fu} = [N]{s} 0 Shape functions 0 a/az a/ay

{e} = |[0[{u} = |0][N]{s} e Compatibility Equations

{c} = [D]|{c} = [D]|0]|IN]{s} m Material Constitutive Law (e.g. Hooke’s law)

0 + G + m . Solution can be obtained in all points of
the structure (not only at the nodes!)




Distributed load

1
19

Linear vs. Quadratic Elements

Fixed support

Linear elements Quadratic elements

Bending stress (MPa)

Linear elements: computationally more efficient, but when a nonlinear stress state is expected,
use quadratic elements or more linear elements over the thickness
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Example of Calculation of a Shape Function:
Truss Element

Y
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= Best mathematical instrument to represent a shape

X ul l u2 . . .
function is a polynomial
a4 = Displacements will be varying linearly over the length of
U=a;+ax = 1 x] {az} the element, while strains and stresses will be constant

= Choose the right element for the right problem! In case
of bending and shear, use a beam element instead

a., a, are coefficients that can be calculated
imposing the b.c.x; = 0,x, =1

¥

M =[(1-7) 1]



FEM Solvers
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= Explicit solvers: suggested for fast transient and highly nonlinear problems

= |Implicit solvers: suggested for slow transient and static problems

equations at the time t and t+At.

[\NSYS Implicit codes Explicit codes

= Unconditionally stable =
W COMSOL
= Large time steps u
N NASTRAN .. .
e = Matrix inversion =
2
pPS SIMULIA = Coupled equations .
ABAQUS
= Convergence problem =

Conditionally stable

Small time steps
LS-DYNA

«Lumped» matrix multiplication

-
Uncoupled equations m

«Keep going» WAV:=FEA




Particle accelerator components: typical loads

Temperature : :
PEI Mechanical forces Electromagnetic
gradient forces
Temperature ‘S’:\ SA x10*
Type: Temperature G
Unit: °C ime: 0.99718 s 8
Time: 1 26/10/2020 10:49
21/02/2020 10:58 7
. Pressure 2: 3.9e+005 Pa
27.75 Max . Moment: 3500. N-m 6
6.3928
! -14.964 . Moment 2: 3500. N-m :
-36.322 B Atm p: 1.0133e+005 Pa
| -57.679 . 4
29036 . Fixed Support
-100.39 3
-121.75
-143.11 2
-164.46
-185.82 1
-207.18 ° ]
o Can often be studied with

Displacements Accelerations Beam loads (RF & implicit FE COdes

particle losses)

Total Deformation - . .
Type: Total Deform M: IHV+IVV nen lin and plasticity
Unit: mm Static Structural

Time: 1

Time: 2.3757 s
26/10/2020 11:12

26/10/202013:34

1.0271 Max

We resort to explicit codes

091299
0.79836 A | Acceleration: 23.306 m/s®

068474

057062 B | Displacement

045649 ° [ °

034237

or special a ICations
011412

0 Min

500.00 (mm)




FEM tips: from reality to model

= Simplification of the model: removal of details not contributing to the
solution of the problem under study

= Screws, welds typically defeatured in the FEA, and calculated “by hand”
extracting internal loads from FEA

= Chamfers, radii can be verified via submodels

...however...

= Loads and boundaries:
= As accurate as possible representation of the real working conditions

= Compromise sometimes to be made to simplify the problem (e.qg.
nonlinear contacts, etc.)

= Most critical step of the process

= Safety factors! (i.e. factor of ignorance)

= When approximating, always be on the conservative side &

b
| &g

. “,
= Start simple, complexify later ’\\\\




However: what should we simulate?

= 15t thing to do when designing a component: understand well (and write down!) the possible loading
scenarios:

= How does it operate? Are there more than one operating scenario?

= How to switch between different operating scenarios (or from parking to operation and viceversa)?
Slow transient / fast transient? Is it an issue?

= Which tests should | foresee on the final component before operation to ensure that it fulfils its
requirements? Are they more or less critical than the operating scenarios?

= How do | lift / handle / maintain it?

= How many times (cycles) all of these possible loading conditions are reproduced?

= Are there any other variables possibly affecting the behaviour of the component? (chemical reactions,
radiation, temperature, humidity, etc.)




However: what should we simulate?

3 OUTER HELIUM VESSEL (OHV)

= All of these questions need to be answered = all answers  Nomina! operation load cases

NLC1 - Transport
need to be summarized in a “cahier des charges” NG g the et

NLC4 - Vacuum pumping

= Example: FRESCA-2 Outer Helium Vessel (OHV) NLC5 - Pressurized
NLC6 - Cold

. el . . NLC7 - Powerin

= (more details on it in a few slides) NLCS - Quench
NLC9 - Vacuum loss
NLC10 - Purge with vacuum loss

Testing load case
TLC1 - Leak test during fabrication

= Main concept here: NG rresretetnpls
" Many Operatlonal; exceptlonal and teStIng |Oad Table 2 - Applicable load cases for outer helium vessel
cases can be dEﬁI’]Ed NLC1 | NLC2 | NLC3 | NLC4 | NLC5 | NLC6 | NLC7 | NLC8 | NLCO |NLC10| TLC1 | TLC2 | TLC3
o ] Self-weight (1) A | B B B B B B B B B c c B
= Often it is possible to reduce these many load Temperature) | A | A | A | A | A |8 |8 |8 |8|A|A|A]|aA
. L. Internal pressure (3) / / / A B B B C C / / D E
cases to very few ones which are the most critical Extemalpressure@)| / | / | / | / | / | /| /| / |8 |8 [ A]A]]J
Magnet + IC weight / / X X X x X X X X / / X
Torgue / / / / / / X X X / / / /

* You will then study / simulate only those critical
(1) A =self-weight supported by handling points; B = self-weight supported by top flange;
|Oa d cases ! C = self-weight on manufacturing supports

(2) A=300K; B =4.5-300K thermal gradient
(3) A =Atmospheric pressure; B = 1.3 bar (absolute); C = PS (3.9 bar absolute);

D = Hydraulic Test pressure (1.43 x PS); E = Pneumatic test pressure (1.25 x PS)
(4) A = Atmospheric pressure; B = 1.5 bar (absolute)




Implicit simulations: an example




FRESCAZ2: a facility for testing SC samples

A

INNER HELIUM
VESSEL (IHV)

. INNER VACUUM
> VESSEL (IVV)
el LAMBDA
- PLATE

OUTER VACUUM
* VESSEL (OVV)

Simplified model
for computations

OUTER HELIUM
VESSEL (OHV)

5140

SAMPLE HOLDER
(SH)

FOOT SUPPORT




FRESCA2: design of the OHV

15t step: definition of the “cahier des charges”!

INNER HELIUM 3 OUTER HELIUM VESSEL (OHV)
VESSEL (IHV) Nominal operation load cases
NLC1 - Transport

INNER VACUUM NLC2 - Installation in the pit
LAMBDA VESSEL (IVV) NLC3 - Assembly .
PLATE NLC4 - Vacuum pumping

OUTER VACUUM NLC5 - Pressurized

* VESSEL (OVV) NLC6 - Cold

NLC7 - Powering

NLC8 - Quench

NLC9 - Vacuum loss

OUTER HELIUM NLC10 - Purge with vacuum loss
VESSEL (OHV)

Testing load case
TLC1 - Leak test during fabrication
TLC2 - Pressure test during fabrication
(SSA}:;PLE HOLDER TLC3 - Pressure test in place

Table 2 - Applicable load cases for outer helium vessel

NLC1 | NLC2 | NLC3 | NLC4 | NLC5 | NLC6 | NLC7 | NLC8 | NLC9 |NLC10| TLC1 | TLC2 | TLC3

Self-weight (1)
FOOT SUPPORT Temperature (2)

Internal pressure (3)

External pressure (4)

Magnet + IC weight

~ |~~~ ||
~ |~~~ | |m
~ |~~~ | |m
~ X[~ | |®
~ | X[ ~|m || m
~|®|[~|m|m|m
X x|~ |m|m|m
| x|~|O|m|m
X || @O || m
~ || m|~|>|m
~ ||~
~|~|=|O(>|O
~ = |~|mM|>=|m

Torque

(1) A =self-weight supported by handling points; B = self-weight supported by top flange;
C = self-weight on manufacturing supports
(2) A=300K; B =4.5-300K thermal gradient
(3) A =Atmospheric pressure; B = 1.3 bar (absolute); C = PS (3.9 bar absolute);
D = Hydraulic Test pressure (1.43 x PS); E = Pneumatic test pressure (1.25 x PS)

(4) A = Atmospheric pressure; B = 1.5 bar (absolute)




FRESCA2: design of the OHV

INNER HELIUM 13 load cases reduced to two design cases:

VESSEL (IHV)

INNER VACUUM 1. Quench during operation:

VESSEL (IVV)
LAMBDA

PLATE = |nternal pressure in the OHV 3.9 bara

OUTER VACUUM

- VESSEL (OVV) = Thermal gradient 4.5-300 K
= EM torque 3500 Nm
| OUTER HELIUM

VESSEL (OHV) -

Most likely failure scenario is by plastic

deformation
SAMPLE HOLDER

(SH)

2. Vacuum loss during OHV purging:

= External pressure on the OHV 1.5 bara

FOOT SUPPORT = Most likely failure scenario is by buckling

I we
Noy

(we conservatively assume material properties at 300 K
for all scenarios)




FRESCA2: quench durlng operatlon

Imported Body Temperature SugEEStIOI’IS:
Time: 1. s . .
Unit: K = Use shell elements instead of solids

23/04/2020 16:21 wherever possible

3009 M . .
[ ] 267 68 > = T field can be calculated in a
| 23446 separated thermal analysis, then
| 20123 imported into structural
| 168.01
| 13479 = |n the preliminary design phase, start
— 101.57 . I d . f I . . 9 I
68,344 simple, design for elasticity inear
I 35.121 elastic calculation
1 204G Min

SA
Time: 0.99718 s

23/04/2020 16:59 .
At a later design stage:

. Fixed Support
. Magnet + subcomponents

. Pressure 2: 3.9e+005 Pa
. Helium

. Moment: 3500. N-m
B Moment 2: 3500. N'm
@ Standard Earth Gravity: 9.8066 m/s®
. Atm pressure on top: 1.0133e+005 Pa

= Nonlinearity of materials
(temperature, strain, ...)

= Structure verified against EN-13445
Direct Route: total strain must be less
than 5%

0.00 1000.00 2000.00 (mm)
I

500.00 1500.00




FRESCA2: quench during operation

abs(eptt3) - 1. s
Expression: abs(eptt3)
Time: 1

23/04/2020 17:25

= Direct route requires max(|&4], |&2], |€3]) < 5%
= How to make sure of accuracy of the results?

= Convergence study
. 0.0041661 Max

0.0037032 = Submodeling
0.0032403
0.0027774 5 32
0.0023145 |
oyl 30
0.0018516 = =)
=1 =
0.0013887 Y %
0.0009258 ° 26 &
e €2
I 0.0004629 é‘@z— 9
. 24 1
3.6958e-10 M &
e10Min 4% 2. :
- 122
0 : 20
102 10 10°

Mesh Size [mm]




FRESCA2: vacuum loss during purging

eptt3 -1.s
?:tr\ne' - . Expression: abs(eptt3)
22/0;1/2.020 16:25 — Time: 1 —
22/04/2020 16:21
Ml Fixed Support 0.00079133 Max  0-08%
. Magnet + subcomponents . 0.00070341
. Pressure 2: 1.5e+005 Pa L | 000061548
@ Standard Earth Gravity: 9.8066 m/s? | 0.00052755
. Atm pressure top: 1.0133e+005 Pa 0.00043963
0.0003517
— 0.00026378
0.00017585
8.7928e-5
2.2043e-9 Min

= Direct route check: 0.08% < 5%

= But: (especially) with external pressure, important to verify buckling



FRESCA2: vacuum loss during purging - Buckling

r—" “lastic bifurcation: LB/ : : :
[ Elastic bifurcation: LBA J Geometrically non-linear

& elastic: GNA

Applied
load

Y\\________...- Geometrically

non-linear elastic with

m imperfections: GNIA

L—[ Plastic collapse: MNA ‘

{\- Geometrically and

materially non-linear with
imperfections: GMNIA

.
-

True structure
strength

Deformation

= Which kind of buckling analysis?
= When going with FEM, better to directly take the most accurate one (GMNIA)

= Also required by direct route. It accounts for large deformation theory, material nonlinearities, and initial
geometry imperfections (e.g. shape errors, etc.)




FRESCA2: vacuum loss during purging - Buckling

How to perform a G
Steps:

1. LSA: Run alinea
imperfections),

2. LBA: Perform a
buckling) and ds
and the load mt

3. GMNIA: Runar
analysis, import
initial geometry,
progressively ur

= Buckling oc

= The safety
reached

Total displacement {m)

3.5E-03

3.0E-03 -

2.5E-03 4

2.0E-03 +

1.5E-03

1.0E-03

5.0E-04 -

0.0E+00

Non linear buckling analysis

==\/essel with shape defect and weldings

=—=\/essel with shape defect; weldings not modelled

0

50000

100000 150000 200000 250000 300000

Pressure (Pa)

mation
Deformatiq
plier (Linea

10:46

b Max
b7

3
RS
b8

0.1 0.2 0.3
Pressure [MPa]

e- in




FRESCA2: vacuum loss during purging - Buckling

Equivalent Stress 2 ﬂ Total Deformation
S .. . . R o Equivalent tvon-Mises) Str Type: Total Deformatig
Again: in a preliminary design phase, start simple: Type: Equhalent (ron-ises) St . Lot Muliolior (Lines
Time: 1 Unit: m
1. LSA: Run a linear elastic static analysis (no 23/04/2020 0951 28/04/2020 10:46
imperfections), with nominal loads 167.03 Max 1.0185 Max
125.28 O 0.90537
2. LBA: Perform a bifurcation analysis (eigenvalue toran | 07922
. . . . : — 0.67903
buckling) and determine the linear buckling modes, 71,665 | 0s6s8s
. . 53.791 L
and the load multipliers wrt (1) 35918 gigggf
18.044 s
.. . .. 0.17105 Min 0.22634
Aiming at large safety factors (e.g. 3 against plasticity, 10- abs(eptt3) - 20.5 011317
15 against eigenvalue buckling collapse) Expression: abs(eptt3) 0 Min
Time: 20
20/07/2020 16:02
i | 0.4
Attention! 0.00084901 Max 2703
: 2 o.
= Large safety factors also have drawbacks (increased 5 gggggggi £ Eo03
: = =
weights, more difficult welds, lower material properties, | ocoosseor gg o
costs, etc.) 0.00047168 2501
0.00037734 £201
= At a later design phase, best compromise between these ggggfg;g; 0o » . N
parameters must be found, and the more refined nonlinear — Pressure [MPa]

analysis is necessary 8.1846e-10 Min




Computational Tools | - Summary

Computer-Aided Engineering (CAE): powerful tool in the design phase of components, to decrease cost,
time, risk for the project

CAE require a number of iterations with CAD, with the goal of optimizing the component
Also: combine CAD/CAE with testing & prototyping (calculation cannot replace everything!)
Finite-Element Method (FEM) in the last years: most adopted tool for CAE

When engineering particle accelerator components, we may often resort to implicit codes

Explicit codes become necessary when dealing with short transient simulations (e.g. beam impact on
dumps, windows, etc.) and with strongly nonlinear problems (e.g. fabrication technologies: cutting,
welding, brazing, forming, etc.) 2 examples in the next module!

Graphical interfaces of FEM tools are becoming simpler: easier work, riskier if we do not well master the
method!




Symbols

[M]: mass matrix [kg]

[C]: damping matrix [N/(™/s)]
K]: stiffness matrix [N /m]

{ii}: acceleration vector [m/s?]
{11}: velocity vector [m/s]

{u}: displacement vector [m]

{F}: external force vector [N]

{s}: nodal displacements vector [m]

[N]: shape functions matrix [—]

{e}: strain vector [—]

[0]: strain-displacement matrix [m™"]

{o} : stress vector [Pa]

[D]: material constitutive matrix [Pa]

{a}: polynomial coefficients vector [—]

[P]: position matrix [m]
{a}: nodal position matrix [m]
£1: maximum principal strain

&,: middle principal strain [—]

€3: minimum principal strain

—]

-]




Bibliography

0 O. C. Zienkiewicz, “The Finite Element Method: Its Basis and Fundamentals”, ISBN 978-1-85617-633-0.

3 O. C. Zienkiewicz, “The Finite Element Method for Solid and Structural Mechanics”, ISBN 978-1-85617-
634-7.

u D. Braess, “Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics”, ISBN 978-0-
52170-518-9.




CERN ﬁ) ENGINEERING MECHANICAL & MATERALS ENGINEERING
@ & \J Y cm FORPARTICLEACCH ERATORS ANDDETECTORS



FEM Theory in a Nutshell

: Governing -
Physical > equations & > leteelfzment
phenomenon Model BCs Approximation equations
 Solid Mechanics d [ iF du i”’ 0
e.g. Axially loaded elastic bar dx dx CINITE  ELEMENT
MO NEL o
* Fluid Mechanics U dp ‘ 00 f‘;;:f‘?‘"
e.g. Poiseuille flow in pipe d‘"‘ "j“ dx )~
[Kl[{u} = {F} Static problems
* Thermal Conduction __ d [ Ak _‘ 0=0 > L BCs een
co 1- o du | h . : .
v D heow (Boundary  [M]{ii} + [C]{t} + [K]{u} = {F} Dynamic problems
 Diffusion i ADd—(J 0-0 Conditions)
e.g. 1-D diffusion dx \ dy
e Electrical Conduction d { thﬁ +Q 0 Linear prObIEms_- [K]) [C]) [M] = [KO]; [CO]) [MO]
e.g. 1-D electric current flow dx dx )
Nonlinear problems:  |K],[C], [M] = f(u, u, ii)

2 o0

~




Element Types

The shape functions depend on the element type:

LINE elements SURFACE ¢ SOLID elements

Line elements model 1D structures like beams, rods or pipes.
Surface elements are used to model large and thin surfaces like O/O A ; ‘ @
shells, plates.

QUAD TET . HEX

tetrahe

Solid elements are used to model three-dimensional bodies.

2D and 3D elements can be linear (first-order elements) or quadratic

(second-order elements).
Quadratic elements have additional mid-side nodes along each side of the I:I ﬂ
element.

Quadratic elements require more computational power but generally
produce more accurate results.

O



Properties of the Shape Functions

1. It must be a continuous function, and must possess a derivative at least until to
the n-1 order required by the problem under study (e.g. n = 1 for a truss
element, n = 2 for a beam or plane element, etc.)

2. It must reproduce rigid motion of the element with a null deformation energy
(i.e. in an eigenvalue problem, the rigid motion d.o.f. gave a null eigenvalue = in
a 3D space, for an unconstrained body there will be 6 null eigenvalues) Conform

Complete

3. It must guarantee a constant deformation along the element (minimal condition
when element size tends to zero)

4. It must guarantee continuity among elements (i.e. identical displacement field } Compatible
on a segment belonging to two adjacent elements)

5. It should be geometrically isotropic (i.e. displacement field is invariant wrt the
reference system, not presenting preferential directions)

-

Polynomials




