Non – ferrous metals for particle accelerators

Ignacio Avilés Santillana CERN EN / MME – MM Email: iaviles@cern.ch

Engineering Department

MECHANICAL & MATERIALS ENGINEERING FOR PARTICLE ACCELERATORS AND DETECTORS

The most important slide of this presentation

• Materials are your friends.

"Close friends are truly life's treasures. Sometimes they know us better than we know ourselves." Vincent Van Gogh

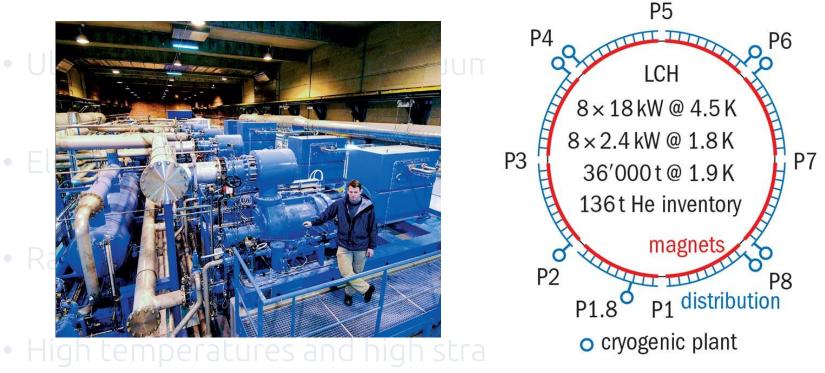
• <u>Get to know them as good as you can.</u>

• Do not ask them for things they cannot do.

Outline

- Environmental conditions of particle accelerators
- General rules for selection of materials in particle accelerators
- Families of non ferrous materials:
 - Aluminum
 - Copper
 - Titanium
 - Niobium

04-06-2024


Conclusions

• Cryogenic temperatures.

- Ultra high and extreme vacuum.
- Electro magnetic fields.
- Radiation.
- High temperatures and high strain rate.

Cryogenic temperatures → down to 1.9 K (superfluid helium).

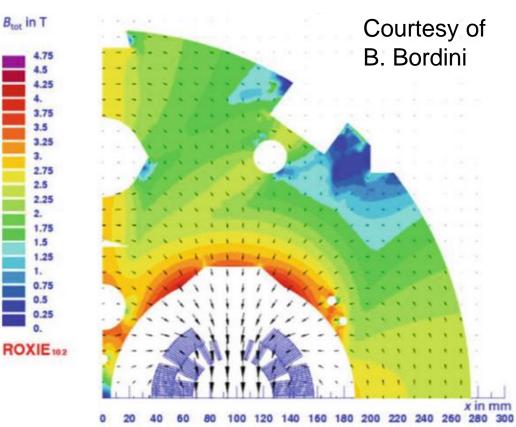
intercepting devices (dumps, collimators, targets).

- Cryogenic temperatures → down to 1.9 K (superfluid helium).
- Ultra high and extreme vacuum \rightarrow down to 10⁻¹¹ mbar.

•	Classification	Vacuum Level ^{[a], [b], [c], [d]}		
		Ра	Torr	
	Low or "Rough" Vacuum	133.3 to 1.33 x 10 ⁻¹	1 to 1 x 10 ⁻³	
•	Intermediate or "Soft" Vacuum	<1.33 x 10 ⁻¹ to 1.33 x 10 ⁻³	< 1 x 10 ⁻³ to 10 ⁻⁵	
	High or "HV" Vacuum	$<1.33 \times 10^{-3}$ to 1.33×10^{-6}	< 1 x 10 ⁻⁵ to 10 ⁻⁸	
	Ultrahigh or "UHV" Vacuum	<1 x 10 ⁻⁷ to 1 x 10 ⁻⁸	7.5×10^{-10} to 7.5×10^{-11}	
•	Extreme Ultrahigh Vacuum	$< 1 \times 10^{-10}$	< 7.5 x 10 ⁻¹³	
	Interstellar Space	10 ⁻¹⁷	7.5 x 10 ⁻²⁰	

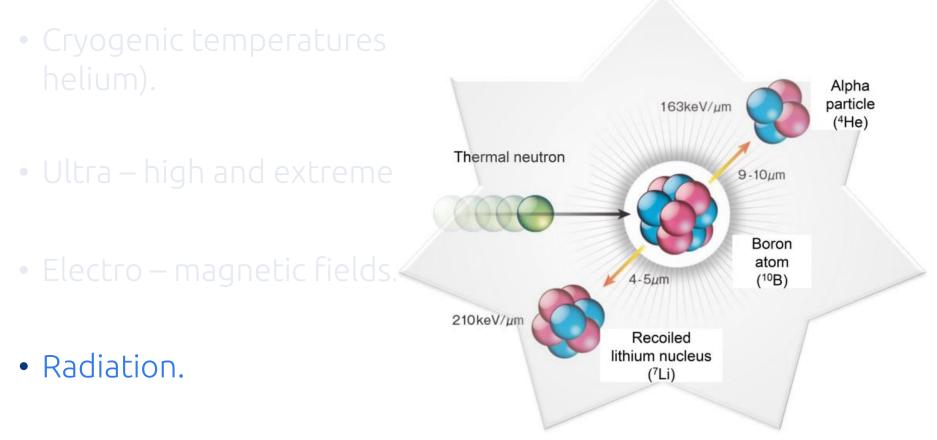
From: Herring, Daniel H., Vacuum Heat Treatment, BNP Custom Media Group, 2012.

4.


3.75 3.5 3.25 3. 2.75 2.5 2.25 2

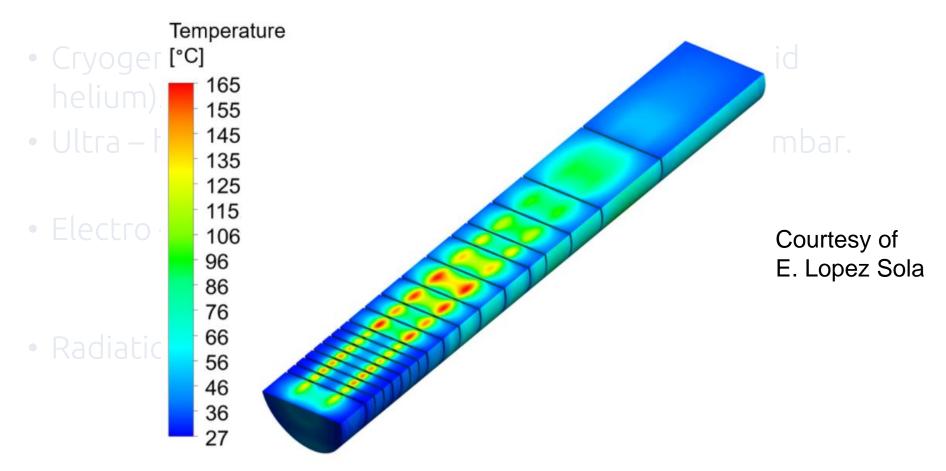
1.75 1.5 1.25 1. 0.75

- Cryogenic temperatures B_{tot} in T 4.25
- Ultra high and extreme v


• Electro – magnetic fields.

Radiation.

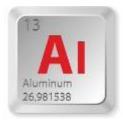
• High temperatures and high strain rate \rightarrow beam



 High temperatures and high strain rate → beam intercepting devices (dumps, collimators, targets).

 High temperatures and high strain rate → beam intercepting devices (dumps, collimators, targets).

General rules for materials' selection in particle accelerators


- The golden rule to be remembered (from S. Sgobba in stainless steel, can be extended to any material):
 - "A material for an accelerator part is not a mere chemical composition or designation"
 - Low / high temperature, magnetism, ultrahigh vacuum, radiation, require special care.

Non – ferrous materials

- Aluminium
 - Second-most abundant metallic element in Earth's crust after silicon.
 - The name comes from its compound form, a mineral rock called 'alumen' (meaning binding) used as dyeing fixative.
 - Silver from clay



The legend sais that Tiberius beheaded a goldsmith who first crafted aluminium since it could devaluate the price of gold.

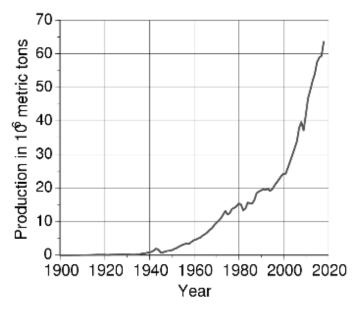
Non – ferrous materials

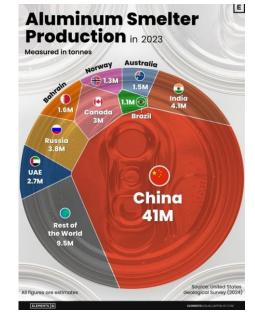
• Aluminium

• Two millennia after, the extraction of Al from bauxite was very scarce. Al was more precious than gold (as Tiberius feared).

04-06-2024

Napoleon III had, for his most distinguished guests, AI cutlery. The rest had to settle for gold.

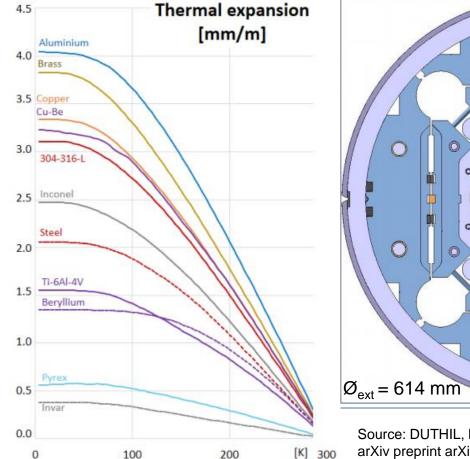


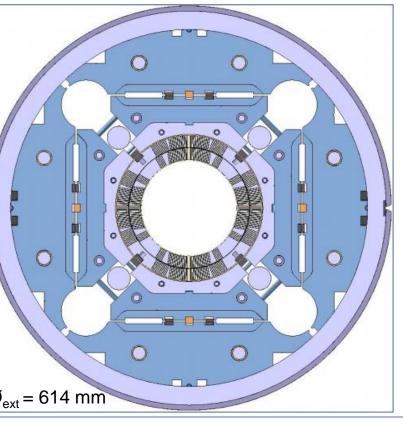

Non – ferrous materials

13 Aluminum 26,981538

- Aluminium
 - Electrolysis (Hall Héroult process) of alumina (Bayer process).
 - Victim of its own success: it is produced in similar quantities than all other non-ferrous metals combined

04-06-2024




~ 70M tons in 2023

Aluminium for particle accelerators

- Low modulus of elasticity
- High thermal contraction coefficient
- Paramagnetic

Source: DUTHIL, Patxi. Material properties at low temperature. arXiv preprint arXiv:1501.07100, 2015.

Al shrinking

cylinders for

MQXF

quadrupoles

Aluminium for particle accelerators

- Very low thermal emissivity
- High thermal and electrical conductivity

MLI (AI coated Mylar) HL – LHC's cold box

04-06-2024

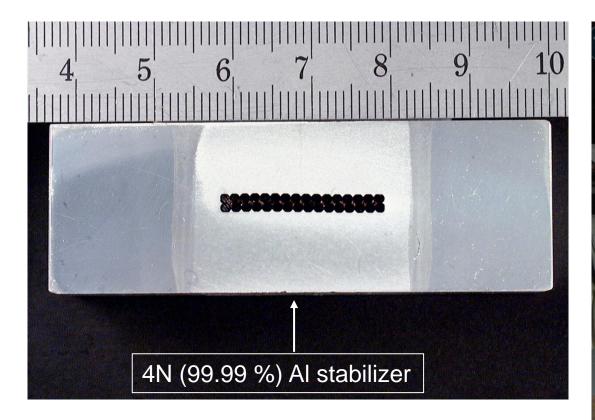
Al coil for CERN's first particle accelerator: The Synchrocyclotron

Aluminium for particle accelerators

- Feeble interaction with particle beams
 - Low density
 - Low atomic number

Developments of AI vacuum chambers and bellows

Wrought aluminum alloys


04-06-2024

Designation AA	Major alloying elements	Alloy group	Heat treatable ?	Examples
1xxx	-	Pure Al	No	
2xxx	Cu	AI – Cu	Yes	2219
3xxx	Mn	Al – Mn	No	3003
4xxx	Si	AI – Si	No	Filler
5xxx	Mg	AI – Mg	No	5061
6xxx	Mg, Si	AI – Mg - Si	Yes	6082
7xxx	Zn, Mg	AI – Zn	Yes	7050
8xxx	any		(yes)	8090

Can be strengthened by a suitable thermal treatment (heat treatable)

Can only be strengthened by hot or cold working (non – heat treatable)

• 1xxx series (pure Al) → Excellent workability & ↑ conductivity

Example: CMS conductor

04-06-2024

IAS - Non – ferrous metals for particle accelerators

• 2xxx series (Al − Cu) →

↑ Mechanical properties↓ corrosion resistance

• Example: EN AW 2219 T6

04-06-2024

Example: vacuum chamber bodies. (NEG coated).

- 3xxx series (Al − Mn) →
 - Example: EN AW 3003 H22

Example: CMS Solenoid thermal shield

Moderate mechanical properties, workability, Corrosion resistance and th. conductivity

- 4xxx series (Al Si)
 - Major alloying element of this group is silicon, added in sufficient quantities (around 12%), cause substantial lowering of the melting point without producing brittleness (eutectic point).
 - Al Si alloys are used in welding wire and as brazing alloys.

04-06-2024

- 5xxx series (Al Mg) → moderately | mechanistic
 f ductility, weldability
 - EN AW 5083 H321, H116 and H111

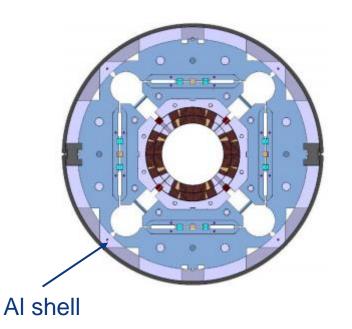
Example: Mandrels for CMS coil

moderately \uparrow mechanical properties

Example: hydroformed bellows

• 6xxx series (Al – Mg – Si) –

• Example: EN AW 6082 T6


Combination of formability, mechanical strength, weldability and weight

Example: ICARUS neutrino detector

- 7XXX Series (Al Zn Mg) → ↑ Mechanical properties
 - Example: EN AW 7075 T6

Example: AI shells MQXFBP1 magnet

- 8xxx series
 - Reserved for miscellaneous compositions. Alloying elements include: iron, lithium, copper, zinc, magnesium, silicon, manganese, vanadium, zirconium, titanium, chromium & bismuth.
 - Al Li alloys, for weight reduction. Al Li alloys possess increased Modulus of Elasticity, high specific stiffness, increased fatigue strength and cryogenic strength.

04-06-2024

Alphanumeric designations that contain information about the thermomechanical history of the material to achieve the desired properties.

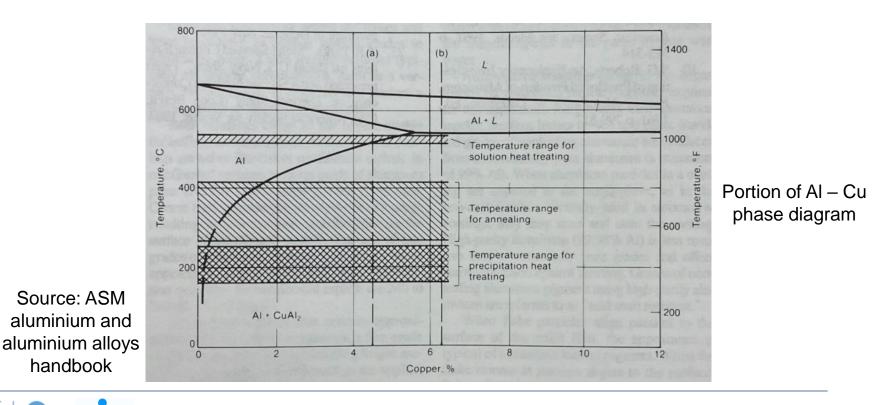
AA 7075	Min.	Max.	Approx
Plates, sheets; <mark>Annealed (O);</mark> Nominal thickness	0.20 <= 1	t <= 0.36	mm;
Yield stress, R _{p0,2} (MPa)	-	145	-
Tensile stress, R _m (MPa)	-	276	-
Elongation, A (%)	9	-	-
	L _o = 50.8 mm or 4D		

AA 7075	Min.	Max.	Approx
Plates; <mark>Solution heat treated</mark> (T651); 0.20 < t <= 0.28 mm; N			
Yield stress, R _{p0,2} (MPa)	434	-	-
Tensile stress, R _m (MPa)	510	-	-
Elongation, A (%)	5	-	-
	L _o = 50.8 mm		

materials "Men are like steel: if they loose their temper, they loose their worth"

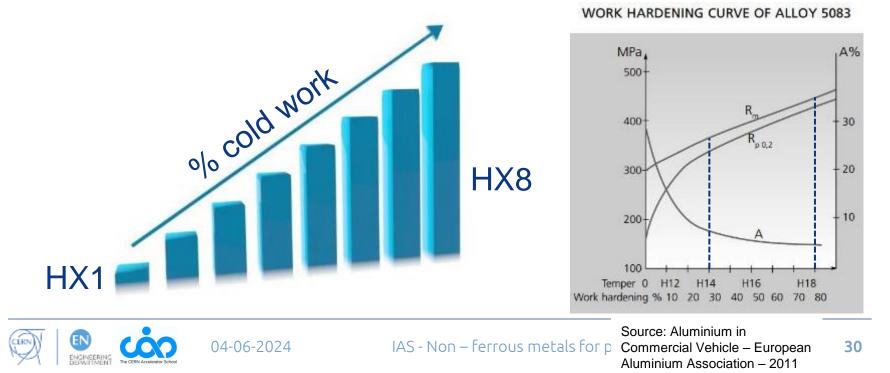
A capital letter indicating the major class of fabrication treatment(s) used + one (or more) numbers providing more specific information about how the processing was carried out.

BS EN 515:2017



BSI Standards Publication

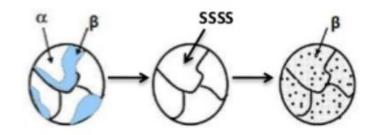
Aluminium and aluminium alloys — Wrought products — Temper designations


 O, annealed: given a high – temperature treatment, sufficient to remove the effects of prior working, usually resulting in complete recrystallization of the material. Lowest strength and maximum ductility and toughness.

04-06-2024

- H, strain hardened: non-heat-treatable wrought alloys that have had their strength increased by strain hardening. H is always followed by two or more digits:
 - The first number after the H tells whether the strain-hardened alloy has been thermally treated
 - The second number indicates the approximate amount of cold work

- H, strain hardened: non-heat-treatable wrought alloys that have had their strength increased by strain hardening. H is always followed by two or more digits:
 - The first number after the H tells whether the strain-hardened alloy has been thermally treated
 - The second number indicates the approximate amount of cold work
 - Any subsequent numbers define special practices, variations of the normal indicated by the first two numbers.


Example: AA 5083 H116 (marine grade)

• T, thermally treated to produce stable tempers: heattreatable wrought alloys that have followed a solution heat treatment followed by a quench and either natural or artificial aging.

Heat treatment to increase the strength of AI alloys is a three step process:

- 1. Solution heat treatment: dissolution of soluble phases
- 2. Quenching: development of supersaturation
- 3. Age hardening: precipitation of finely dispersed precipitates

- T, thermally treated to produce stable tempers: heattreatable wrought alloys that have followed a solution heat treatment followed by a quench and either natural or artificial aging. T is always followed by one or more digits:
 - The first digit after the T can be any from 1 to 10. It is a combination of:
 - Cooled from elevated temperature or solution heat treatment
 - Cold worked or not cold worked
 - Naturally aging or artificial ageing

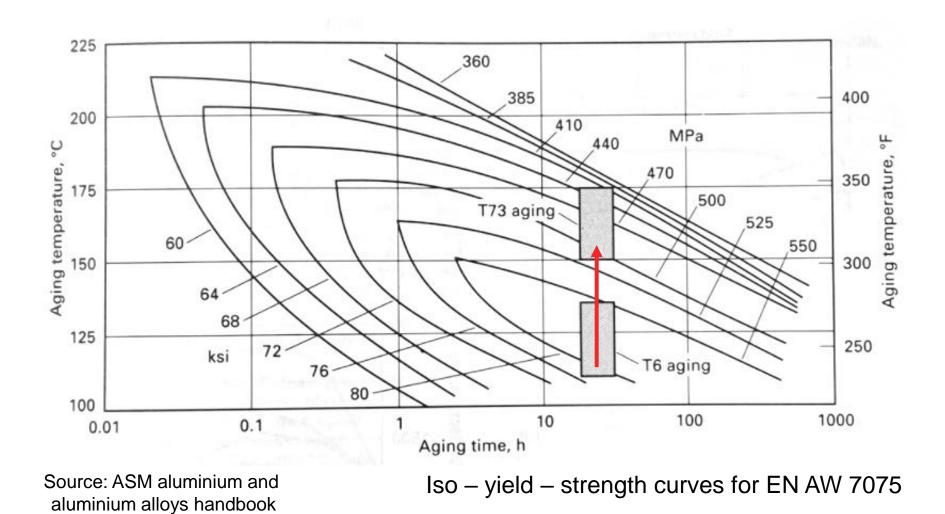

Ageing	Cold worked	Cooled from shaping process	Furnace solution heat-treated ^a
Natural	No	T1	T4
Natural	Yes	T2	Т3
	No	Т5	T6, T7
artificial	Yes - before ageing	T10	Т8
	Yes - after ageing	-	Т9
^a See footnote 4 to text in 8.1			

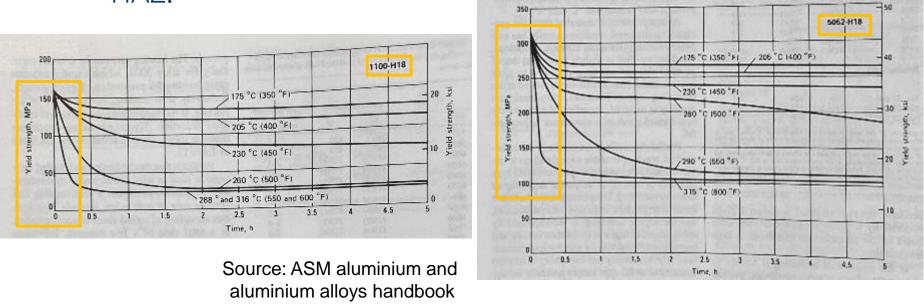
Table 2 — Summary of processing for achieving T tempers

From EN 515: Al and Al alloys - Wrought products -Temper designations

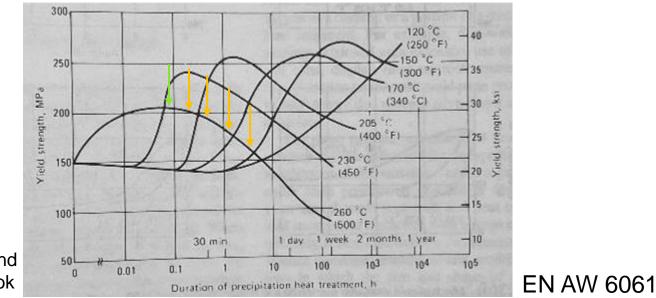
- T, thermally treated to produce stable tempers: heattreatable wrought alloys that have followed a solution heat treatment followed by a quench and either natural or artificial aging. T is always followed by one or more digits:
 - The first digit after the T can be any from 1 to 10. It is a combination of:
 - Cooled from elevated temperature or solution heat treatment
 - Cold worked or not cold worked
 - Naturally aging or artificial ageing

04-06-2024

• Additional numbers indicate a variation in treatment that significantly alters the product characteristics that are or would be obtained using the basic treatment. There is not a full list of all such possible variations.



Aluminium and aluminium alloys — Wrought products — Temper designations

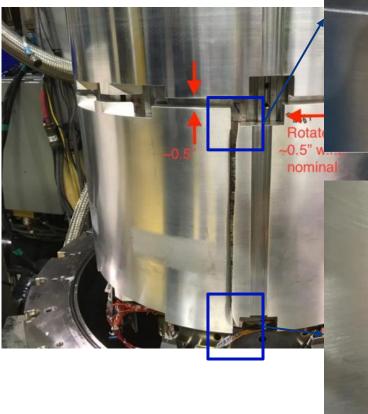

Wrought aluminum alloys: weldability

- Most non heat treatable alloys plus series 6xxx can be fusion welded, and precaution should be taken with heat treatable high strength alloys.
 - When non heat treatable alloys are welded, they loose the effect of an eventual work hardening → softening of HAZ.

Wrought aluminum alloys: weldability

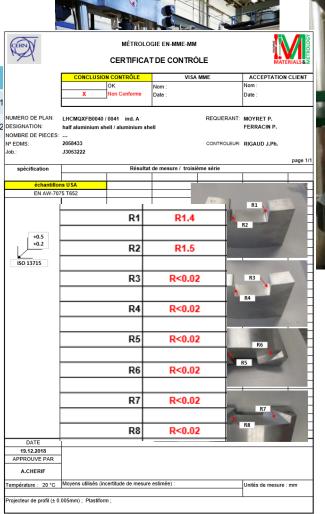
- Most non heat treatable alloys plus series 6xxx can be fusion welded, and precaution should be taken with heat treatable high strength alloys.
 - When welding heat treatable alloys → redistribution of hardening constituents → softening of HAZ. Attention to liquation cracking.

Source: ASM aluminium and aluminium alloys handbook


04-06-2024

Wrought aluminum alloys: failure analysis

Catastrophic failure of MQXFAP2 Al shell. Failure analysis: EDMS 2088319

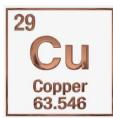

Wrought aluminum alloys: failure analysis

Mechanical testing at cryogenic temperature shows the material choice is correct

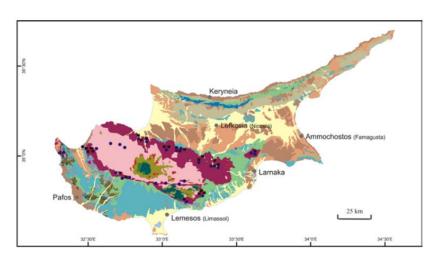
Material	Direction	E [GPa]	Rp _{0.2} [MPa]	R _m [MPa]	A [%]	Z [%]
AA 7075 T652	Circumferential	84.0 ± 1.4	634.1 ± 11.5	750.6 ± 9.8	4.1 ± 0.2	12.2 ± 1.1
AA 7075 T652	Axial	85.2 ± 1.3	539.6 ± 5.2	659.7 ± 5.8	4.5 ± 0.1	12.0 ± 0.2

Material	Direction	K _Q [MPa√m]
AA 7075 T652	R - C	15.8 – 16.5
AA 7075 T652	C - R	24.0 - 27.2
AA 7075 T6	R - C	13.6 – 16.3

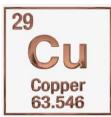
However, EN AW 7075 T651 is sensitive to the presence of sharp notches at 4 K.



Aluminium alloy shell: failure analysis and material properties at cryogenic temperature. EDMS 2088319

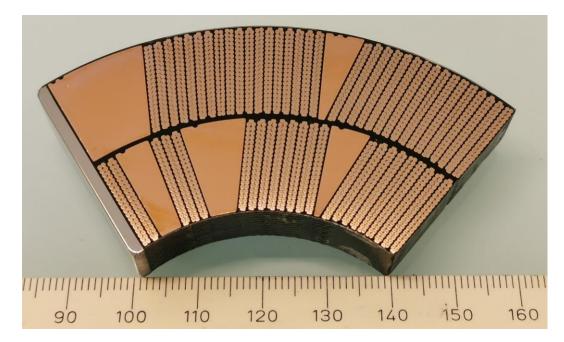


Non – ferrous materials


- Copper
 - Its name comes from 'cuprum', meaning "from the island of Cyprus".

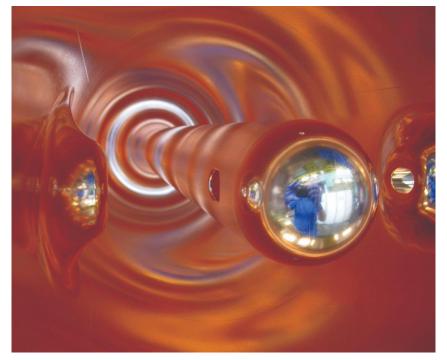
Non – ferrous materials

- Copper
 - One of the oldest materials known, and one of the most produced.



Elastic modulus close to Nb₃Sn

04-06-2024

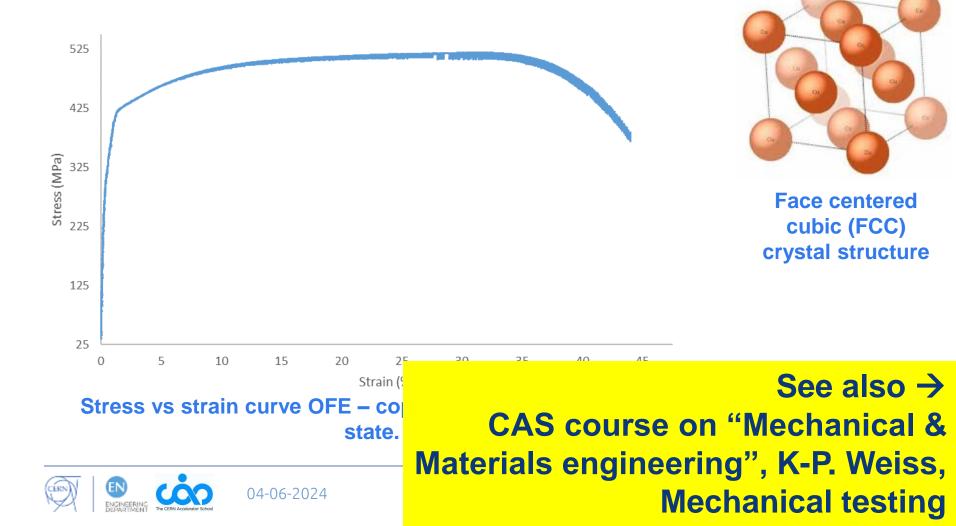

Diamagnetic

Courtesy: M. Crouvizier

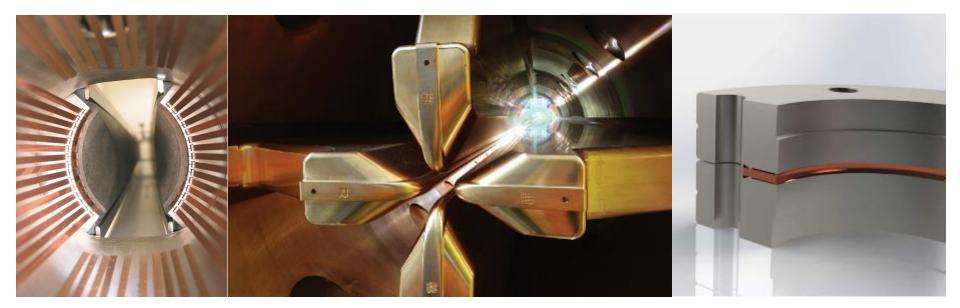
• Extremely high thermal and electrical conductivity

HIE ISOLDE quarter wave resonator substrate

04-06-2024


Courtesy: P. Moyret

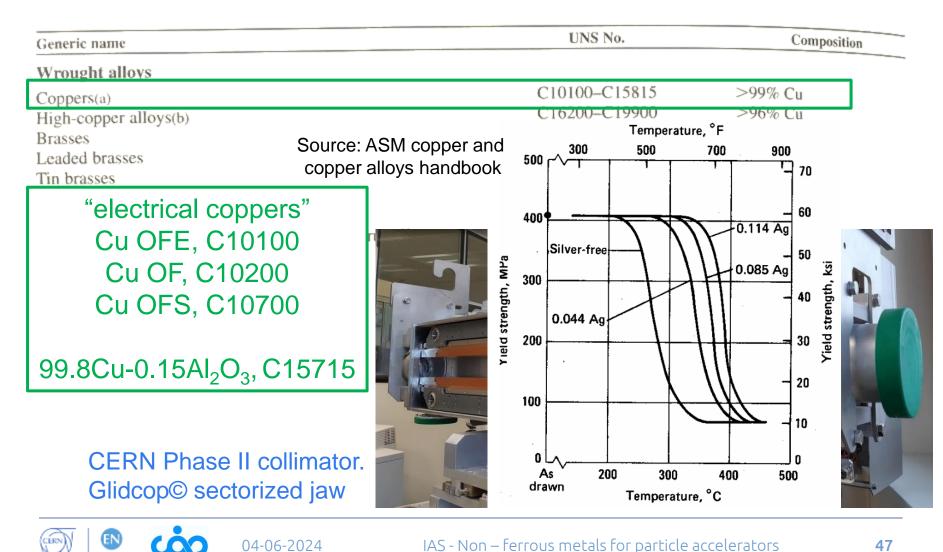
18 kA HL-LHC current leads



• Ductile and tough down to 4 K

• High availability, moderate price, formability, machinability.

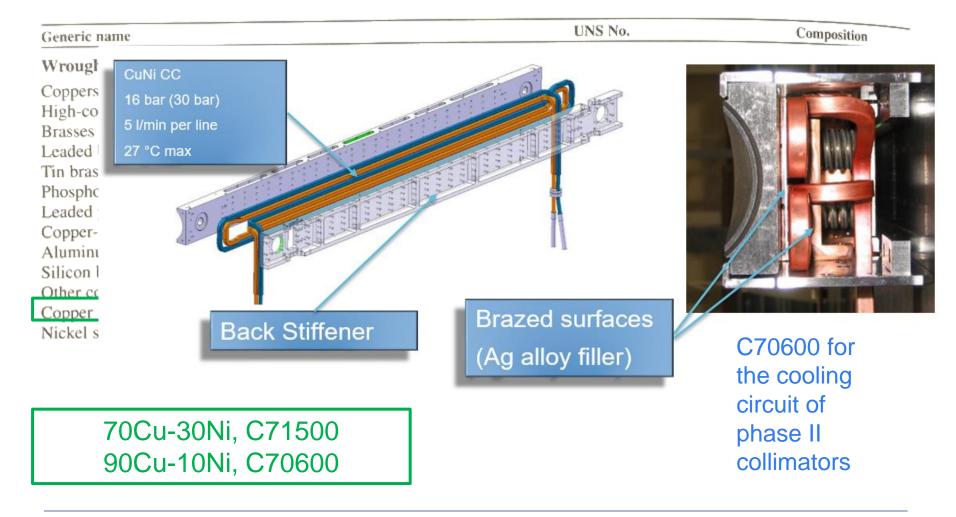
Cu gasket **RF fingers of RFQ Conflat flange** a collimator **UHV** 04-06-2024 IAS - Non – ferrous metals for particle accelerators


Wrought copper alloys: temper states

Cold worked tempers

		Temper Codes	Temper Names
Annea	led tempers	H00	1/8 Hard
	1	HO1	1/4 Hard
Temper Codes	Temper Names	H02	1/2 Hard
Stratt, Second		H03	3/4 Hard
O10	Cast and Annealed (Homogenized)	H04	Hard
011	As Cast and Precipitation Heat Treated	and the second	and the state of the
O20	Hot Forged and Annealed	H06	Extra Hard
O25	Hot Rolled and Annealed	-	
O26	Hot Rolled and Temper Annealed	H08	Spring
O30	Hot Extruded and Annealed		10 ¹ 9 T 2
O31	Hot Extruded and Precipitation Heat Treated	H10	Extra Spring
032	Hot Extruded and Temper Annealed	10110	
O40	Hot Pierced and Annealed	H12	Special Spring
050	Light Anneal	H13	Ultra Spring
O60	Soft Anneal	H14	Super Spring
O61	Annealed		
O65	Drawing Anneal	Temper Codes	Temper Names
O68	Deep Drawing Anneal	a	
070	Dead Soft Anneal	H50	Hot Extruded and Drawn
		H52	Hot Pierced and Drawn
		H55	Light Drawn, Light Cold-Worked
		H58	Drawn General Purpose
		H60	Cold Heading, Forming
		H63	Rivet
		H64	Screw
		H66	Bolt
		H70	Bending
		H80	Hard Drawn

Copper and copper alloys


47

Copper and copper alloys

C

		Composition
Wrought alloys		
Coppers(a)	C10100-C15815	>99% Cu
High-copper alloys(b)	C16200-C19900	>96% Cu
Brasses	C20100-C28000	Cu-Zn
Leaded brasses	C31200_C38500	Cu-Zn-Pb
		Cu-Zn-Sn-Pb
High strength copper alloys		Cu-Sn-P
Cu-2%Be, C17200		Cu-Sn-Pb-P
10000		
Cu-0.3%Be-0.5%Co, C17410		
Cu-1%Cr-0.15%Zr,C18150		
		and the
Tungsten bloc C18150 for		all
CuCrZr block (40 cm) TIDVG		
(40 cm)	2	
(350 cm) dump's core		A DEC
& cooling		E B
plates	· · · ·	
	and a second	
🕬 🚺 04-06-2024 IAS - NO	on – ferrous metals for particle a	accelerators 4

Copper and copper alloys

EN ENCINEERING DE CENN ACCIVENTS Shoci

OFE Copper

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

2.2. CHEMICAL COMPOSITION

The composition shall conform to the requirements of the UNS C10100 Grade 1 according to the standard ASTM B170.

Materials Technical Specification GS-IS & EN-MME

26.02.2015

0.0005% in mass max.

Weldability / brazeability

2.3. HYDROGEN EMBRITTLEMENT

02

According to ASTM B170 and F68, the material shall be free from hydrogen embrittlement.

Technical Specification

N° 2001 - Ed. 8 EDMS No: 790779

Oxygen-Free Electronic copper Bars/blanks/ingots

Cu-OFE

This document specifies the CERN technical requirements for Cu-OFE bars/blanks/ingots, equivalent to UNS C10100 Grade 1, according to

ASTM B224 with a maximum oxygen content of 5 ppm.

2.6. MECHANICAL PROPERTIES

In accordance with the size, the products shall be given the necessary treatment to allow delivery as close as possible to the quarter-hard state, according to ASTM B152 and the required mechanical properties given in the following table.

Tensile testing shall be carried in accordance with ISO 6892-1. Tensile testing must be performed both longitudinal and transverse direction.

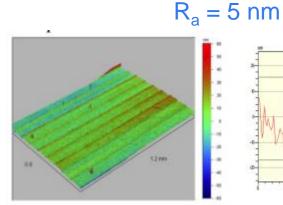
At room temperature:

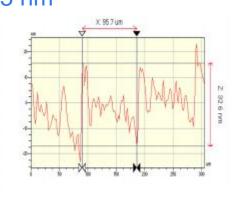
Tensile strength	Rm		240-280* N/mm ²
Yield stress	R _{p0.2%}		200-240* N/mm ²
Elongation at break	As	min.	25*%
Brinell hardness 20 kgf (2 mm ball)	HBS	min.	60*

*Any value out of these ranges shall be agreed between CERN and manufacturer prior to delivery.

Original : English

Ease of machining


ОFE Соррег



CLIC accelerating structure. Diamond turning / milling

18 kA HL-LHC current lead during machining.

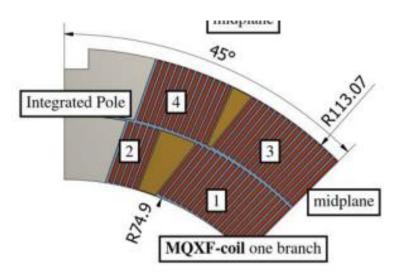
Courtesy: S. Atieh

See also → CAS course on "Mechanical & Materials engineering", J. Tschoepel, Machining

Non – ferrous materials

• Titanium

- Ehergenækroomessifrform Tillaen soong off Daavaid Guetta
- High corrosion resistance, low density, high mechanical resistance.

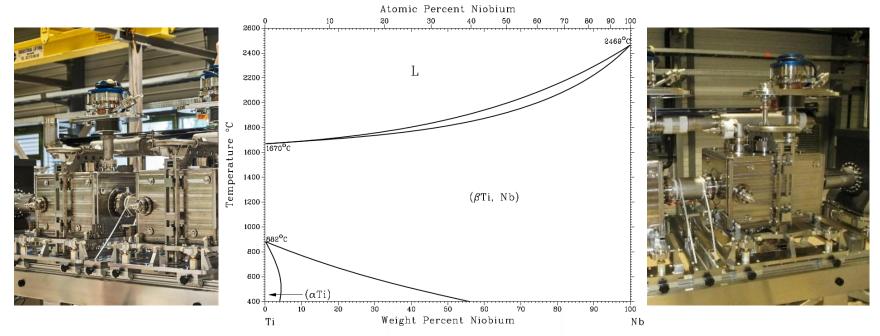

04-06-2024

If price is not a problem, Ti overwhelms AI in many aspects

Titanium in particle accelerators

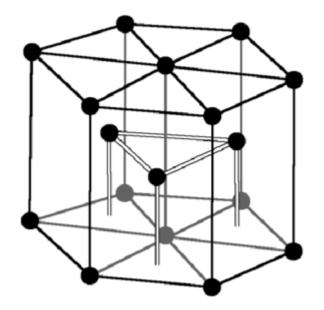
- High specific strength.
- Paramagnetic
- Lower thermal expansion / contraction than stainless steel

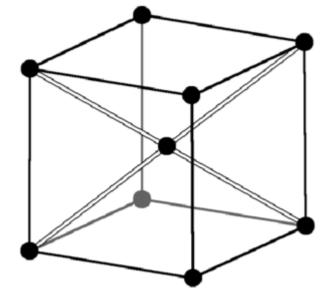
Cross section MQXF. Ti pole


Courtesy: C. Loffler

Titanium in particle accelerators

- Certain grades are ductile and moderately tough at cryogenic temperature.
- Thermal contraction closer to Nb than stainless steel.
- Weldable with Nb (total solubility)


04-06-2024



Titanium (II) He tanks of the crab cavities for HL - LHC

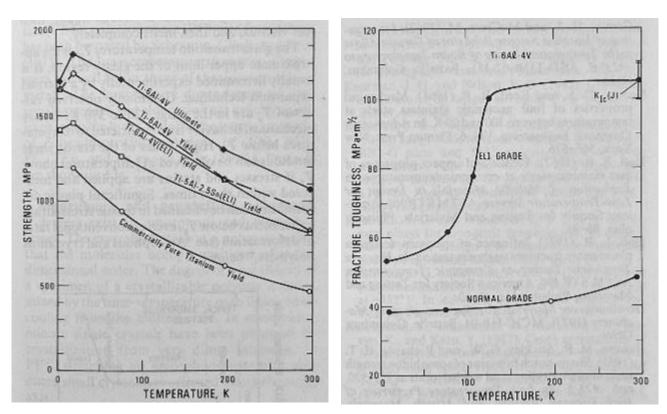
• Microstructures of Ti

α Ti – hexagonal closed packed (HCP)

04-06-2024

 β Ti – body centred cubic (BCC)

We privilege compact structures $(\alpha - Ti)$ for cryogenic application



• Extra – low interstitials (ELI)

04-06-2024

At any rate pure titanium was finally produced. But it was only by stretching the point considerably that this metal could be accepted as pure, for it still contained several tenths of a per cent of impurities. Only several tenths, but they were like a fly in the ointment. The impurities made titanium fragile and brittle and unsuitable for machining. It earned a bad fame for being a useless, good-for-nothing metal.

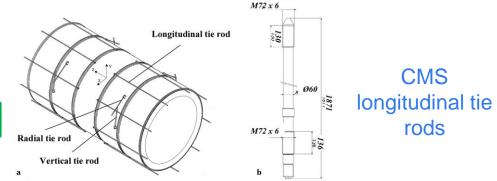
In 1925, the Dutch scientists van Arkel and de Boer decomposed titanium tetrachloride on a heated tungsten wire and obtained high-purity titanium. And then it became clear that Hunter's assertion concerning the brittleness of titanium could not stand up to criticism: the metal produced by van Arkel and de Boer was highly plastic, could be forged like iron and rolled into sheets, strip, wire and even the thinnest foil.

We privilege ELI grades for cryogenic application

		Tensile strength (min)	0.2% yield	strength (min)	Impurity limits, wt% (max)					Non	inal con	nposition,	wt%	
Arth grade 1Arth grade 2Arth grade 3Arth grade 4Arth grade 7Arth grade 7Arth grade 7Arth grade 7Arth grade 7Arth grade 1 can ace-calos Tr5Ab-258Tr5Ab-258-EL1Tr6Ab-28-Ar2-Mo </th <th>Designation</th> <th>MPa ksi</th> <th>MPa</th> <th>ksi</th> <th>N</th> <th>С</th> <th>н</th> <th>Fe</th> <th>0</th> <th>Al</th> <th>Sn</th> <th>Zr</th> <th>Mo</th> <th>Others</th>	Designation	MPa ksi	MPa	ksi	N	С	н	Fe	0	Al	Sn	Zr	Mo	Others
AstM grade 3 ASTM grade 4Curcle CurcleASTM grade 1Gamear-CalleysTr-0.3Me-0.8Ni Tr-5Ar-2.5Sn-EL1Tr-5Ar-2.5Sn-EL1Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-4Mo-42(th)(c)Tr-6Ar-2Sn-42-2-4Mo-42(th)(c)Tr-6Ar-2Sn-42-2-4Mo-42(th)(c)Tr-6Ar-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)Tr-6Ar-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)Tr-6Ar-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)Tr-1Ar-4Ar-4Mo-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)T		and the second				-	-	and in						
AstM grade 3 ASTM grade 4Curcle CurcleASTM grade 1Gamear-CalleysTr-0.3Me-0.8Ni Tr-5Ar-2.5Sn-EL1Tr-5Ar-2.5Sn-EL1Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-2Mo Tr-6Ar-2Sn-42-2-4Mo-42(th)(c)Tr-6Ar-2Sn-42-2-4Mo-42(th)(c)Tr-6Ar-2Sn-42-2-4Mo-42(th)(c)Tr-6Ar-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)Tr-6Ar-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)Tr-6Ar-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)Tr-1Ar-4Ar-4Mo-2Sn-42-2Mo-2Cr(c)Tr-6Ar-42-2Mo-2Cr(c)T	ASTM grade 1								He	e tar	ks	sur	rour	ndina
ASTM grade 4 STM grade 7 ASTM grade 1 can enc. calloys Ti-0.3Mo.0.8Ni T:SA-2SSn.ELI T:SA-2SSn.ELI T:SA-2SA-11Sn - 025Mo T:Fod-Ve.DLI 00	ASIM grade 2 PUIC	Concession of the local division of the loca	and the second se		100			-						-
ASTM grade 7 ASTM grade 7 ASTM grade 7 ASTM grade 1 α and near α alloys Tr-03Mo-03Ni Tr-54D-2SNi Tr-54D-2SNi Tr-54D-2SNi Tr-64D-2SNi-2Tr-000 Tr-64D-2SNi-2Tr-000 Tr-64D-2SNi-2SC-07Nb-0.5Mo-0.35Si Co-Galloy Tr-64D-2SNi-2SC-07Nb-0.5Mo-0.35Si Tr-64D-2SNi-2SNi Tr-64D-2SNi-2SNi Tr-74D-4Mo(a) Tr-74D-4Mo(a			1	1	-				Cr	ab c	avi	ties	S. 11	grade
$ \begin{aligned} & \operatorname{cad} \operatorname{ear-calleys} \\ & \operatorname{Ti-03M-08Ni} \\ & \operatorname{Ti-5Al-2SNi} \\ & \operatorname{Ti-5Al-2SNi} \\ & \operatorname{Ti-5Al-2SNi} \\ & \operatorname{Ti-5Al-2Sn-22-2Mo} \\ & \operatorname{Ti-6Al-2Sn-42-2Mo} \\ & \operatorname{Ti-6Al-2Sn-42-2Mo-4-2Ch(b)} \\ & \operatorname{Ti-6Al-2Sn-42-2Sn-40-4-2Ch(b)} \\ & \operatorname{Ti-6Al-2Sn-42-2Sn-40-4-2Ch(b)} \\ & \operatorname{Ti-6Al-2Sn-42-2Mo-4-2Ch(b)} \\ & \operatorname{Ti-6Al-4-2Sn-42-2Sn-40-4-2Ch(b)} \\ & Ti-6Al-4-2Sn-42$			Sec.	-				1						•
Ti-03Mo-0.8Ni Ti-5Al-2.2Su Ti-5Al-2.2Su-ELI Ti-8Al-2Su-22Mo Ti-6Al-2Sn-2Z-2Mo Ti-6Al-2Sn-2Z-2Mo Ti-5XI-1Sh-5Z-1Mo Ti-5XI-4Sn-5Z-2TMo Ti-5XI-4Sn-5Z-2Mo Ti-6Al-V-1Fa-0.3Mo Ti-6Al-V-1Fa-0.3Mo Ti-6Al-V-1Fa-0.3Mo Ti-6XI-4V-11 Ti-6XI-4V-11 Ti-6Al-V-12 Ti-6Al-V-12 Ti-6Al-V-12 Ti-6Al-V-2Sn(a) Ti-6Al-V-2Sn(b) Ti-6Al-2Sn-2Z-2Mo-2CT(c) Ti-3Al-2SV-(d) Ti-5Al-4Sn-2Z-2Mo-2CT(c) Ti-3Al-2SV-2Almo-2CT(b)(c) Ti-13Al-02-Sn-0.5Si βaloys Ti-10V-1(C-3Al(b)) Ti-8Al-8(a)(c) Ti-13Al-2Sn-2Z-2Mo-2CT(c) Ti-3Al-2SV(d) Ti-3Al-2Sn(b)(c) Ti-13Al-2Sn-2Al-3Alb(c) Ti-13Al-2Sn-2Alb(b)(c) Ti-13Al-2Sn-2Alb(b)(c) Ti-13Al-2Sn-2Alb(b)(c) Ti-13Al-2Sn-2Alb(b)(c) Ti-13Al-2Sn-2Alb(b)(c) Ti-13Alb-3Cn-2Alb(b)(c) Ti-13Alb-3Cn-2Alb-3Sn	ASTM grade 11		-		1 miles									
	α and near-α alloys	1.11		-		-	ALC: NO							
$ \begin{array}{l} F_{15}A_{12}S_{15}-ELI \\ F_{16}A_{12}S_{16}A_{22}-2M_{0} \\ F_{16}A_{12}S_{16}A_{22}-M_{0} \\ F_{15}S_{14}A_{18}S_{15}-S_{27}-0, 7N_{0}-0.5M_{0}-0.35Si \\ \hline a \mathcal{A}_{2}S_{14}O_{17}N_{0}-0.5M_{0}-0.35Si \\ \hline a \mathcal{A}_{2}S_{14}O_{17}N_{0}-0.5M_{0}-0.35Si \\ \hline a \mathcal{A}_{2}S_{14}O_{17}N_{0}-0.5M_{0}-0.5Si \\ \hline a \mathcal{A}_{14}-V_{12}LI_{0}(a) \\ F_{16}A_{14}-V_{12}S_{16}(a) \\ F_{16}A_{14}-V_{12}S_{16}(a) \\ F_{16}A_{14}-N_{16}O_{1}(b) \\ F_{15}A_{14}-2S_{27}-2M_{0}-2Cr(c) \\ F_{15}A_{14}-2S_{27}-2M_{0}-2Cr(c) \\ F_{14}A_{14}-M_{0}-2S_{16}-0.5Si \\ \hline a lab s \\ \hline a lab s \\ F_{14}W_{11}C_{7}-3Al(b) \\ F_{14}W_{11}C_{7}-3Al(b) \\ F_{15}W_{11}C_{7}-3Al(b) \\ F_{15}M_{14}-S_{27}-CM_{10}-2Cr(c) \\ F_{15}A_{14}-S_{27}-S_{14}(b) \\ F_{15}M_{16}-S_{27}-S_{14}(b) \\ F_{15}M_{16}-S_{27}-S_{16}(b) \\ F_{15}M_{16}-S_{27}-S_{16}-S_{16}(b) \\ F_{15}M_{16}-S_{27}-S_{16}(b) \\ F_{15}M_{16}-S_{27}-S_{16}(b) \\ F_{15}M_{16}-S_{27}-S_{16}(b) \\ F_{15}M_{16}-S_{27}-S_{16}(b) \\ F_{15}M_{16}-S_{27}-S_{16}(b) \\ F_{15}M_{16}-S_{27}-S_{16}(b) \\ F_{15}M_{16}-S_{16}-S_{16}(b) \\ F_{15}M_{16}-S_{16}-S_{16}(b) \\ F_{15}M_{16}-S_{16}-S_{16}-S_{16}(b) \\ F_{15}M_{16}-S_{$	Ti-0.3Mo-0.8Ni	and the second		and the second	1 =									
		1 1 1	111		13	1	-	100						
		R. Com	Town in the	-	200	1	100	10000						
			15	1 2 24	N									
$ \begin{array}{l} \text{Ti-5.8A1-4Sn-3.5Zr-0.7Nb-0.5Mo-0.3SSi} \\ \hline \alpha \cdot \beta alloys \\ \hline \text{Ti-6A1-4V(a)} \\ \hline \text{Ti-6A1-4V(a)} \\ \hline \text{Ti-6A1-4V-ELIa)} \\ \hline \text{Ti-6A1-4V-ELIa)} \\ \hline \text{Ti-6A1-4V-EA2-r5Mo(b)} \\ \hline \text{Ti-7A1-4Mo(a)} \\ \hline \text{Ti-7A1-4Mo(a)} \\ \hline \text{Ti-7A1-4Zr-6Mo-4Cr(b)(c)} \\ \hline \text{Ti-7A1-4Zr-6Mo-4Cr(b)(c)} \\ \hline \text{Ti-6A1-2Sn-2Zr-4Mo-4Cr(b)(c)} \\ \hline \text{Ti-7A1-4Zr-6Mo-4Cr(b)(c)} \\ \hline \text{Ti-13A1-4Zr-4Mo-4Zr(a)(c)} \\ \hline \text{Ti-13M-6CZr-4.5Sn(a)} \\ \hline \text{Ti-15V-3Cr-3A1-3Sn} \end{array} $	Ti-6Al-2Nb-1Ta-0.8Mo	1 - 97	HT.C.		15	1. 8	185							
$ \begin{array}{l} \alpha \cdot \beta \ alloys \\ Ti \cdot 6A1 - 4V(a) \\ Ti \cdot 6A1 - 4V - 2LI(a) \\ Ti \cdot 6A1 - 6V - 2Sn(a) \\ Ti \cdot 7A1 - 4Mo(a) \\ Ti \cdot 7A1 - 4Mo(a) \\ Ti \cdot 7A1 - 4Mo(a) \\ Ti \cdot 5A1 - 2Sn - 2Zr - 2Mo - 2Cr(b)(c) \\ Ti \cdot 5A1 - 2Sn - 2Zr - 2Mo - 2Cr(c) \\ Ti \cdot 3A1 - 2Sr - 2Mo - 2Cr(c) \\ Ti \cdot 3A1 - 2SV(d) \\ Ti - 4A1 - 4Mo - 2Sn - 0.5Si \\ \beta \ alloys \\ Ti \cdot 10V - 2Fe - 3AI(a)(c) \\ Ti \cdot 3A1 - 8V - 6Cr - 4Mo - 4Zr(a)(c) \\ Ti \cdot 3A1 - 8V - 6Cr - 4Mo - 4Zr(a)(c) \\ Ti \cdot 11.5Mo - 6Zr - 4.SSn(a) \\ Ti \cdot 15V - 3Cr - 3A1 - 3Sn \end{array} $		1 Alexandre	7242		The state	10	1999							
$ \begin{array}{c} Ti-6Al-4V(a) \\ Ti-6Al-4V-EL(a) \\ Ti-6Al-6V-2Sn(a) \\ Ti-6Al-2Sn-4Zr-6Mo(b) \\ Ti-7Al-4Mo(a) \\ Ti-7Al-4Mo(a) \\ Ti-6Al-2Sn-4Zr-6Mo(b) \\ Ti-6Al-2Sn-2Zr-2Mo-2Cr(c) \\ Ti-3Al-2Sn-2Zr-2Mo-2Cr(c) \\ Ti-3Al-2Sv(d) \\ Ti-4Al-4Mo-2Sn-0.5Si \\ \hline \beta alloys \\ Ti-10V-2Fe-3Al(a)(c) \\ Ti-13V-11Cr-3Al(b) \\ Ti-8Mo-6Xr-4.SSn(a) \\ Ti-11.5Mo-6Zr-4.SSn(a) \\ Ti-11.5Mo-6Zr-4.SSn(a) \\ Ti-15V-3Cr-3Al-3Sn \end{array} $	Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si	1.1. Company	Street of the local division in which the local division in the lo	1 2 2 4 2	245	12.00	100	1000						
$ \begin{array}{c} Ti-6Al-4V-ELI(a) \\ Ti-6Al-6V-2Sn(a) \\ Ti-8Al-6V-2Sn(a) \\ Ti-7Al-4Mo(a) \\ Ti-7Al-4Mo(a) \\ Ti-5Al-2Sn-42z-6Mo(b) \\ Ti-5Al-2Sn-2Zz-2Mo-2Cr(c) \\ Ti-3Al-2Sv(d) \\ Ti-4Al-4Mo-2Sn-0.5Si \\ \\ \begin{array}{c} \beta alloys \\ Ti-10V-2Fe-3Al(a)(c) \\ Ti-13V-11Cr-3Al(b) \\ Ti-8Mo-8V-2Fe-3Al(b)(c) \\ Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) \\ Ti-11SV-3Cr-3Al-3Sn \end{array} $	α-β alloys		and the	3 24 4	12 -	1		-11						
$ \begin{array}{c} Ti-6AI-6V-2Sn(a) \\ Ti-8Mn(a) \\ Ti-7AI-4Mo(a) \\ Ti-6AI-2Sn-42z-6Mo(b) \\ Ti-5AI-2Sn-2Zr-2Mo-4Cr(b)(c) \\ Ti-5AI-2Sn-2Zr-2Mo-2Cr(c) \\ Ti-3AI-2SV(d) \\ Ti-4AI-4Mo-2Sn-0.5Si \\ \beta alloys \\ Ti-10V-2Fe-3AI(a)(c) \\ Ti-13V-11Cr-3AI(b) \\ Ti-8Mo-8V-2Fe-3AI(b)(c) \\ Ti-3AI-8V-6Cr-4Mo-4Zr(a)(c) \\ Ti-11.5Mo-6Zr-4.Ssn(a) \\ Ti-11SV-3Cr-3AI-3Sn \end{array} $	Ti-6Al-4V(a)	200	10		man	all the second	1000							
$ \begin{array}{c} Ti - 8 Mn(a) \\ Ti - 7 Al - 4 Mo(a) \\ Ti - 6 Al - 2 Sn - 4 Zr - 6 Mo(b) \\ Ti - 5 Al - 2 Sn - 2 Zr - 4 Mo - 4 Cr(b)(c) \\ Ti - 5 Al - 2 Sn - 2 Zr - 4 Mo - 4 Cr(b)(c) \\ Ti - 5 Al - 2 Sn - 2 Zr - 4 Mo - 4 Cr(b)(c) \\ Ti - 5 Al - 2 Sn - 2 Zr - 4 Mo - 4 Cr(b)(c) \\ Ti - 3 Al - 2 Sn - 0.5 Si \\ \hline \beta alloys \\ Ti - 10 V - 2 Fe - 3 Al(a)(c) \\ Ti - 13 V - 11 Cr - 3 Al(b) \\ Ti - 8 Mo - 8 V - 2 Fe - 3 Al(b)(c) \\ Ti - 3 Al - 8 V - 6 Cr - 4 Mo - 4 Zr(a)(c) \\ Ti - 11 - 5 Mo - 6 Zr - 4 . 5 Sn(a) \\ Ti - 11 - 5 Mo - 6 Zr - 4 . 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 Zr - 4 . 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 \\ Ti - 11 - 5 Mo - 6 \\ Ti$		ALC: NO. OF		ALL										
$ \begin{array}{c} Ti-7Al-4Mo(a) \\ Ti-6Al-2Sn-4Zr-6Mo(b) \\ Ti-5Al-2Sn-2Zr-4Mo-4Cr(b)(e) \\ Ti-5Al-2Sn-2Zr-2Mo-2Cr(c) \\ Ti-3Al-2SV(d) \\ Ti-4Al-4Mo-2Sn-0.5Si \\ \hline \beta alloys \\ Ti-10V-2Fe-3Al(a)(c) \\ Ti-13V-11Cr-3Al(b) \\ Ti-8Mo-8V-2Fe-3Al(b)(c) \\ Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) \\ Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) \\ Ti-11.5Mo-6Zr-4.5Sn(a) \\ Ti-15V-3Cr-3Al-3Sn \end{array} $			RL		(m	10	1000							
$ \begin{array}{c} Ti-5Al-2Sn-2Zr-4Mo-4Cr(b)(c) \\ Ti-6Al-2Sn-2Zr-2Mo-2Cr(c) \\ Ti-3Al-2.5V(d) \\ Ti-4Al-4Mo-2Sn-0.5Si \\ \\ \hline \beta alloys \\ Ti-10V-2Fe-3Al(a)(c) \\ Ti-13V-11Cr-3Al(b) \\ Ti-8Mo-8V-2Fe-3Al(b)(c) \\ Ti-8Mo-8V-2Fe-3Al(b)(c) \\ Ti-11.5Mo-6Zr-4.5Sn(a) \\ Ti-15V-3Cr-3Al-3Sn \\ \end{array} $		15			11.		-110	- 14						
$ \begin{array}{c} Ti-6Al-2Sn-2Zr-2Mo-2Cr(c) \\ Ti-3Al-2.5V(d) \\ Ti-4Al-4Mo-2Sn-0.5Si \\ \beta alloys \\ Ti-10V-2Fe-3Al(a)(c) \\ Ti-13V-11Cr-3Al(b) \\ Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) \\ Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) \\ Ti-11.5Mo-6Zr-4.5Sn(a) \\ Ti-15V-3Cr-3Al-3Sn \end{array} $		a because	K SP				- TELE							
$ \begin{array}{c} Ti - 3Al - 2.5V(d) \\ Ti - 4Al - 4Mo - 2Sn - 0.5Si \\ \beta alloys \\ Ti - 10V - 2Fe - 3Al(a)(c) \\ Ti - 13V - 11Cr - 3Al(b) \\ Ti - 8Mo - 8V - 2Fe - 3Al(b)(c) \\ Ti - 8Mo - 8V - 2Fe - 3Al(b)(c) \\ Ti - 3Al - 8V - 6Cr - 4Mo - 4Zr(a)(c) \\ Ti - 11.5Mo - 6Zr - 4.SSn(a) \\ Ti - 15V - 3Cr - 3Al - 3Sn \end{array} $		1 112	and and the		-0		hart	10 B						
$\begin{array}{c} Ti-4AI-4Mo-2Sn-0.5Si\\ \beta alloys\\ Ti-10V-2Fe-3Al(a)(c)\\ Ti-13V-11Cr-3Al(b)\\ Ti-8Mo-8V-2Fe-3Al(b)(c)\\ Ti-3AI-8V-6Cr-4Mo-4Zr(a)(c)\\ Ti-11.5Mo-6Zr-4.5Sn(a)\\ Ti-15V-3Cr-3AI-3Sn \end{array}$			12 20	1										
β alloys Ti-10V-2Fe-3Al(a)(c) Ti-13V-11Cr-3Al(b) Ti-8Mo-8V-2Fe-3Al(b)(c) Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) Ti-11.5Mo-6Zr-4.5Sn(a) Ti-15V-3Cr-3Al-3Sn		212	1 AN	The second		202	2	3 1						
Ti-10V-2Fe-3Al(a)(c) Ti-13V-11Cr-3Al(b) Ti-8Mo-8V-2Fe-3Al(b)(c) Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) Ti-11.5Mo-6Zr-4.5Sn(a) Ti-15V-3Cr-3Al-3Sn			115	1000		-	6							
Ti-13V-11Cr-3Al(b) Ti-8Mo-8V-2Fe-3Al(b)(c) Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) Ti-11.5Mo-6Zr-4.5Sn(a) Ti-15V-3Cr-3Al-3Sn		Part and	A State of	CHARLES OF	and the second	Sea.		-						
Ti-8Mo-8V-2Fe-3Al(b)(c) Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) Ti-11.5Mo-6Zr-4.5Sn(a) Ti-15V-3Cr-3Al-3Sn		1 1.00	1900	1000	0		3 and							
Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) Ti-11.5Mo-6Zr-4.5Sn(a) Ti-15V-3Cr-3Al-3Sn		11 11 11	64	-		525								
Ti-15V-3Cr-3Al-3Sn	Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c)	11 11	10.00	Part of the second seco		12	Villa.							
	Ti-11.5Mo-6Zr-4.5Sn(a)	10 11		10 5	1	-	C and	100						
Ti-15Mo-3AI-2.7Nb-0.2Si	Ti-15V-3Cr-3Al-3Sn			and the	1	111	Sec.	and the						
	Ti-15Mo-3Al-2.7Nb-0.2Si	H-lifes	1 and	11-	91	0	1							

(a) Mechanical properties given for the annealed condition; may be solution treated and aged to increase strength. (b) Mechanical properties given for the solution-treated-and-aged condition; alloy not normally applied in annealed condition. (c) Semicommercial alloy; mechanical properties and composition limits subject to negotiation with suppliers. (d) Primarily a tubing alloy; may be cold drawn to increase strength. (e) Combined $O_2 + 2N_2 = 0.27\%$. (f) Also solution treated and aged using an alternative aging temperature (480 °C, or 900 °F)

	Tensile stren	gth (min)	0.2% yield	strength (min)		Impurity	limits, wt	% (max)			N	ominal co	mposition,	,wt%
Designation	MPa	ksi	MPa	ksi	N	С	н	Fe	0	Al	S	n Zr	Mo	Others
Unalloyed grades ASTM grade 1 ASTM grade 2 ASTM grade 3 ASTM grade 4 ASTM grade 7		1	-					T	of	the	cra	ab c		flanges ies.
ASTM grade 11 α and near-α alloys Ti-0.3Mo-0.8Ni Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI Ti-8Al-1Mo-1V Ti-6Al-2Sn-4Zr-2Mo Ti-6Al-2Nb-1Ta-0.8Mo Ti-2.25Al-11Sn-5Zr-1Mo Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si		To an			1 A	T				grad	ue	23		
α-B allovs Ti-6Al-4V(a) Ti-6Al-4V-ELI(a) 11-0Al-0V-2Sn(a)		The second	26		3	-								
Grade 5 & Grade 5 ELI		E		0	C					-	•	7	0	-0
(grade 23) β alloys Ti-10V-2Fe-3Al(a)(c) Ti-13V-11Cr-3Al(b) Ti-8Mo-8V-2Fe-3Al(b)(c) Ti-3Al-8V-6Cr-4Mo-4Zr(a)(c) Ti-11.5Mo-6Zr-4.5Sn(a) Ti-15V-3Cr-3Al-3Sn		the second	S.S.S.			No Real	- Aile					0	2	
Ti-15Mo-3Al-2.7Nb-0.2Si			No.	15	2.	1	6							


(a) Mechanical properties given for the annealed condition; may be solution treated and aged to increase strength. (b) Mechanical properties given for the solution-treated-and-aged condition; alloy not normally applied in annealed condition. (c) Semicommercial alloy; mechanical properties and composition limits subject to negotiation with suppliers. (d) Primarily a tubing alloy; may be cold drawn to increase strength. (e) Combined O₂ + 2N₂ = 0.27%. (f) Also solution treated and aged using an alternative aging temperature (480 °C, or 900 °F)



Designation MPa ksi MPa ksi Unalloyed grades ASTM grade 1 ASTM grade 2 ASTM grade 3 ASTM grade 4 ASTM grade 11 α and near-α alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI Ti-SAL-IMO-IV	
ASTM grade 1 ASTM grade 2 ASTM grade 3 ASTM grade 4 ASTM grade 7 ASTM grade 11 α and near-α alloys Ti 0.3Me 0.8Nii Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	Ì
ASTM grade 2 ASTM grade 3 ASTM grade 4 ASTM grade 7 ASTM grade 11 α and near-α alloys Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	R
ASTM grade 3 ASTM grade 4 ASTM grade 7 ASTM grade 11 α and near-α alloys Ti-0.2Ms 0.0Ni Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	Ì
ASTM grade 4 ASTM grade 7 ASTM grade 11 α and near-α alloys Ti-0.2Me 0.8Nii Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	
ASTM grade 7 ASTM grade 11 α and near-α alloys Ti 0.2Mo 0.0Ni Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	
ASTM grade 11 α and near-α alloys Ti 0.2Mo 0.0Ni Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	K
Ti 0.3Ma 0.8Nii Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	
Ti 0.3Me 0.9Ni Ti-5Al-2.5Sn Ti-5Al-2.5Sn-ELI	
Ti-5Al-2.5Sn-ELI	V
Ti-XAI-IMo-IV Radial b	
	e rod
Grade 6	rtical tie roo
& Grade 6 ELI si	
u-p anoys	
Ti-6Al-4V(a)	
	-
	H-FET
Cooling Circuit	
I I I I I I I I I I I I I I I I I I I	A THE
	and a second
	all a
	Der
	AL AL
	all a
Axial force tie r	odo
Axial force tie f	ous
of the ATLAS	S
	_
barrel toroid	
Coil Modules	
Keystone Box Module magnet	

Source: S. Sgobba *et al.* (2003, July). Manufacturing, quality control and assessment of the cryogenic properties of a titanium alloy for application to he coil suspension system of the Compact Muon Solenoid (CMS). In *Proc. 10th World Conference on Titanium* (pp. 13-18).

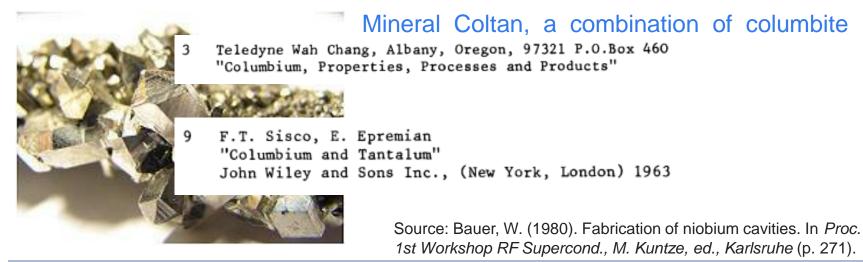

Source: P. Jenni (CERN), ATLAS overview, status and plans. Workshop on cooperation in HEP between CERN and China. Beijing, 14 – 15 May 2005.

Non – ferrous materials

Niobium

- Element of the periodic system with the highest critical temperature.
- The name comes from Niobe, the daughter of Tantalus:




Non – ferrous materials

04-06-2024

Niobium

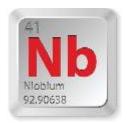
- Element of the periodic system with the highest critical temperature.
- The name comes from Niobe, the daughter of Tantalus:
 - Nb is found in combination with Ta (Coltan)
 - You can still find it in old texts by Cb (columbium)

Families of non – ferrous materials

• Niobium

 90 % of its production is used to alloy stabilized steel grades or high temperature superalloys.

50 µm



Nb, Ti carbides and nitrides in dark grey and yellow respectively. Inconel 718 for ITER magnet supports.

Non – ferrous materials

• Niobium

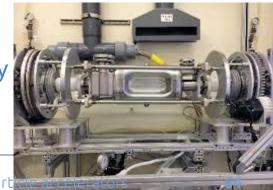


- 90 % of its production is used to alloy stabilized steel grades or high temperature superalloys.
- Superconducting wires for high field magnets (NbTi, Nb₃Sn).

Non – ferrous materials

• Niobium

- 90 % of its production is used to alloy stabilized steel grades or high temperature superalloys.
- Superconducting wires for high field magnets (NbTi, Nb₃Sn)
- Ultrahigh purity Nb



04-06-2024

5 cell elliptical cavity crab cavity

RFD crab cavity

Niobium for SCRF cavities

- High critical temperature (9.2 K)
- High critical magnetic field
- High formability, 'easy' to machine and weldable.
- Available in practically any size

Spoke cavity

Source: Shepard, K. W et al, (1999). Prototype 350 MHz niobium spoke-loaded cavities.

High order mode (HOM) antenna

Niobium grades

• ASTM B392 & B393

Designation: B393 - 18

Standard Specification for Niobium and Niobium Alloy Strip, Sheet, and Plate¹

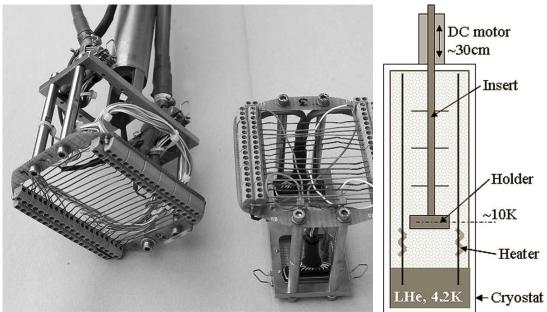
1. Scope

1.1 This specification covers five grades of wrought niobium and niobium alloy strip, sheet, and plate as follows:

1.1.1 R04200-Type 1-Reactor grade unalloyed niobium,

1.1.2 R04210-Type 2-Commercial grade unalloyed niobium,

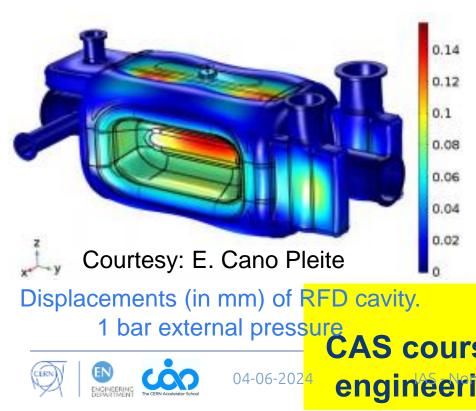
1.1.3 R04251-Type 3—Reactor grade niobium alloy containing 1 % zirconium,

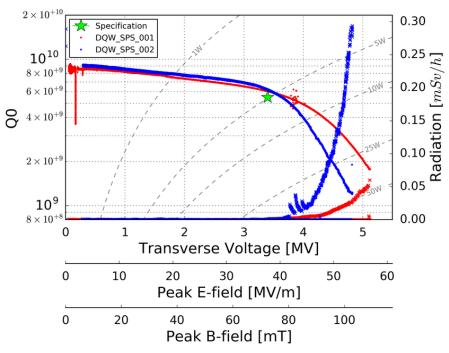

1.1.4 R04261-Type 4-Commercial grade niobium alloy containing 1 % zirconium, and.

1.1.5 R04220-Type 5-RRR grade pure niobium.

RRR = residual resistivity ratio An accurate measurement of the purity above 99.999%

Standard Specification for Niobium and Niobium Alloy Bar, Rod, and Wire¹





Niobium grades & SCRF

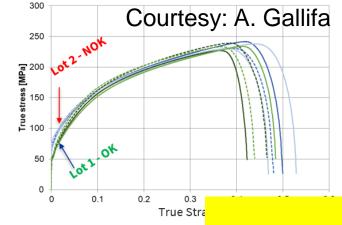
- CERN technical specification
 - Equilibrium between:
 - RF performance
 - Mechanical robustness
 - Material soundness


RF performance DQW cavities

NDT of Nb technical specification

1							
	Visual inspection	EN 13018	On final product after all metallurgical				
			processing for every item, 100%				
	Dye penetrant	Written procedure, based	Upon demand by CERN; on final product after				
	(optional)	on EN 10228-2, following	all metallurgical processing for every item,				
	(optional)	approval by CERN	100%				
		Specimen preparation:	Upon demand by CERN; on witness sample of				
	Macro-/	ASTM E3	final product after all metallurgical processing				
	micro-optical	Macro-etching: ASTM E340	for every item.				
		Micro-etching: ASTM E407					
		Written procedure based					
		on:					
2	Ultrasonic	-EN 10228-4 for the method	On final product after all metallurgical				
	Ultrasonic	-EN 4050-4 for acceptance	processing for every item, 100%				
R.		criteria					
		Following approval by CERN					

SCRF Nb: failure analysis


RFD Pole forming trials held at CERN Main

Workshop (May 2022).

- Same material specification
- Same material supplier
- 2 different material lots
- Same tooling
- Same operators
- Same forming procedure
- Same press machine

Material	n _{0.02 – 0.20}	$R_{p0.2}/R_{m}$
Lot OK	0.35 – 0.38	0.31 – 0.33
Lot NOK	0.28 - 0.30	0.42 - 0.50

A. Gallifa Terricabras, et al Optimizing the Manufacture of High-Purity Niobium SRF Cavities Using the Forming Limit Diagram: A Case Study of the HL-LHC Crab Cavities RFD Pole.

Material that shows bad formability complies with CERN Nb spec. & DESY

Strain hardening co

See also → CAS course on "Mechanical & Materials engineering", F. Carra, Computational tools

Conclusions

- Key takeaways:
 - Materials are your friends, get to know them as good as you can.
 - "A material for an accelerator part is not a mere chemical composition or designation":
 - Specification. Fabrication route. Temper state

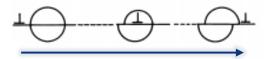
04-06-2024

- Controls
- Price
- Attention to "the hidden iceberg properties" (e.g. notch sensitivity, strain hardening) and to the butterfly effect.
- The very particular environment of particle accelerators limits the choice.
- Time (and problems) are saved if material selection is integrated from the beginning of the conceptions.
 - Advanced non conventional materials require extensive prior R&D

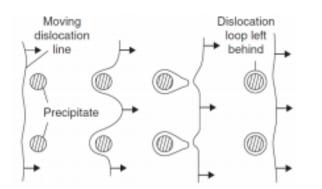
Thank you for your attention. Questions?

IECHANICAL & MATERIALS ENGINEERING FOR PARTICLE ACCELERATORS AND DETECTORS

ENGINEERING DEPARTMENT


CERN

Additional slides

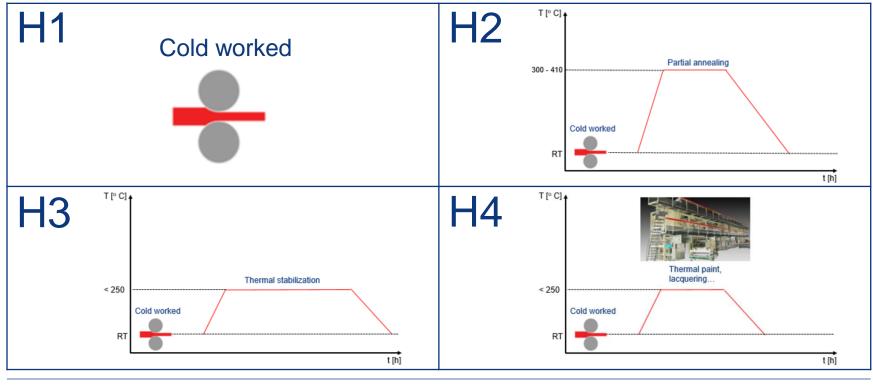


Precipitation strengthening

- Dislocations are the carriers of plastic deformation
- Precipitates hinder dislocation motion. There are 2 types: coherent and incoherent

A dislocation cuts through a coherent particle, i.e. it passes through the precipitate on the same slip plane as in the matrix

04-06-2024

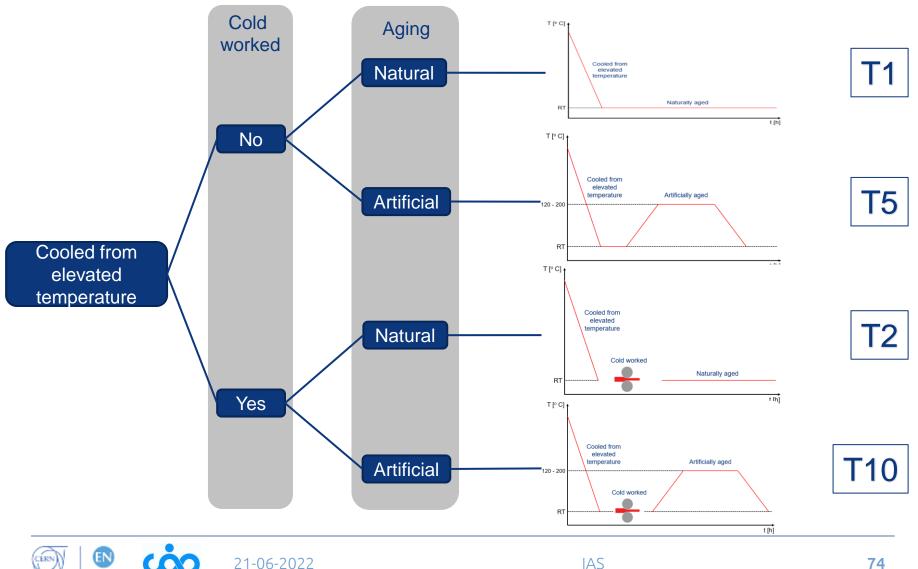

Dislocation bows out between incoherent precipitates

A loop is left around each particle

From R. E. Smallman and A. H. W. Ngan. Physical Metallurgy and Advanced Materials. Elsevier, 2007

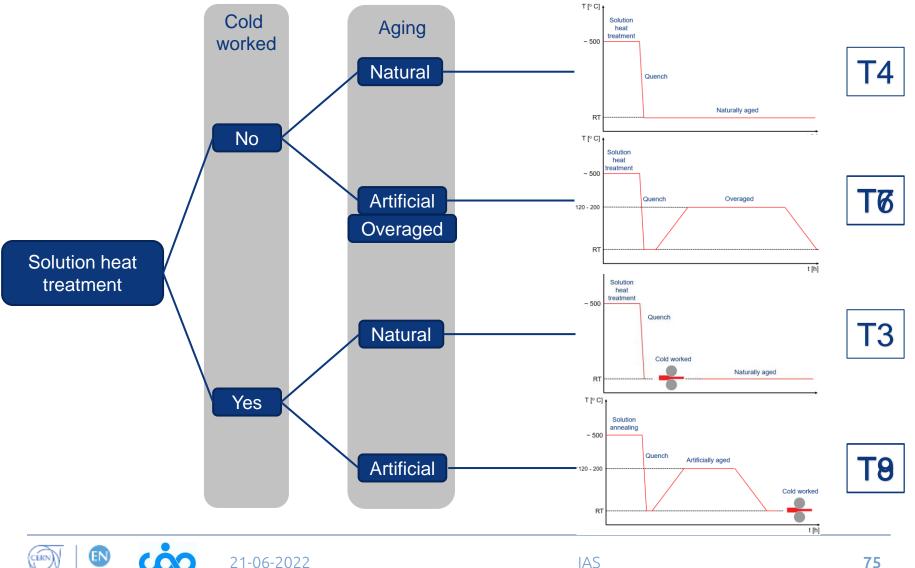
Wrought aluminum alloys: temper states

- H, strain hardened: non-heat-treatable wrought alloys that have had their strength increased by strain hardening. H is always followed by two or more digits:
 - The first number after the H tells whether the strain-hardened alloy has been thermally treated:



IAS

21-06-2022


Wrought aluminum alloys: temper states

• T, thermally treated to produce stable tempers:

Wrought aluminum alloys: temper states

• T, thermally treated to produce stable tempers:

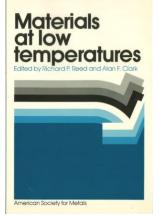
Prices

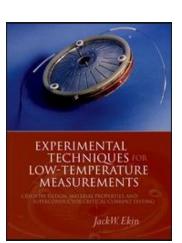
Aluminium and alloys

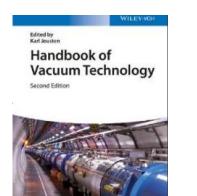
- Al and Al alloys general purpose \rightarrow 5 EUR / Kg
- EN AW 2219 forged blanks → 80 EUR / Kg
- Special forgings, EN AW 6061 → 15 EUR / Kg

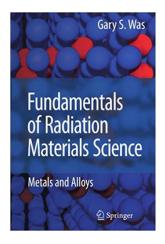
Coppers

- OFE Cu \rightarrow 25 40 EUR / Kg (3D forged)
- OF Cu \rightarrow 10 EUR / Kg (basis)
- CuBe, high (low) Be \rightarrow 40 90 EUR / Kg (strips)
- Glidcop \rightarrow 55 EUR / Kg


Titanium


- Grade $2 \rightarrow 50$ EUR / Kg (plates)
- Ti6Al4V (ELI) \rightarrow 50 (140) EUR / Kg


Niobium


Nb (RRR 300) → 600 EUR / Kg

04-06-2024

