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SEM-Images of a ductile cutting process of AlMgSi0.5
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Chip Separation Model: Theory of Shear Planes 

◼ Highly simplified assumptions

◼ deformation only in a defined shear zone

◼ Exclusively plastic material behavior

◼ Constant friction between tool and workpiece

◼ Chip formation process

◼ Cutting edge compresses the material 

◼ Plastic and elastic deformations 

leading to shear stresses τ

◼ Chip separation after exceeding the 

materials shear strength τmax

◼ Strong dependence of material behavior on load vector
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Different effective zones at the chip formation

1: Primary shear zone

2: Secondary shear zone

3: Separative zone

4: Rake face shear zone 

5: Preliminary deformation zone
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Different types of chip formation; a) continuous chip; b) lamellar chip; 

c) segmented chip; d) discontinuous chip
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Macro- vs. micro-machining

◼ Micro-cutting: chip thickness h < 10 µm

◼ Tool engagement conditions micro-cutting: h ≤ rß

◼ Negative effective rake angle γ

◼ Resulting necessities:

◼ Targeted cutting-edge preparation

◼ Knowledge about the tool wearTool engagement conditions within a) macro- and b) micro-machining

workpiece

toolh

γ

500 µm workpiece

tool

h

γeff

rß

5 µm
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Comparison of different cutting-edge preparation methods; a) initial state;

b) drag finishing; c) blasting with silicone-oxide particles; d) magnetic finishing 

a) b) c) d)

20 µm 20 µm20 µm20 µm 100 µm100 µm 100 µm

Influence of the rounded cutting edge radius rß on the tool wear 

behavior after lc = 1.5 m; a) rß = 3 µm; b) rß = 5 µm; c) rß = 9 µm

a) c)b)

h > rß h ≤ rß
a) b)
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Sensor technologySpace applications

Optical applications in the field of ultra-precision machining 

Quantum technologyIR-Sensor optics

Requirements

◼ Enlargement of the material spectra 

◼ Brittle-hard materials for sensor optics

◼ Glass ceramics for laser and space applications

◼ Increased requirements for industrial applications

◼ Shape accuracy aS

◼ Surface roughness

◼ Economic production 

◼ Sustainable manufacturing 

Motivation and Recent Challenges - Necessity to Increase Accuracy 
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Innovative Sensing Methods – Highly Sensitive Temperature Measurement System

State-of-the-art ultra-precision machining

◼ undefined tool wear leads 

to deviations in form- and surface roughness 

◼ ineffective use of maximum tool life

◼ tool wear depends mainly on cutting temperatures ϑC

◼ limitations of 

current methods of temperature measurement:

◼ high response times tR

◼ reduced measurement accuracies aM

◼ differing thermal material properties

190 °C

280 °C

271 °C

340 °C

Temperature determination in 

turning operation using thermal imaging camera
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Integrated thermocouple in cutting tool 

for the measurement of the cutting temperatures ϑC
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Innovative Sensing Methods - Highly Sensitive Temperature Measurement System

Development of an 

innovative temperature measurement system

◼ direct and highly temperature 

measurements in the cutting zone of a SCD

◼ comprehensive knowledge 

about the interrelations in ultra-precision machining

◼ identification and 

characterization of tool wear using SCD 

◼ feedback of the sensor data in real time tRe

◼ adaptive process control based 

on the measured temperatures ϑ in the cutting zone 

Phase 1

P
h

a
s
e

 2

Phase 3
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 4

Development high sensitive 

temperature measurement system

PyrometryThermography

Functional proof

Thin-film thermocouple

Measurement system

ThermocoupleSimulation

a) b)

c) d)
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Innovative Sensing Methods - Highly Sensitive Temperature Measurement System

Solution Approach

◼ development of an improved temperature 

sensor based on ion-implanted boron-doped diamonds

◼ specific introduction of 

boron-atoms into crystal lattice and the cutting-edge

◼ avoid structural damages 

on the cutting-edge of the diamonds

◼ defined current flow at the cutting-edge

◼ increased sensitivity 

for a precise temperature measurement

suitable boron-doping

at the cutting-edge

high boron-

concentration

Cutting-

edge

electrical contact to 

micro-electronic

ion-implanted 

boron-doped diamond
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Innovative Sensing Methods - Highly Sensitive Temperature Measurement System

Sensor Calibration

◼ determination on the temperature-resistance relation

◼ highly accurate heating of the ion-implanted 

boron-doped diamonds with a Wafertherm®- chuck 

system

◼ electrical contacting 

using high-precision micro-manipulators

◼ measurement of electrical resistances Rel

with temperature steps of Δϑ = 1 °C

Results

◼ successful ion-implantation 

resulting in suitable electrical conductivity κ

◼ identification of a suitable doping characteristic 
0

temperature ϑ

14035 70 °C

0.0

22.5

45.0

MΩ

Measuring device:

PA 200, SUESS MICROTEC; 

Chuck-System SP 74 A, 

ERS ELEKTRONIC GMBH

Tool:

rε     =     1.5     mm

Calibration curve of an ion-implanted boron-doped diamond

Characterisation of ion-implanted boron-doped diamonds

a) b) micro-manipulators

boron-doped diamondwafertherm-chuck-system
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Innovative Sensing Methods - Highly Sensitive Temperature Measurement System

Resolution accuracy aR

◼ resolution accuracy of aR ≤ 0.39 °C 

could be identified for different cutting temperatures ϑC 

◼ slight increase at 

higher cutting temperatures ϑC due to physical effect 

Reaction time tR

◼ investigation of the 

reaction time tR based on the guideline VDI/VDE 3522

◼ measurement system enables a response time of 

tR ≤ 430 ms independent of the cutting temperatures ϑC

◼ process-reliable temperature 

measurements can be realized using ion-implanted diamonds
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ϑC,min = 19.85 °C

ϑC,max = 20.14 °C

aR = 0.29 °C



©  F R A U N H O F E R  I P K  /  I W F  T U  B E R L I N  

12

Innovative Sensing Methods - Highly Sensitive Temperature Measurement System

Temperature measurements using ion-implanted boron-

doped diamonds as temperature sensor

◼ higher cutting temperatures ϑC could be measured by the

ultra-precision turning of metallic materials

◼ process-reliable machining of electrically conductive 

materials 

Results

◼ measurements of high-precision 

temperatures ϑ with a reduced distance to the cutting-edge 

◼ correlation of temperatures ϑ

with tool wear, surface roughness and shape

◼ model-based 

self-optimisation of shape and surface roughness

◼ foundation for zero-waste production 

and potential for significant CO2-savings
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 ϑ
C

brass

°C

35.0

27.5

20.0

Machine Tool: 

Moore Nanotech 350 FG,

NANOTECHNOLOGY SYSTEMS

Measurement Device:

temperature measurement 

system,  IWF TU BERLIN

Process:

ultra-precision turning

Material:

ion-implanted 

boron-doped diamond

rε =    1.5   mm

Doping-level: 

dlev = 4E15 - ions/cm2

Doping-length:

dlen =   0.4   mm

aluminium copper PSU PC PMMA

42.28 °C 38.64 °C 36.87 °C 27.56 °C 26.21 °C 24.83 °C

Parameter:

cutting speed: vc = 350 m/m

depth of cut:   ap =     5 µm

feed: f   =     5 µm

Comparison of different 

temperature levels between metallic and plastic-based materials
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Initial Situation

◼ Ductile cutting mechanism with hard-brittle materials

◼ Hydrostatic stress condition is required 

◼ Crack propagation due to material dislocations

◼ Fractures can exceed machined surface

◼ Different possibilities to a achieve stress condition in cutting area

Advanced Process Technologies – Cutting Hard-Brittle Materials

14

Ductile chip Discontinuous chip

Dependence of crack propagation on feed f; a) dislocations above 

machined surface; b) cracks within machined surface

Creation of a hydrostatic stress condition with a) tool macro geometry 

and b) micro geometry 

workpiece workpiece workpieceworkpiece

tool tooltool
tool
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ap

f f
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Experimental Investigation

◼ Scratch tests were conducted to 

identify suitable cutting parameters

◼ Ductile material behaviour

◼ Brittle material behaviour

◼ Variation of the cutting depth ap and feed f 

in a range from 0 µm ≤ ap / f ≤ 35 µm

◼ Process cooling: ISOPARTM H / dry machining

◼ Analysis of the resulting surface quality, 

tool wear, chip formation and process forces

12 µm

a) b) c) d)

12 µm 12 µm 12 µm

SEM-Images of the different chip formations

c) d)

30 µm 150 µm

b)

800 µm800 µm

a)

Surface topology of the workpiece, a), c) ductile cutting, 

b) transition to ductile-brittle material behaviour, d) brittle cutting

Binderless cemented carbide

cobalt portion = 0.8 %

Conventional cemented carbide 

cobalt portion = 12.0 %

Force curve for scratch tests with conventional carbide

Advanced Process Technologies – Cutting Hard-Brittle Materials
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Advanced Process Technologies – Cutting Hard-Brittle Materials

Results

◼ Extensive experimental investigations were conducted

◼ Relevant parameters:

◼ Cutting depth ap

◼ Feed f

◼ Identified process window for ductile cutting 

Resulting chips; a) finishing cut and b) roughing cut

30 µm

a) b)

SEM-Images of surface textures ; a) conventional carbide and b) binderless 

carbide

Binderless cemented carbide

cobalt portion Co = 0.5 %

Conventional cemented carbide 

cobalt portion Co = 12.0 %

0 5 10 µm 20
Cutting depth ap

Co = 12.0 %

Co = 0.5 %

0 5 10 µm/rev 20
Feed f

Co = 12.0 %

Co = 0.5 %

d)b)a) vc =  50 m/mm

ap =  5 µm

f   = 2,5 µm

ISOPAR H

vc =  50 m/mm

ap =  3 µm

f   =    3 µm

ISOPAR H

30 µm 30 µm

10 µm 10 µm
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Advanced Process Technologies – Cutting Hard-Brittle Materials

Industrial Significance

◼ Delivery of optimized process parameters do achieve 

ductile cutting behavior

◼ Possibility to manufacture complex components 

from hard brittle material:

◼ Injection molds

◼ Cutting tools

◼ Injection nozzles

◼ Stamping tools

Further Research Fields

◼ Implementation of ultrasonic assisted machining

◼ Investigation of ultrasonic-related effects

Machining results with 

unoptimized parameters; 

a) chatter marks, b) high surface 

roughness, c) breakout

a) b) c)

Ra = 19 nm

Ra = 25 nm

Ra = 21 nm

Process 

optimization
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Advanced Spindle Systems – Integrated Thermoelectric Control
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heat 

sources

TCP-displacement

Peltier module

Machine tool

Challenge

◼ Significant proportion of geometrical errors 

is caused by thermal behavior of machine tools

◼ Axial displacement of tool center point (TCP) 

due to thermal deformation of motorized spindles

◼ Temperature variations due to process-related 

load changes in bearings and motors

◼ Long warm-up periods to reach thermal steady states are 

necessary for high-precision machining

Approach

◼ Reduction of thermally induced 

displacements by integration of Peltier modules
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Advanced Spindle Systems – Integrated Thermoelectric Control
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shaft

tool 

holder

Peltier 

modules

stator

rotor
front 

bearings

hexagonal 

housing

20 mm  

Model of a thermoelectrically

tempered motorized milling spindle (TE spindle)

water cooler

rear 

bearings

System structure

◼ Design of thermoelectrically tempered spindle 

based on Spindle Z62 by Alfred Jäger GmbH

◼ Hexagonal housing and water cooler 

allows integration of 24 prismatic Peltier modules

◼ Heat sources: motor, front and rear bearings

hexagonal

housing

Pt1000 water

cooler

Peltier

modules

cooling

pipes
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Advanced Spindle Systems – Integrated Thermoelectric Control
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Advanced Spindle Systems – Integrated Thermoelectric Control
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Results

◼ Precise and fast temperature 

control of spindle components

◼ Potential to influence axial shaft elongation 

under changing induced heat flow rates

◼ 68 % reduction of axial shaft elongation Δls
for rotational speed 15,000 min-1 ≤ n ≤ 55,000 min-1

◼ 86 % reduction of time to reach steady state Δtw

n1 = 30.000 1/min

n2 = 45.000 1/min

n3 = 55.000 1/min

rotational speed n
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Advanced Spindle Systems – Integrated Thermoelectric Control
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0
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Rotational speed n in min-1

reference Spindle

TE spindle

time t

time t

time t

Economic Significance 

◼ Reduction of non-productive times 

due to shorter warm-up processes

◼ Tests showed a reduction in energy consumption by 45 % 
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Adaptive Machine Tools – Modular Machine Structure

Initial Situation

◼ Monolithic machine structures have several 

disadvantages

◼ Lack of adaptability to different workpieces

◼ High production costs at small batch sizes

◼ Limited possibility to retrofit various components

Motivation for Modularization

◼ Scalable, flexible and reusable machine tool structure

◼ Compensation of 

modularization deficits through active modules

◼ Automated methods and tools to 

shorten the planning and design phase

25

Modularized milling machine as a 

portal-configuration

Different shaped structural modules

Active modules; a) thermo-static 

compensation; b) active damping 

module 

a) b) 

Workpiece fixture with build-in 

static-dynamic compensation
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Adaptive Machine Tools – Modular Machine Structure
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Input

Results

◼ Active components enable increases in accuracy and performance

Active component for compensating 

thermally induced displacement

Active component for compensating 

position accuracy

Active component for compensating 

the dynamically induced displacement

Thermo-static compensation Active damping controlStatic-dynamic compensation

Piezo-

actuator

workpiece position 

monitoring
solid state 

joint 

therm.
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Adaptive Machine Tools – Modular Machine Structure

Challenges

◼ Heat, process forces and 

vibrations are limiting the machining results

Target

◼ Increased performance and accuracy 

through self-optimization of the machine tool 

Solution approach

◼ Self-sufficient sensor nodes for disturbance variable 

detection

◼ AI models for forecasting and deriving 

needs-based compensation strategies

◼ Modular system with active components 

for performing compensatory actuating movements 

Self-optimization through AI models and active components

sensor knots

active modules

AI-model

Heat Process forces

Vibrations

27
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New Sensing

Methods

Advanced 

Machining

Developments in Advanced Machining - Key Innovations in Recent Years

Demographic Change

Climate Change

Inequality

Technological Progress

Advanced 

Process 

Technologies

Advanced 

Spindle 

Systems

Data Science 

in Machining

Adaptive 

Machine 

Tools

Innovative 

Sensing 

Methods
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Basics of Data Science

◼ Interdisciplinary scientific approach 

◼ Main goal: extracting desired information 

from a large mass of available information

◼ Combine specific expertise with extracted 

data to gain knowledge

Typical Workflow

◼ Data acquisition with sensor systems (e.g. IoT) 

◼ Saving and pre-processing

◼ Data analysis to identify main effects and major correlations

◼ Visualization to exceed comprehensibility
Data Science as venn-diagram
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Instable process

Stable process

Rotational speed n of the tool

C
u
tt
in

g
 D

e
p
th

 a
p Application Case for Machine Data: Chatter Reduction

◼ Machine-related influencing parameters

◼ Foundations, mounting conditions

◼ Slide and machine table movement

◼ Spindle speed

◼ Tool- or workpiece-related influencing parameters

◼ Workpiece compliance

◼ Workpiece clamping condition

◼ Tool mass

◼ Process-related influencing parameters

◼ Cutting edge geometry

◼ Tool wear 

◼ Feed, Cutting speed

Wedge-shaped workpiece

Influence of the cutting depth ap on the chatter behavior

Schematic representation of the process stability

Stable Chatter

100 mm

Stage A Stage CStage B

8
 m

m
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Signal flow in a control unit within a typical CNC-machine
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Machine tool as a data source: Breakdown and composition of all available process information 
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Future of Applied Information Technology in Machining
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Manufacturing Technology

Automatization of manufacturing 

processes

Development of cryogenic cooling 

concepts for machining advanced 

materials 

Machining of large structures with a 

high grade of geometric flexibility 

using six-axes industrial robots 

Development and optimization of 

process technologies for hard to 

machine materials
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High- and Ultra-Precision Machining

UP-Turning of optical components 

with surface qualities Ra < 10 nm 

Micro-Milling of complex structure 

made from graphite 

Manufacturing of high precision 

steel parts with micro-EDM 

Process optimization of 5-axis 

milling operations  
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Development of Advanced Machine Components

Ultrasonic oscillation system; a) 

milling spindle; b) toolholder with 

integrated ultrasonic actuator
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Ultrasonic system for ultra-

precision turning processes

Ultrasonic system for 

turning applications

▪ Superimposition of 

the tool movement with a 

1-dimensional oscillation

▪ Reduction of the temperature ϑ

in the cutting zone

▪ Possibility to machine steel 

materials with monocrystalline 

diamond tools

▪ Frequency f up to 100 kHz

▪ Amplitude A up to 3 µm

Ultrasonic system for 

milling applications

▪ High precision milling spindle

▪ Integrated current transfer system

▪ Utilization of the smallest tools

▪ Spindle speed n up to 40.000 rpm

▪ Frequency f up to 65 kHz

▪ Amplitude A up to 2.5 µm
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Data-based Optimization on Manufacturing Processes

Implentation of IoT-based systems to 

enhance productivity and recognize 

machine failures at an early stage

Optimization of stochastic processes using 

evolutionary algorithms

Development and validation of IoT-

architectures and data-pipelines to 

combine multiple data sources
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Particle Accelerator of a different kind 

High speed footage of an impact test with a tool fragment 
Test facility to investigate the impact resistance of safety glass on 

machine tools  

Pressure 

vessel

Acceleration tube 

d = 300 mm

Acceleration tube 

d = 100 mm

Sample fixture
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Julius Tschöpel, M.Eng.

Phone: +49 (30) 314 77087

Mail: julius.tschoepel@iwf.tu-berlin.de

Prof. Dr. h. c. Dr.-Ing. Eckart Uhlmann


