

Beam Intercepting Devices

Davide Reggiani CERN Accelerator School, Sint-Michielsgestel, 07 June 2024

Outline

• Introduction to Beam Intercepting Devices (BIDs)

Definition

Challenges

Design Procedure

• Collection of Present and Future Beam Intercepting Devices at

the PSI High Intensity Proton Accelerator (HIPA)

- Remote Handling of BIDs
- Conclusion

Definition of BID

A BID is a component that intercepts beam for different purposes

- Production of secondary particles (Targets)
- Beam cleaning / shaping (Scrapers / Collimators / Slits)
 - Protection of sensitive components
 - Concentrate beam losses in one specific location: avoid spreading beam losses over a long beam line section (Keep machine maintainable!)
- Absorb/Dispose "unused" beam (Beam Dump)

Challenges of BIDs: The Beam

- In High Power / Energy Proton Machines (HIPA, ESS, LHC) the beam can deposit enormous amounts of power/energy
- The way the power is deposited on BIDs depends on the kind of machine
 - Continuous Wave: Power constantly and homogeneously deposited in time
 Ex: HIPA (PSI) 590 MeV, 1.4 MW continuous power, 50.7 MHz cyclotron frequency
 - Pulsed-Beam: Power deposited constantly but concentrated in pulses
 Ex: SNS (ORNL) 1 GeV protons, 1.4 MW average power, 60 Hz repetition rate
 ESS (LUND) 2.5 GeV protons, 5 MW average power, 14 Hz repetition rate
 - Circulating Beam: Energy deposited on beam dump at the end of each run
 Ex: LHC (CERN) 6.8 TeV protons, 539 MJ stored energy, 6TW instantaneous power (89 μs)

Challenges of BIDs: The Risks

A BID can be exposed to (extremely) high:

- **Temperature** (**100s to 1000s °C**): absolute and distribution (hot spot regions)
 - Can lead to deformation or melting
- Stress (100s of MPa)
 - Can lead to plastic deformation (> Yield Stress) or fracture (> Ultimate Tensile Stress)
- Radiation Damage (several DPAs, Displacements per Atom)
 - Can lead do swelling, embrittlement, etc.
- Activation (100s of Sv/h)
 - Problematic handling and disposal

BIDs Design Aspects

• Essential aspects

- Geometry
- Material choice: Physics requirements (Targets), Structural Behavior, Activation
- **Power/Energy Deposition**: Through beam and/or thermal radiation from neighboring components
- Thermal analysis: Max Temp. and Temp. Distribution
- **Structural analysis**: Stress, Deformation, Fatigue
- (Water) Cooling: Erosion, Corrosion, Wear (Pipe Material, Water Flow Rate), Cavitation, Boiling, Pressure Drop
- **Environment**: Vacuum, Shielding, Surrounding Components
- **Operational Safety**: Critical vs Replaceable BIDs
- Manufacturing feasibility
- Installation/Removal/Handling
- Other important points
 - Movable parts
 - Diagnostics, Monitoring (temperature, vibrations, cooling water flow, ...)

BIDs Design: Power Deposition

- The Energy or Power deposited by the beam in a BID (unit: J/m³ and W/m³ resp.) depends on
 - Beam properties
 - BID Material and Geometry
- Energy deposited ΔQ and temperature increase ΔT of BID related through material density ρ and specific heat capacity c of BID:

$$\Delta \boldsymbol{Q} = \frac{\Delta \boldsymbol{T}}{\rho \, \boldsymbol{a}}$$

- Well-established **Beam-Matter Interaction Monte Carlo Codes** can assess this figure:
 - MCNP, FLUKA, BDSIM, MARS, ...
- In some cases, (simple geometry, thin BID) this assessment can be performed analytically with good approximation

BIDs Thermomechanical Aspects: Heat Dissipation

The Heat deposited in a BID can diffuse through different processes

Choice of Cooling Method must take boundary conditions into account:

Material, Temperature, Emissivity, Thickness, Moving Parts, etc.

BIDs Thermomechanical Aspects: Stress

<u>Stress</u> describes forces present during deformation [Pa]

Depending on the force direction stress causes different sort of **Deformations**:

Tensile: elongation Compressive: shortening Flexural: Bending

Deformation can be **Elastic** (Young's Modulus < Yield Strength) **Plastic** (Stress > Yield Strength) **Fracture** (> Ultimate Strength)

In BIDs, the main source of **stress** is typically the **non uniform temperature distribution** generated by interaction with the beam

Finite Elements Method/Analysis (FEM/FEA)

For **BID Thermomechanical and Fluid Dynamics Analysis FEA-Solver and Computational Fluid Dynamics (CFD) Multiphysics Simulations Tools** are available

- All FEA/CFD calculations presented in this lecture carried out using **ANSYS**®
- Other tools (like COMSOL, OpenFOAM) can also be employed
- FEA/CFD Simulations need HPC resources and can be extremely time consuming
 - Ex: CFD Simulation of ¼ of the SINQ Target (over 1 Million Cells) on a 20 cores machine with 1.5 TB RAM → 2 Months

BID Design Workflow

- Overview of BIDs at the PSI High Intensity Proton Accelerator (HIPA) \checkmark
- Won't cover other facilities/labs X
- Won't enter details of MC or Multiphysics Simulation Codes X

BIDs@CERN by Marco Calviani:

https://indico.cern.ch/event/980520/

https://indico.cern.ch/event/980519/

The High Intensity Proton Accelerator (HIPA)

BIDs in the 590 MeV, 1.4 MW Proton Channel

Target E (TgE) Region: 30% Beam Losses

TgE Wheel Design

Since 2003: Modified design with **gaps** to allow for thermal expansion

TARGET WHEEL

Secondary Particles:	Muons, Pions
Material:	Polycrystalline Graphite
Mean diameter:	450 mm
Graphite density:	1.8 g/cm ³
Operating Temperature:	1500 °C
Irradiation damage rate:	0.1 dpa/Ah
Rotation Speed:	1 Turn/s
Target thickness:	40 (or 60) mm
Beam loss:	30 (or 42) % (after collimation)
Power deposition:	20 kW/mA (40 mm thickness)
Cooling:	Radiation

Slanted TgE Design

Advantages of Slanted Geometry:

Straight and Slanted TgE: Temperature Distribution

Steady-state case: simplify and speed up simulation process

- No target rotation
- Equivalent planar geometry (no surface curvature)
- Beam power deposition integrated along y-coordinate and smeared on the perimeter of the full target
- Consider only **2 target tiles** rescaling the current accordingly.

Straight and Slanted TgE: Stress Distribution

Equivalent planar geometry employed for simulations!

TgE Incidents

Rim cut in beam direction in 9 tiles (2014)

Possible explanation: beam running while switching target rotation on (Interlock failure?)

TgE Collimator KHE2

Collimator Material Body: OFHC: oxygen-free high thermal conductivity copper Cooling Water Pipes: Stainless Steel Absorbed beam power: 150 kW

> ...and after 20 years operation (120 Ah total beam charge)

KHE2 during installation (1990)...

Dose rate up to 500 Sv/h measured at KHE2 during inspection in March 2010!!

KHE2/3: New Design for future 3.0 mA Beam

Copper Temp. **Safety Limit = 405** °C (~2.6 mA beam) Homologous temperature from which recrystallisation and creep start to occur. Rule of thumb : T_homologous [K]= 0,5*T_melting [K]

Current KHE2/3 Design

Temperature Distr. for 3.0 mA Proton Beam on Target E Tmax = 565 °C

New Collimator required for 3.0 mA beam!

New KHE2/3 Design Temperature Distr. for 3.0 mA Proton Beam on Target E Tmax = 267 °C

BIDs in the 590 MeV, 1.4 MW Proton Channel

SINQ Target: a bit of History

- SINQ neutron spallation source commissioned in 1996
- Target material: Zircalloy/Lead (previously Steel/Lead)
- Active target cooling: heavy water circuit
- ~15 targets employed so far: continuous development
- Target lifetime: 2 years
- Up to ~1 MW beam power fully stopped on target

Start-up target: solid Zircaloy rods 1997-1999

MARK II / III

Lead-'Canneloni' Target in stainless steel cladding 2000-2005: ⇒42% more neutrons

MARK IV

SINQ Target 13 CFD Simulations (1.5 mA Beam)

Beam Power deposition calculated with MCNP Monte Carlo

PSI

Fluid Dynamics Analysis performed with ANSYS Fluent

Temperature SINQ Target 13 at 1.5 mA Beam

SINQ Target Incidents

Target 6: One Cracked Steel Tube

No or little operational consequences

Target 8: One Cracked Zircalloy Tube

Target 11: Many broken Zircalloy Tubes, Molten Lead poured into cooling water and blocked the circulation

4 Months SINQ Downtime

All Cracked Tubes located in the central, high temperature target region (T>330 °C)

The IMPACT Project

IMPACT: «Isotope and Muon Production using Advanced Cyclotron and Target technology»

- HIMB: «High Intensity Muon Beams», up to **10¹⁰ μ⁺/s** at beamline frontend (Commissioning **2028**)
- **TATTOOS**: Targeted Alpha Tumor Therapy and Other Oncological Solutions (Commissioning **2030**)

IMPACT CDR (Conceptual Design Report) published on 01.2022: https://www.psi.ch/en/impact/documents IMPACT TDR (Technical Design Report) due 12.2024

Concept new Target Station H (TgH) for HIMB

Challenges

- Very limited space for the target insert: ~500 mm between 2 muon capture solenoids
- Short and wide solenoids with large fringing field introduce a vertical bend of proton beam
- Thicker target (**20 mm TgH** vs 5 mm TgM): higher beam losses & activation
- **Slanted target** geometry with large rim to maximize muon production

TgH Region: BIDs

Heat Load from Protons and Secondary Particles

Total

270° Angle [deg]

100 kW

TgH Rim: Thermal Simulations

Power Deposition calculated analytically: **32 kW** Beam Current: **3mA**, Beam Size (σ_x): 1mm

Power density Target H 3mA

ANSYS simulation of one graphite tile V2, planar equivalent geometry Similar results for V7

TgH Rim: Structural Simulations

Ultimate stress in tension, flexion and compression (data at room temperature):

- $\sigma_f = 60 MPa$
- $\sigma_c = 130 MPa$
- $\sigma_t \approx 38 MPa$

Graphite's strengths increases with temperature (no temperature-dependent data found for R6510):

Collimator KHH0 Thermal and Structural Simulation

- Simulated independently from the target station (copper is reflective) ٠
- Max Temperature: 206 °C ٠
- Max Stress = 58 MPa (UTS_Cu = 150 MPa @150 °C) ٠

D: Static Structural Equivalent Stress

Unit: MPa

Time: 1 s

11.03.2024 11:01

51.26

44.855

38.451

32.046

25.641

19.236

12.832

6.4267

0.02193 Min

57.665 Max

KHH1 and KHH2 Collimators

Function:

Clean/Shape highly divergent beam after passing through 20 mm thick graphite target H **Prevent activation** of downstream beamline components

KHH1 / KHH2: Geometry and Power Deposition

Geometry

- KHH1 / KHH2: Same Geometry, only aperture differs
- Aperture defined through MC proton beam line simulations
- Each collimator composed by 6 cylindrical sections

Material

- Body: OFHC (oxygen-free high thermal conductivity copper)
- Cooling Water Pipes: Stainless Steel

Power Deposition (proton beam current 3 mA):

- KHH1: 17 kW
- KHH2: 2.1 kW

Simulate KHH1 only

Water Flow Rate for Simulation: 0.5 kg/s (very conservative)

KHH1: Thermal Analysis

✿ Position of max. temperature

KHH1: Deformation and Stress

The IMPACT Project

IMPACT: «Isotope and Muon Production using Advanced Cyclotron and Target technology»

- HIMB: «High Intensity Muon Beams», up to **10¹⁰ μ⁺/s** at beamline frontend (Commissioning **2028**)
- **TATTOOS**: Targeted Alpha Tumor Therapy and Other Oncological Solutions (Commissioning **2030**)

IMPACT CDR (Conceptual Design Report) published on 01.2022: https://www.psi.ch/en/impact/documents IMPACT TDR (Technical Design Report) due 12.2024

TATTOOS Target Station Preliminary Concept

- 100 µA split from main 590 MeV beam after extraction form Ring
- Beam Power: 59 kW
- Beam delivery: Continuous (for 250 s every 300 s)
- Material: Solid **Tantalum** (UCx also an option)
- Very high and homogeneous temperature (~2500 °C)
- Heating sources: proton beam and external joule heating
- Variety of Radioisotope (above all Terbium for cancer treatment)

TATOOS Tantalum Target Design

Design Challenge

- 26 kW deposited beam can heat the tantalum target to over 3000 °C and melt it (Ta melting point: 3020 °C)
- Maximize isotope production
- Avoid target melting!

Possible Approaches

- Ta arranged in thin discs to maximite radiation cooling
- Conical hole to homogenize beam power deposition
- Beam wobbling to flatten beam transverse distribution

Thermal Analysis for Different Geometries

- Beam power deposition from MC simulation
- Target Temperature depends on target geometry and on beam optics
- V7: Temperature below Ta-Melting point but still too high (Goal: 2500 °C)
- Simulations need further investigations

TATTOOS Beam Dump (BD) Design

TATTOOS-BD: Thermal Analysis

Simulation Strategy Normal Scenario (NS): UCx Target (Geometry V5) and standard beam optics Worst Case Scenario (WCS): No Target and no beam wobbling (commissioning/accident)

Power deposition UCx Target: 22 kW Target / 23 kW Beam Dump WCS: No Target / 45 kW Beam Dump

AA: UCx teeth design Temperature Type: Temperature Unit: °C Time: 1 s Custom Max: 114.47 Min: 41.606 05.12.2022 11:48 114.19 106.13 98.062 89.996 81.931 73.866 65.801 57.736 49.671

41.606

Exchange Flasks for Remote Handling

TargetM-EF

Target M (horizontal)

Goal: transport highly active elements from beam line to hot cell

Max. dose rate at the flask surface: 2 mSv/h

Target E + ~ 15 components in p-channel (vertical)

Diagnostic Elements, **UCN** Collimator (vertical)

UCN spallation target (horizontal)

Conclusion

- The Development of Beam Intercepting Devices is a Multidisciplinary Task requiring Knowledge in Particle Physics, Material Science, Monte Carlo, Multiphysics, Engineering
- A BID constitutes in some cases

"The Last Line of Defense against Component Damage"

(M. Calviani, CERN)

• BIDs reliability is crucial!

Failures of BIDs can lead to long downtime period!

Many Thanks to

M. Hartmann A. Ivanov S. Jollet D. Kiselev D. Laube R. Martinie J. Snuverink R. Sobbia V. Talanov (PSI)

Marco Calviani (CERN)

And All of you!

1.4 MW Beam Transport

Average losses away from targets: 0.6 W/m

Target M (TgM) Design

Specifications:				
Secondary Particles: Muons, Pions				
laterial: Polycrystalline Graphite				
Mean diameter: 320 mm				
Target thickness:	5.2 mm			
Target width:	20 mm			
Graphite density:	1.8 g/cm ³			
Beam loss:	1.6 %			
Power deposition:	2.4 kW/mA			
Operating Temperature:	1100 K			
rradiation damage rate:	0.12 dpa/Ah			
Rotational Speed:	1 Turn/s			
Lifetime:	20000 h			

Grooved Standard TgE

Issue: horizontal centring of proton beam ($2\sigma=1.5$ mm) on 6mm wide graphite wheel TE

Risk: Unscattered, TE-missing beam delivers hotspot at SINQ target

Transmission Measurement: not a reliable bypassing beam detection due to slits in TE

New Idea: grooved TE introduces sizeable modulation of beam current signal if beam not centred

First Tests with Prototype TE: July-September 2019 (Regular TgE)

Grooved Slanted TgE

Currently installed Slanted TgE also equipped with grooves (in the center) and shims (at the edges) for beam position detection

- More complicated arrangement because of slanted geometry
- Analysis of signas from grooves and shims still going on

TgE with New Bearings (Since 2021)

New (since 2021)

Stainless steel (balls) + WS2 (blocks) **Koyo,** Japan (Shun Makimura, J-PARC) In operation since 2021

- No TgE Exchange needed any more throughout the whole year!
- TgE exchange during long shutdown only.

Si3N4 (balls), MoS2 (Coating), Ag (ring & cage) GMN, Germany 1 -2 x exchange/year needed!

Operation in 2021: Stable **TgE rotation** and **TgE motor current**

throughout the whole year (same in 2022)

Beam Dump: Introduction

700 kW, four stage, water cooled, Beam Dump allows beam operation on TgM and TgE in case the SINQ Target does not work

Body Material OFHC: oxygen-free high thermal conductivity copper Cooling Water Pipes: **Stainless Steel**

BD1 exchanged in 2018 (27 years operation) due to water leak in cooling pipe

35 cm

BD1 with local shielding

Beam-dump overview

590 MeV Beam Dump: Energy Deposition

Energy deposition

- 4 cm thick Target E
- Present KHE2/3 system
- Transmission 74.1%
- TURTLE beam distribution

Proton Beam Parameters

10cm in front of BD1

σ _x [mm]	x' [mm]	σ_y [mm]	y'[mm]
79.9	17.6	58.8	8.2

Energy distribution computed with **MCNPX2.7.0**

590 MeV Beam Dump: Temperature Distribution

Temperature overview

- BD1 experience the highest temperatures
- BD2 temperatures are significantly lower
- BD3 temperatures are almost negligible
- BD4 is not considered

SINQ Target 13 vs 9 (MARK IV)

SINQ Target 9

Page 59

SINQ Target 13: Other Interesting Parameters

TgH Region

TgH Region Vertical Cut

Cooling Plate and Protection Collimator

Cooling Plate Function: protect berings, collimator and

halo monitor

Material: Copper

Protection Collimator

Function: protect target station from missteered beam

Material: Densimet (Tungsten Alloy)

TgH Rim Deformation

Trend of z-deformation **is outward from the TgH insert** but simulations are simplified by several assumptions (steady-state, no radiation damage, no deformation of the cooling plate simulated).

Cooling Plate Thermal Analysis

Requirements

- Copper Temperature: T_{Cu} < 150 °C
- Water Temperature: $T_w < 80$ °C
- Water Velocity: $V_{W} = 1.5 \text{ m/s}$

Protection Collimator: Thermal Analysis

Local Shielding around TgH: Thermal Analysis

TATTOOS-BD: Structural Analysis (UCx Target, V5)

Deformation

- Maximum deformation:**0.1 mm** for the Normal Scenario
- Maximum deformation: **0.32 mm** for the Worst Case Scenario

Remote Handling: Target M Exchange Flask

- Horizontal pull
- Weight empty: 19t
- Weight loaded: 20.5t
- Height: 1.7m
- Length: 2.5m

Remote Handling: Target E Exchange Flask

- Vertical Pull
- Weight empty: 42t
- Weight loaded: 50t
- Height: 5.3m
- Transports TgE + ~15 other P-Channel elements