

Cryostats and Cryomodules

Vittorio Parma CERN – SY/RF Group

CERN Accelerator School on Mechanical and Material Engineering, Sint-Michielsgestel (Netherlands), 7 June 2024

A bit of History

- **Cryostat** (from *cryo* meaning cold and *stat* meaning stable): *"a device used to maintain at cryogenic temperatures samples or devices mounted within the cryostat"*
- Sir James Dewar invents the "dewar", 1892, London
- A dewar: the first "cryostat"
 - ✓ silvered, double-walled, glass vacuum flask to contain cryogenic liquids → glassblowing "enabling technology"
 - ✓ J.Dewar: 1^{st} liquefaction of H₂ in 1897
 - ...but did not manage liquefaction of He, and did not patent his invention...
- Heike Kamerlingh Onnes : 1st liquefaction of He in 1908 and serendipitous discovery of superconductivity (Hg) in 1911 (Nobel Prize 1913)
- Founded the "Leidse Instrumentmakersschool" (still existing!: <u>https://www.lis.nl/</u>)

Sir James Dewar (1842-1923)

dewar

Helium liquefaction stage with liquid hydrogen precooling

Kamerlingh Onnes (1853-1926)

Cryostats by their application

A few examples...

240I LHe storage

LHC He transfer line (before magnet installation)

- Cryostats for SC devices, functions and requirements
- Alignment and positioning of SC devices in cryostats/cryomodules
- Temperatures, pressures and Heat Loads
- Heat transfer mechanisms and thermal design:
 ✓ Radiation, shielding and MLI
 ✓ Solid conduction and feed throughs
- Materials and mechanical design considerations
- Notions of cryogenic safety (bonus if I manage time)

Main function: position a SC device and enable its operation.

Two technical requirements:

1. Mechanical housing of the device:

• Support, accurately position and align SC devices in accelerators

2. Thermal efficiency:

- Cooling to cryogenic T_{op} (steady state, CD/WU)
- Good thermal insulation

Often conflicting \rightarrow calls for trade off design solutions

Many other complementary functions and requirements...:

- Cryogenics operation and control \rightarrow specific equipment (piping, ph.separators, valves, instrumentation etc.)
- SC device powering: → magnet current leads, cavity RF power couplers/HOMs, etc.
- Integration of instrumentation (beam, vacuum, cryo, control/diagnostics, etc.) \rightarrow feed-throughs
- magnetic shielding
- Maintainability (accessibility ports)
- Handling and transport features

• ...

Positioning of SC devices

Positioning of a SC device in the accelerator

 Accurate & reproducible alignment of the SC device w.r.t. a tunnel geodesic network

- Survey team measures fiducials on the cryostat vessel (not directly the SC device inside the vessel!)
- Typically, alignment within a few tenths of mm w.r.t. nominal positions

 \rightarrow Survey consider cryostat and SC device are rigid bodies ! \rightarrow Alignment is done by adjusting external jacks

D

Reproducible positioning, a tough requirement !

- Cryostats/SC device are not rigid bodies:
- SC devices are "weakly" supported inside the cryostat (thermal efficiency!)
- Cryostat vessels are (generally) "relatively" rigid, and not subject to "excessive" permanent deformation

→SC device supporting system: designed to guarantee "accurate & reproducible positioning of the SC device w.r.t. to cryostat fiducials"

Note: internal monitoring excluded for cost reasons in large machines (LHC, XFEL, etc.)

Positioning of magnets in cryostats: how accurate/reproducible ?

- Dipole magnet positioning:
 - Transverse (x-z): tolerant (field has no horizontal axis). (LHC < 0.5 mm (rms))
 - Roll (about y): sensitive (gives a kick out of orbit plane). (LHC < 0.5 mrad (rms))
- Quadrupole magnet positioning:
 - Transverse (x-z): sensitive (magnetic axis). (LHC < 0.25 mm (rms))
 - Roll (about y): tolerant (LHC < 1 mrad (rms))

Positioning of cavities in cryomodules: how accurate/reproducible ?

- In general, less stringent positioning tolerances. Also, cavities are smaller and lighter than magnets
 → less demanding support systems
- Main effects of misalignment:
 - \checkmark increased beam losses
 - ✓ beam emittance growth
- Typical figures (r.m.s.):
 - ✓ EXFEL: cavities transverse ~ 1 mm, roll insensitive
 - ✓ HIE Isolde CM:
 - Cavities: transverse < ±0.45 mm</p>
 - Solenoid: transverse < ±0.23 mm</p>

Hambu

Mechanical tolerances for accuracy in cryostats parts/assembly

- Positioning accuracy is ensured by precision fitting and adjustments at assembly
- Typical machining IT Grade range: 8-10
- Typical close fits: H7/g6

Application, Process	Tolerance (µm)	IT Grade
Slip blocks, reference gages	1-2	1
High quality gages, plus gages	2-3	2
Good quality gages, gap gages	3-5	3
Fits produced by lapping	4-10	4
Ball bearings, Diomand or fine boring, fine grinding	5-12	5
Grinding, fine honing	6-20	6
High quality turning, broaching	12-35	7
Center lathe turning and boring, reaming	14-50	8
Horizontal or vertical boring machine	30-80	9
Milling, slotting, planing, metal rolling or extrusion	50-100	10
Drilling, rough turning and boring, precision tubing	70-140	11
Light press work, tube drawing	120-240	12
Press work, tube rolling	150-500	13
Die casting or molding, rubber moulding	250-1000	14
Stamping	400-1400	15
Sand casting, flame cutting	500-2000	16

Temperatures, pressures and Heat Loads

What temperature T_{op} (and pressure) ?

[kPa]

Heat Loads

• Static:

- Very much cryostat related (supports, shielding, feedthroughs, etc.)
- always present when machine is cold
- 3 heat transfer mechanisms:
 - ✓ Convection → vessel under vacuum
 (~10⁻⁶ mbar) → negligeable
 - ✓ Radiation \rightarrow sizeable !
 - ✓ Solid conduction \rightarrow sizeable !

• Dynamic:

- SC device operation (e.g. RF surface resistive heating)
- Beam interaction (e.g. synchrotron radiation, HOM)
- Can be dominant, but only present during machine operation (duty cycles)

What is the power need for refrigeration?

- Extracts a heat load at Tc < RT and rejects it at Tw (normally ambient T=293 K)
- Minimum mechanical work (i.e. Maximum Coefficient of Performance, COP_{max}), depends solely on Tw and Tc
- All real machines have a lower efficiency (non-reversible transformations), expressed in fraction of COP_{max}

	Fluid (at 1 bar)	T [K]	Carnot factor (1/COPmax or W _{el} /Qc) [W _{el} /W _{th}] (considering Tw=293K)	
	LN2	77	2.8	
_	LH2	20.4	13.4	
	LHe	4.2	68.4	
L	LHe	1.8	161.8	Ť

- Real machines (irreversibilities) : efficiency expressed in fraction (or %) of Carnot State-of-the-art figures for large cryo-plants (LHC-like, ~18 kW @ 4.2K):
 - ✓ COP @ 4.2 K : ~ \sim 30% of Carnot (1 W_{th} costs 210 W_{el})
- \checkmark COP @ 2 K : $\sim 15\%$ of Carnot (1 W_{th} costs 990 W_{el})
- \checkmark COP (a) 50 K : ~ ~ 30% of Carnot (1 W_{th} costs 16 W_{el})

 \rightarrow To minimize cryostat refrigeration costs: heat extraction at higher T levels:

- \checkmark Heat intercepts on feedthrough (at least one)
- \checkmark Actively cooled thermal shield

→ Cryostat designed to <u>minimise Heat Loads</u> from environment ($T_{ambient}$) → Cryostat (and the SC device) designed to <u>ensure cooling heat exchange</u>

Thermal Radiation

Stefan-Boltzmann's law: $Q = \varepsilon \sigma A T^4$

Power exchange between **gray bodies:**

$$Q_{1-2} = E_{12} \sigma A_1 (T_1^4 - T_2^4) = E_{21} \sigma A_2 (T_1^4 - T_2^4)$$

• For **2 enclosed cylinders** or **spheres** (not necessarily concentric!), *F*₁₂=1 :

$$q_{1_{2}} = \frac{\sigma A_{1}(T_{1}^{4} - T_{2}^{4})}{\frac{1}{\varepsilon_{1}} + \frac{A_{1}}{A_{2}}(\frac{1}{\varepsilon_{2}} - 1)}$$

Radiation between flat surfaces (A1=A2=A), F₁₂=1 :

$$q_{1-2} = \frac{\sigma A(T_1^4 - T_2^4)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$$

- $\sigma = 5.67 \ 10^{-8} \ W \ m^{-2} \ K^{-4}$ Stefan-Boltzmann's constant gray body, $\varepsilon < 1$
 - E, effective emissivity, a function of view factors and emissivity ε_1 and ε_2 of
 - the bodiesA, T area and
 - temperature of the bodies, ε emissivity

• With 1 intermediate floating shield and same ϵ :

Ts

1 N

$$q_{1-2} = \frac{\sigma A (T_1^4 - T_2^4)}{2\ell_{\mathcal{E}}^2 - 1} \qquad \qquad T_s^4 = \frac{T_1^4 + T_2^4}{2}$$

 \rightarrow ½ of the power exchange without shield

• With N intermediate floating shield and same ε can be generatized:

$$q_{1-2} = \frac{\sigma A (T_1^4 - T_2^4)}{(N+1)(\frac{2}{\varepsilon} - 1)}$$

 \rightarrow 1/(N+1) of the power exchange without shield

N shields \rightarrow Multi Layer Insulation (MLI)

Insulating mechanism:

- Multi-layer to enhance radiation protection:
 - N+1 radiation shielding
- Low emissivity of aluminium layer
- Minimal thermal conduction between reflective layers → interposing of isolating layers (e.g polyester net):
- Enhanced performance at low T → use actively cooled shield:
 - Lower emissivity of reflective material layers at low T
 - Extract heat at higher thermal shield T \rightarrow thermodynamic efficiency

 \rightarrow Actively cooled (50-80 K range) thermal shield with MLI is a must in all cryostats

23

MLI performance

- Typical values (for a thermally well optimized large-scale application like LHC) :
 - > 293 K to 50 K thermal shield with 30 MLI layers: \rightarrow ~1 W/m²
 - > 50 K to 2 K magnet with 10 MLI layers: \rightarrow ~ 50 mW/m²

LHC MLI Features:

- 1 blanket (10 reflective layers) on cold masses (1.9 K)
- 2 blankets (15 reflective layers each) on Thermal Shields (50-65 K)
- Reflecting film: 6 µm thick polyethylene teraphthalate (PET) film coated with 400 Å minimum aluminium on each side
- Spacer: polyester net of very low weight (< 5 g/m2)</p>
 Stitched Velcro™ fasteners for rapid mounting and quality closing

LHC magnet Cryostats

- Static Heat Loads:
 ✓ 0.25 W/m at 1.9 K
 ✓ 5 W/m at 50-65 K
- Dynamic Heat Loads (resistive heating + beam induced effects):
 - ✓ ~ 0.2 W/m at 1.9 K (magnet)

 ✓ ~ 0.15 W/m at 4.6-20 K (beamscreen)

Refrigeration power (for 1 m cryostat)

	HLat 1.9 K	HLat 10K	HLat 65K
Heat Loads (Wth)	0.45	0.15	5
Carnot (COPmax)	0.0065	0.0353	0.2851
Carnot factor (1/COPmax)	153.21053	28.3	3.507692
% of Carnot	15	30	30
Real refrigeration power (Wel)	460	14	58
Total refrigeration power (Wel)		532	

HIE Isolde Cryomodule: No MLI

~~

 $\land \rightarrow$

	Nominal [W]
To GHE circuit 50-75K	362
To LHE circuit 4.5K	70
+ liquefaction load 0.03 g/s	

- Radiation heat load Thermal shield supports
- Reservoir thermalisation
- Suspension sheets thermalisation
- RF cables thermalisation
- GHe Bayonets (CM side)
- Instrumentation
- Dynamic load

Static and dynamic heat load to the LHe circuit.

Materials and mechanical design considerations

Typical breakdown of a SC device cryostat/cryomodule

RF Couplers/HOM (for SRF):

components

basic

- ✓ St.steel Cu plated, Nb, ceramics, etc.
- Magnetic shielding (for SRF, as needed)
 - µ-metal, Cryoperm®, etc.

SUPPORT POST

Relevant mechanical failure mechanisms in cryostats

• Helium tanks:

- ✓ Rupture (rare!) or permanent deformation due to excessive mechanical stress (pressure loads)
- ✓ Helium leaks in welds or material micro-crack
- Cryogenic lines/expansion joints:
 - ✓ Buckling of expansions joints with or without rupture/leaks
 - ✓ Helium leaks in welds or material micro-crack
- Vacuum vessels:
 - ✓ Buckling under external pressure
 - ✓ Permanent deformations due to excessive stress concentrations

• Internal supporting systems:

- ✓ Failure due to excessive mechanical stress
- \checkmark Failure due to thermo-mechanical stress
- \checkmark Buckling under compressive load
- Thermal shields:
 - ✓ Permanent deformation due to thermo-mechanical stress (CD/WU transients)
- Alignment jacks:
 - ✓ Break of floor/fixations due to excessive load

Useful material standards for cryostats

Plates and sheets	•	EN 10028-1:2007+A1:2009 Flat products made of steels for pressure purposes - Part 1: General requirements
	•	EN 10028-3:2009 Flat products made of steels for pressure purposes - Part 3: Weldable fine grain steels, normalized
	•	EN 10028-7:2007 Flat products made of steels for pressure purposes - Part 7: Stainless steels
Tubes	•	EN 10216-5:2004 Seamless steel tubes for pressure purposes - Technical delivery conditions - Part 5: Stainless steel tubes
	•	EN 10217-7:2005 Welded steel tubes for pressure purposes - Technical delivery conditions - Part 7: Stainless steel tubes
Forged blanks	•	EN 10222-1:1998 Steel forgings for pressure purposes - Part 1: General requirements for open die forgings
	•	EN 10222-5:1999 Steel forgings for pressure purposes - Part 5: Martensitic, austenitic and austenitic-ferritic stainless steels
Castings	•	EN 10213:2007 Steel castings for pressure purposes
Pipe fittings	•	EN 10253-4:2008 Butt-welding pipe fittings - Part 4: Wrought austenitic and austenitic-ferritic (duplex) stainless steels with specific inspection requirement
Bars	•	EN 10272:2007 Stainless steel bars for pressure purposes
Aluminium	•	EN 12392:2000 Aluminium and aluminium alloys - Wrought products - Special requirements for products intended for the production of pressure equipment (choose materials included in the list given in EN 13445-8 section 5.6)

Pressure vessel codes regulations

- Pressure European Directive 2014/68/EC (PED) is a legal obligation in the EU since 2002
 - Applies to internal pressure ≥ 0.5 bar gauge
 - Vessels must be designed, fabricated and tested according to the requirements defined
 - Establishes the conformity assessment procedure depending on the vessel category, which depends on the stored energy, expressed as Pressure x Volume in bar.l

For vessels with non-dangerous gases (cryogenic liquids are treated as gas)

Category	Conf. assessment module	Comment
SEP	None	The equipment must be designed and manufactured in accordance with sound engineering practice. No CE marking and no involvement of notified body.
Ι	Α	CE marking with no notified body involvement, self-certifying.
II	A1	The notified body will perform unexpected visits and monitor final assessment.
III	B1+F	The notified body is required to approve the design, examine and test the vessel.
IV	G	Even further involvement of the notified body.

Harmonised codes and standards

 Harmonised standards give presumption of conformity with the PED, within their scope. Useful codes for cryostat design and fabrication, including safety devices:

Standard	Title
EN 764-5	Pressure equipment – Part 5: compliance and inspection documentation of materials
EN 764-7	Pressure equipment – Part 7: safety systems for unfired pressure vessels
EN 1251	Cryogenic vessels – Transportable vacuum insulated vessels of not more than 1000 litres volume
EN 1252	Cryogenic vessels – Materials
EN 1626	Cryogenic vessels – Valves for cryogenic service
EN 1797	Cryogenic vessels – Gas/material compatibility
EN 12213	Cryogenic vessels – Methods for performance evaluation of thermal insulation
EN 12300	Cryogenic vessels – Cleanliness for cryogenic service
EN 12434	Cryogenic vessels – Cryogenic flexible hoses
EN 13371	Cryogenic vessels – Couplings for cryogenic service
EN 13445	Unfired pressure vessels
EN 13458	Cryogenic vessels – Static vacuum insulated vessels
EN 13480	Metallic industrial piping
EN 13530	Cryogenic vessels – Large transportable vacuum insulated vessels
EN 13648	Cryogenic vessels – Safety devices for protection against excessive pressure
EN 14197	Cryogenic vessels – Static non-vacuum insulated vessels
EN 14398	Cryogenic vessels – Large transportable non-vacuum insulated vessels
EN 14917	Metal bellows expansion joints for pressure applications
EN ISO 4126	Safety devices for protection against excessive pressure

Very useful guidelines and design rules

Feedthroughs in cryostats and heat intercepts

Current leads

Solid conduction paths:

- Supporting systems
- Current leads

 $\mathbf{x}_{i} \in \mathbf{x}_{i}$

- RF main coupler
- Instrumentation feed-throughs
- Beam tubes Cold-to-Warm (CWT) transitions

Vertical cold magnet test cryostat

SPL cryomodule

LHC instrumentation capillary at assembly

LHC Quadrupole cryostat

Crab cryomodule at CERN

1 power coupler (40kW-CW)

DQW cavity with RF feeds

Thermal Conduction

- ∆T in a body → heat transfer from the high T to the low T (Fourier Law):
- For one-dimensional problems (ex. a bar or tube):
- k is the thermal conductivity (W m⁻¹ K⁻¹), normally a function of P,T, material structure, non-homogeneity, anisotropy (ex. Composite materials).
- k is strongly T-dependent and non-linear at low T
- "good conductors" vs. "poor conductors" → k range ~ 5-6 orders of magnitude

Thermal conductivity integrals (conductance) for some materials [W/m]

Highest T (Lowest T =4.2 K)	20 K	80 K	290 K
OFHC Copper	11000	60600	152000
DHP Copper	395	5890	46100
Aluminium 1100	2740	23300	72100
Aluminium 2024	160	2420	22900
Stainless steel AISI 304	16,3	349	3060
Typical Glass-fiber/Epoxy Composite G-10	2	18	153

Heat intercepts (heat sinking) at intermediate temperatures

Q @ 75K

Å

$$\dot{\mathbf{Q}} = \frac{A}{L} \int_{\mathrm{Tc}}^{\mathrm{Tw}} k(T) dT$$

• 1 heat intercept at optimal distance

$$\min\{f(L_1) = C1 \cdot \frac{A}{L_1} \int_{T_W}^{SOK} k(T) dT + C2 \cdot \frac{A}{L - L_1} \int_{SOK}^{T_C} k(T) dT\}$$

$$\rightarrow L_1$$

 \rightarrow L₁, L₂

• 2 heat intercepts at optimal distance 2 75K 2 10K $\min\{f(L_1,L_2) = C1 \times \frac{A}{L_1} \bigcup_{T_W}^{80K} k(T) dT + C2 \times \frac{A}{L_2 - L_1} \bigcup_{80K}^{8K} k(T) dT + C3 \times \frac{A}{L - L_2} \bigcup_{8K}^{T_C} k(T) dT\}$

LHC supports

- >10 tons vertical compression load
- 4-mm thickness, glass-fiber epoxy
- Manufactured by **Resin Transfer Moulding (RTM)**:
 - Suited to a large-scale industrial production (4'700 units)
 - High reproducibility in thermo-mechanical properties

	Q _{1.8K}	Q_{5K}	Q_{75K}	Qelec.
	[W]	[W]	[W]	[W]
1	2.79	-	-	2790
2	0.541	-	6.44	638
3	0.047	0.42	7.1	252

Heat loads comparison for GFRE with & without heat intercepts

Vapour cooling in solid conduction

capacity

- Vapor cooled wall
 - Assuming perfect exchange $(T_{vapor} = T_{wall})$ $k(T) \cdot A \cdot \frac{dT}{dx} = \dot{Q}_{bath} + \dot{m} \cdot Cp \cdot (T - Tl)$
- With Q_{bath} the residual heat to the bath
- If Q_{bath} is equivalent to the evaporation mass flow \rightarrow self-sustained mode: $\rightarrow Qbath = \dot{m} \cdot Lv$ Lv, latent heat of evap.

attenuation factor (w.r.t. solid conduction)

Ideal values

Real case depends on how good the heat exchange is

thermal conductivity integral (4K - 300 K)	Conduction [W.cm ⁻¹]	Self-sustained vapour-cooling [W.cm ⁻¹]	% Ratio
ETP copper	1620	128	8%
OFHC copper	1520	110	7%
Aluminium 1100	728	39.9	5%
Nickel 99% pure	213	8.65	4%
Constantan	51.6	1.94	4%
AISI 300 st. steel	30.6	0.92	3%

Application: Current leads and RF power couplers

Vapour/forced flow cooled current leads (conventional or HTS)

Effectiveness:

- Reduced static heat conduction
- Partial intercepting of I²R resistive heating

Vapour/forced flow cooled RF couplers external conductors

Effectiveness:

- Reduced static heat conduction
- Partial intercepting of RF resistive heating
- Regulation flexibility (stand by, RF power on)

Main take-aways from this talk

- SC device supporting systems to ensure accurate/reproducible positioning
- Thermal design:
 - \checkmark Radiation \rightarrow Actively cooled thermal shield with MLI
 - ✓ Feedthroughs → low conductivity materials + heat interception (vapour cooling for powering feedthroughs)
- Materials: mostly commercial grades (st.steels), also specific (Ti alloys), use standards
- Pressure vessels and legal liability (PED)
- Beware of cryogenic safety aspects

A few words on Cryogenic Safety

Cryostats and safety

- Cryostats include inventory of cryogenic fluids, potentially unstable stored energy, and sometimes large electromagnetic stored energy in superconducting devices
- Managing safety in cryostat covers multiple aspects: safety of personnel and equipment
 - Risk assessment: cryostat as part of a cryogenic system in an environment
 - Safety hazard from relief of cryogens to the environment: ODH, burns, escape paths, safety training, use of personnel protection equipment, risk to adjacent equipment, etc.

→ Understanding pressure hazards and making the correct choice of the pressure relief devices to protect from overpressure of the cryostat envelopes

Example. 2005: LN2 dewar (70 l) overpressure blast at Ganil (France)

- Cause: safety device directly implemented on the dewar (old equipment)
- Consequence: destruction of 200 m² of experimental rooms and offices, no casualties

(courtesy N.Bazin, CEA-Saclay)

Example at CERN. LHC 19th sept. 2008

Pressure hazards in cryostats

- Potential pressure hazards:
 - Compressors connected to cryo lines
 - Heating of "trapped" volumes (typically in a circuit between valves) during warm-ups
 - Helium leak to insulation vacuum, with consequent increased conduction/convection heat loads to cryogenic liquid vessels
 - Cryo-condensed air leaks on cold surfaces and consequent pressure increase and increased conduct/convection heat loads during warm-ups
 - A) Heating/vaporization of cryogens from sudden release of stored energy in SC device (e.g. quench or arcing in a SC magnet circuit)
 - B) Accidental release of cryogenic fluid to higher T surfaces (thermal shield and vacuum vessel), and consequent pressure increase and increased of conduction/convection heat loads to cold surfaces
 - C) Accidental air venting of insulation vacuum with sudden condensation on cold surfaces, helium boil-off and pressure build-up

(Snowball effect A) + B) + C) \rightarrow LHC event of Sept.2008)

EN 17527 Helium cryostats - Protection against excessive pressure

Publication of EN 17527

Scope includes:

✓ SC magnet cryostats

✓ SRF cavity cryomodules

- ✓ Ultra-low T refrigerator systems
- ✓ Coldboxes of helium refrigerators and liquefiers
- Helium distribution systems including valve boxes

Overall concept:

- ✓ Standardization of the approach
- ✓ Specification of procedures and minimum requirements
- ✓ Risk assessment, definition of scenarios
- Protection concepts (single-stage, multistage)
- ✓ Dimensioning rules of pressure relief devices (HEM Model)

A few suppliers Herose, Rembe, Ramseyer, Leser...

Safety devices

- 1. Safety valves
- 2. Burst discs
- 3. Pressure relief plate

2.

Thank you for your attention

TT.

References and selected bibliography

CERN

- A.Bejan, Heat Transfer, J.Wiley & Sons, Inc
- CRYOGENIE, SES APPLICATIONS EN SUPRACONDUCTIVITE, IIF/IIR 1995, Techniques de l'ingenieur.
- Superconducting Magnets, M.Wilson, Oxford Science Publications
- R.R.Conte, Éléments de Cryogénie, Masson & Cie, Éditeurs.
- Steven W. Van Sciver, Helium Cryogenics (Second Edition), The International Cryogenics Monograph Series, Springer.
- K. Mendelssohn, The quest for absolute zero, McGraw Hill (1966)
- R.B. Scott, Cryogenic engineering, Van Nostrand, Princeton (1959)
- G.G. Haselden, Cryogenic fundamentals, Academic Press, London (1971)
- R.A. Barron, *Cryogenic systems*, Oxford University Press, New York (1985)
- B.A. Hands, Cryogenic engineering, Academic Press, London (1986)
- S.W. van Sciver, Helium cryogenics, Plenum Press, New York (1986)
- K.D. Timmerhaus & T.M. Flynn, Cryogenic process engineering, Plenum Press, New York (1989)
- Proceedings of CAS School on Superconductivity and Cryogenics for Particle Accelerators and Detectors, Erice (2002)
 - G. Vandoni, Heat transfer
- Proceedings of CAS School on Superconductivity, Erice (2013)
 - B. Boudoy, Heat transfer and cooling techniques at low temperature
- J.Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing
- CRYOCOMP® is a database code of the state and thermal properties for technical materials.
- NIST Cryogenic Materials database: http://www.cryogenics.nist.gov/MPropsMAY/material%20properties.htm

Interested in learning more ? CERN Technical Training

CERN

Course on: Cryostat Engineering for Helium Superconducting Devices

Format: 3.5 days

- Lectures (including tutorials) in classroom on cryostat design, helium cryogenics (including LHeII)
- Tutorials, case study in classroom (by groups of students)
- Visit of a CERN cryogenic installation

When: Oct./Nov. 2024 (dates still to be finalized)

Place: CERN training centre

Contact: technical.training@cern.ch

Note: open to external participants from laboratories (no. places limited)