

HANDS-ON SESSION Optical Profilometry

MECHANICAL & MATERIALS ENGINEERING FOR PARTICLE ACCELERATORS AND DETECTORS

Welcome!

- The purpose of this presentation is to get acquainted with "surface roughness" and its optical measurement, and to guide you through the steps of the Hands-on session.
- If there are any questions, **you can consult one of the helpers** at any time and ask for information.

What will we measure?

Roughness of UHV blank flange

12 June 2024 CAS Mechanical and Material Engineering - Hands-on session - Optical Profilometry

How will we measure it?

- Tabletop optical profilometer
- Vertical Scanning Interferometry (a.k.a. White Light Interferometry)

3D OPTICAL PROFILOMETER

ContourX-500

Fully automated benchtop for 3D metrology

Hands-on session – Optical Profilometry

Introduction to surface texture

Principles of interferometry for surface metrology

Practical application

Introduction to surface texture

12 June 2024 CAS Mechanical and Material Engineering - Hands-on session - Optical Profilometry

Introduction to surface texture

- Irregularities of engineered surfaces
- Definitions
- Arithmetic Mean Roughness
- Measurement methods

Irregularities of engineered surfaces

- Intrinsic and characteristic of all manufacturing processes
- Influence on:
 - Surface function
 - Aesthetics (touch & feel, visual)

Surface profile

Profile that results from the intersection of the *real surface* by a specified plane

• A planar coordinate system is defined, such that:

$$SP \stackrel{\text{\tiny def}}{=} z = f(x)$$

• The plane normal generally lies parallel to the surface in a *suitable* direction

• Lay

- Direction of the predominant surface pattern
- Derives from production process

• Primary profile

Surface profile after application of the short wavelength filter λ_s . (low-pass filter)

• Note: form is removed as well (e.g. « tilt »)

Long wave transmission function

• Waviness profile

Primary profile after application of the short wavelength filter λ_c (low-pass filter) and long wavelength filter λ_f (high-pass filter).

ISO 4287

• Roughness profile

Primary profile after application of the long wavelength filter λ_c (high-pass filter).

- Function of roughness parameters
- Periodic vs. non-periodic patterns

Periodic Profile	Non Periodic Profiles		Cut	-off	Cut-off ratio	Evaluation Length	Stylus	
Spacing Distance RSm (mm)	Rz (μm)	Ra (µm)	λc (mm)	λs (μm)	λc/λs	Lm (mm)	Radius (µm)	
>0.013-0.04	to 0.1	to 0.02	0.08	2.5	30	0.4	2	
>0.04-0.13	>0.1-0.5	>0.02-0.1	0.25	2.5	100	1.25	2	
>0.13-0.4	>0.5-10	>0.1-2	0.8	2.5	300	4	2 (5 @ Rz> 3µm)	
>0.4-1.3	>10-50	>2-10	2.5	8	300	12.5	5 or 2	
>1.3-4.0	>50	>50	8	25	300	40	10, 5 or2	

Evaluation length

ISO 4287

ISO ISO ISO 4287 3274 1288

			-				
Periodic Profile	Non Periodic Profiles		Cut-off		Cut-off ratio	Evaluation Length	Stylus
Spacing Distance RSm (mm)	Rz (μm)	Ra (µm)	λc (mm)	λs (μm)	λc/λs	Lm (mm)	Radius (µm)
>0.013-0.04	to 0.1	to 0.02	0.08	2.5	30	0.4	2
>0.04-0.13	>0.1-0.5	>0.02-0.1	0.25	2.5	100	1.25	2
>0.13-0.4	>0.5-10	>0.1-2	0.8	2.5	300	4	2 (5 @ Rz> 3µm)
>0.4-1.3	>10-50	>2-10	2.5	8	300	12.5	5 or 2
>1.3-4.0	>50	>50	8	25	300	40	10, 5 or2

5 times the sampling length

Arithmetic mean roughness Ra

Ra is the **arithmetic mean** of the absolute ordinate values R(x) of the roughness profile, evaluated within the sampling length.

$$Ra = \frac{1}{l} \int_0^l |\boldsymbol{R}(x)| dx$$

- Can vary considerably without affecting functionality → usually, only a maximum Ra is specified
- Varies considerably with the orientation of the measurement plane
- Does not provide any information about the the shape of irregularities
- It is relatively insensitive to big peaks/valleys
- Surfaces with very different profiles can have the same Ra
- Most commonly used for historical reasons and good correlation with typical machining processes
- Other profile parameters exist, we will not examine them here

Typical values of Ra

METAL OPTICS FIGURE AND ROUGHNESS GUIDELINES

Measurement methods

- Straightforward, reproducible measurement
- Simple measurement over long distances and height variations
- Portable
- Long track record of use
- Characteristics are standardized

- Stylus wear
- Mechanical filter, vibrations
- Only profle parameters (2D)

λc	λs	λc/λs	r _{tip} max.	Maximum sampling spacing
mm	μm		μm	μm
0,08	2,5	30	2	0,5
0,25	2,5	100	2	0,5
0,8	2,5	300	2*)	0,5
2,5	8	300	5**)	1,5
8	25	300	10**)	5

ISC 327

Measurement methods

Non-Contact

- Interferometric methods
- Chromatic Confocal Profiling
- Autofocus sensor
- Laser triangulation
- •
- Do not damage the sample
- Better vertical and lateral resolutions
- Capable of measuring areal parameters (3D)

- Complex use
- Reproducibility (raw data, processing)

Principles of interferometry for surface metrology

12 June 2024 CAS Mechanical and Material Engineering - Hands-on session - Optical Profilometry

Principles of interferometry for surface metrology

- Principles of interferometry
- Vertical Scanning Interferometry (VSI)
- Objective specifications

Principles of interferometry

An **interferometer** divides a light beam from a single **coherent** source in two **wavefronts** (reference + test) and recombines them to create an **interference pattern**. The difference in paths (**Optical Path Difference, OPD**) can be determined by examining the **interferogram**.

Vertical Scanning Interferometry (VSI)

- White light illumination
- Rough, tall, discontinuous surfaces
- µm vertical resolution
- Large scanning distance (mm)

Objective specifications

- Bigger magnification \rightarrow Smaller Field Of • View (FOV), better resolution
- Bigger working distance \rightarrow less collision • risk, bigger Z measuring range
- Bigger zoom \rightarrow smaller FOV, better • resolution

Objective (Magnification ¹)	2.	5X	5)	x	
Working Distance (mm)	3.	5	6.	7	
Numerical Aperture	0.0	07	0.12		
Max Slope on Shiny Surfaces (deg)²	3	3	5.5		
Max Slope on Rough Surfaces (deg) ³	6	2	6	5	
Optical Resolution (µm)⁴	3.	8	2.2		
Tallest Sample: with XY Stage (mm)	34	10	340		
Tallest Sample: without XY Stage (mm)	39	97	39	7	
Vertical Resolution (nm) ⁵	<0	.15	<0.15		
	FOV (X by Y) (mm)	Spatial Sampling (µm)	FOV (X by Y) (mm)	Spatial Sampling (µm)	
Standard Camera					
0.55x zoom	4.6 x 3.5	7.2	2.3 x 1.7	3.6	
0.75x zoom	3.4 x 2.5	5.3	1.7 x 1.3	2.6	
1.0x zoom	2.5 x 1.9	4.0	1.3 x 1.0	2.0	
1.5x zoom	1.7 x 1.3	2.6	0.8 x 0.6	1.3	
2.0x zoom	1.3 x 1.0	2.0	0.6 x 0.5	1.0	

Objective specs - Optical resolution

Objective	
(Magnification ¹)	2.5X
Working Distance (mm)	3.5
Numerical Aperture	0.07
Max Slope on Shiny Surfaces (deg)²	3
Max Slope on Rough Surfaces (deg) ³	62
Optical Resolution (µm)⁴	3.8
Tallest Sample: with XY Stage (mm)	340
Tallest Sample: without XY Stage (mm)	397
Vertical Resolution (nm) ⁵	<0.15

Objective specs - Lateral resolution limits

System is limited by detector

Larger pixels limit image delivered by optics System is limited by optics

More or smaller pixels do not help in resolving smaller features

01.1					
(Magnification ¹)	2.5X				
Working Distance (mm)	3.5				
Numerical Aperture	0.07				
Max Slope on Shiny Surfaces (deg) ²	3				
Max Slope on Rough Surfaces (deg) ³	62				
Optical Resolution (µm) ⁴	3.8				
Tallest Sample: with XY Stage (mm)	340				
Tallest Sample: without XY Stage (mm)	397				
Vertical Resolution (nm) ⁵	<0.15				
	FOV Spatial (X by Y) Sampling (mm) (µm)				
Standard Camera					
0.55x zoom	4.6 x 3.5 7.2				
0.75x zoom	3.4 x 2.5 5.3				
1.0x zoom	2.5 x 1.9 4.0				
1.5x zoom	1.7 x 1.3 2.6				
2.0x zoom	1.3 x 1.0 2.0				

Practical Application

24 CAS Mechanical and Material Engineering - Hands-on session - Optical Profilometry

Practical application

- Introduction to ContourX profiler and Vision64 software
- Measurement of Ra on flange samples

ContourX-500

- Objective turret with 5x → 115x objectives
- Motorized head (Scanning in Z, rotations around X and Y to adjust parallelism between sample and reference)
- Motorized stage (translations in XY plane)

Control Box

- 1. Z-axis fast mode button
- 2. Z-axis knob
- 3. Stage OR tip-tilt control joystick
- 4. High speed joystick button
- 5. Tip-tilt button

Vision64 interface – Measurement setup

- 1. Measurement setup icon
- 2. Measurement buttons (single/multiple)
- 3. Measurement setup tab
- 4. Live video feed
- 5. Intensity slider
- 6. Calibration icon

Vision64 interface – Data Analysis

- 🌢 🧿 👶 😤 👩 - 8 × 8 --1 -**XX** Ð لیہ۔ Data * -333 🚍 🕜 4 BRUKER Print Help Data Reset Copy To Clipboard Auto Tip/Tilt Adjust • Setur X C Data Analyze Set As Default X Profile: AX=1 6450 mm: AZ= - um 2 M-4 4 -20.0 4 CAS roughness-sample 20240325.OPD: -21.0 4 Surface Height 400 * a Data -22.0 We down 4 🌱 Terms Removal (F-Operator -23.0 4 🌱 Data Restore 11 Mr. M. alland 4 -24.0 Stylus Analysis MAM -15 -25.0 -26.0 -27.0-2 1.5 1.6 0.5 1.0 •-20 ≣ mm E -Y Profile: ΔX=15.9991 mm; ΔZ=-13.7659 μm M 6 6 -25 nalysis Toolbox A Volume XY Averaged PSE 3D Filter E -2 Data Fill 7 Data Flattening 3 -3 Data Modification -3 7 Data Restore Fourier Filter 15 Gaussian Regression Filte 7 Mask Data Microform Remove Modal Til Active Gallery Remove Tilt Statistic Filter Terms Removal (F-O Trim Divels Misc 🔝 Data File Output CAS roughnes Recipe: C:\ProgramData\Bruker\Vision\Recipes\Vision\startup.visrcj
- 1. Data Analysis button
- 2. Data Analysis window
- 3. 2D measurement view
- 4. Cross section profiles
- 5. Data Analyzer window
- 6. Analysis Toolbox
 - 3D filters
 - Analyses

- Purpose: Measure Ra
- Objective: TBD
- Technique: VSI
- Sample: UHV blank flange

Requirements

- General roughness on bolt circle area (priority measurement)
- Specific roughness on central surface (optional measurement)

The requirements specify the **maximum allowable Ra**.

Workflow

- 1. Estimate roughness value using Rugotest viso-tactile comparator
 - a. Identify machining process
 - b. Select the appropriate measurement direction
- 2. Select appropriate evaluation parameters (cut-offs, sampling length, evaluation length)
- 3. Select suitable objective
- 4. Set up the measurement and perform the measurement
- 5. Process the data to obtain the numerical value of Ra
- 6. Compare the measurement result with the estimation of step 1
- 7. (optional) How is the value of Ra affected by measurement direction? Validate your hypothesis with a measurement.

1. Estimate roughness value using Rugotest viso-tactile comparator

- A. What is the manufacturing process?
- B. What is the correct measurement direction in order to evaluate the maximum roughness?

2. Select evaluation parameters

Based on the roughness value estimated at step 1, select the appropriate values for the following parameters:

- long wavelength filter $\lambda_c =$
- short wavelength filter $\lambda_s =$
- Sampling length Ir =
- Evaluation Length Lm =

Periodic Profile	Non Periodic Profiles		Cut	-off	Cut-off ratio	Evaluation Length	Stylus
Spacing Distance RSm (mm)	Rz (μm)	Ra (µm)	λc (mm)	λs (μm)	λc/λs	Lm (mm)	Radius (µm)
>0.013-0.04	to 0.1	to 0.02	0.08	2.5	30	0.4	2
>0.04-0.13	>0.1-0.5	>0.02-0.1	0.25	2.5	100	1.25	2
>0.13-0.4	>0.5-10	>0.1-2	0.8	2.5	300	4	2 (5 @ Rz> 3µm)
>0.4-1.3	>10-50	>2-10	2.5	8	300	12.5	5 or 2
>1.3-4.0	>50	>50	8	25	300	40	10, 5 or2

3. Select suitable objective

Select among the objectives in the next slide, considering the following criteria:

- The supplier measured roughness with a stylus instrument with a tip radius of 2 μm (as recommended by the standard). We need our results to be comparable in order to avoid acceptance disputes.
- For simplicity, limit the choice to 1.0 zoom
- In order to cover the full evaluation length, multiple measurement will be made and "stitched" together (check FOV dimensions!). Try to minimize the number of measurement required
- All things equal, an objective with longer working distance should be preferred, to avoid collisions.
- Motivate your choice.

3. Select suitable objective

Objective	0.53	,	FN		FV			05		,		,	501			~		~
(Magnification ¹)	2.57	`	54		54	L	10.4	БГ	10.	`	20.	`	507	^	100	^	115	^
Design	Michel	son	Miche	lson	Miche	lson	Bright	field	Mira	iu	Mir	au	Mira	au	Mira	u	Mira	au
Working Distance (mm)	3.5		6.7	r	9.4	4	10.	6	7.4	L .	4.7		3.4	1	2.0)	0.7	7
Numerical Aperture (NA)	0.07	7	0.1	2	0.1	3	0.2	5	0.3	1	0.4		0.5	5	0.7		0.8	3
Max Slope on Shiny Surfaces (deg) ²	4		6.9)	7.5	5	14.	5	17.	5	23.	6	33.	4	44.	4	53.	2
Max Slope on Rough Surface (deg) ³	62		65		65	5	NA	λ.	70		72		81		85		87	
Optical Resolution (µm)4	3.82	2	2.2	3	2.2	3	1.0	7	0.8	9	0.6	7	0.4	9	0.3	В	0.3	3
Parfocal Distance (mm)	51.2	8	51.2	8	51.2	28	51.2	28	51.2	8	51.2	8	51.2	28	51.2	8	51.2	28
Max Sample Height: ContourGT-X (mm)	101		10	F	10	1	10	1	10	I	10	1	10	1	101	l.	10	1
Max Sample Height: ContourX (mm)	95		95		95	5	95	i.	95		95		95	5	95		95	
Max Sample Height: NPFLEX (mm) ⁵	397		39	7	39	7	39	7	39	7	39	7	39	7	397	7	39	7
Vertical Resolution (nm)6	0.01		0.0	1	0.0	1	0.0	1	0.0	1	0.0	1	0.0	1	0.0	1	0.0	1
Bruker Part Number	831-760	0-20	831-20	9-20	831-17	70-20	831-1	49	831-1	82	831-1	24	831-7	759	831-3	82	831-4	189
	FOV X by Y (mm)	Spatial Sampling (µm)																
5MP High-Res. Camera: (1200x1000 array) ⁷																		
0.55x Zoom	6.02x5.02	5.02	3.01x2.51	2.51	3.01x2.51	2.51	1.37x1.14	1.14	1.51x1.25	1.25	0.75x0.63	0.63	0.30x0.25	0.25	0.15x0.13	0.13	0.13x0.11	0.11
0.75x Zoom	4.42x3.68	3.68	2.21x1.84	1.84	2.21x1.84	1.84	1.00x0.84	0.84	1.10x0.92	0.92	0.55x0.46	0.46	0.22x0.18	0.18	0.11x0.09	0.09	0.10x0.08	0.08
1.0x Zoom	3.31x2.76	2.76	1.66x1.38	1.38	1.66x1.38	1.38	0.75x0.63	0.63	0.83x0.69	0.69	0.41x0.35	0.35	0.17x0.14	0.14	0.08x0.07	0.07	0.07x0.06	0.06
1.5x Zoom	2.21x1.84	1.84	1.10x0.92	0.92	1.10x0.92	0.92	0.50x0.42	0.42	0.55x0.46	0.46	0.28x0.23	0.23	0.11x0.09	0.09	0.06x0.05	0.05	0.05x0.04	0.04
2.0x Zoom	1.66x1.38	1.38	0.83x0.69	0.69	0.83x0.69	0.69	0.38x0.31	0.31	0.41x0.35	0.35	0.21x0.17	0.17	0.08x0.07	0.07	0.04x0.03	0.03	0.04x0.03	0.03

- 1. Check measurement parameters:
 - VSI/VXI
 - Selected objective
 - 1.0x zoom
- 2. Place sample on XY stage
- 3. Bring sample under objective
- 4. Lower the objective close to working distance

Aeasur	ement Setup	< ×
M	Aeasurement	t I
•	VSI/VXI	~
Ψ	5 X	~
X	1.0 X	~
Me	asurement A X: 1646.4 μm	rea
La	Y: 1372 µm teral Samplir	na
	1.372 µm	.,

- 5. Move sample so that the bottom of sample measurement area is below the objective
- 6. Find focus
- 7. Find fringes on video feed:
 - a. Adjust intensity as needed
 - b. Move objective in Z until fringes are visible on the video feed
 - c. Use tip-tilt if necessary to orient the sample to the objective

- Open "Measurement setup" tab, adjust measurement parameters:
 - a. Speed: 1x
 - b. Backscan (pre-travel): 20 μm
 - c. Length (after backscan): 30 μm
 - d. Threshold: 2%
 - e. Illumination: use default
 - f. Autoscan enabled: 10 μ m, 50%

Meas	surement	Quick Measurement
V	'SI/VXI ~	Measurement Parameters
۵	5 X ~	Scan Options
ĸ	1.0 X ~	Speed 1X V Home Scanner After Measurement
Measure X: 16	ement Area 546.4 µm	Based On50_% of Pixels Length ↓ m ● From Top From Bottom
Y: 1	372 µm	Threshold 20 % Force Intensity 50 %
Lateral 1.3	I Sampling 172 µm	Illumination Reference Use Default Subtract
Se	ettings	White
Auto Sa Autofoo Auto In Auto Tii Prompt Prompt Stitchin	ave cus ttensity It Adjust for Focus for User Data Message g	Camera Frame Rate Adjustment □ Enabled 100 % (82.7 frames / sec) Averaging □ Average 2 Measurements Autoscan ☑ Enabled End scan 10 µm after 50 % of data collected
Quick M	leasurement	Processing Method Type VSI × Resolution Auto ×
Ad	vanced	SNR Threshold 2
Sti	itching	Advanced Options
		Stitching

9. Adjust stitching parameters

- a. Enable stitching
- b. Type: rectangular, bounding box:
 - W=0, H=6*(sampling length)+ 1 mm if stitching in Y
 - W=6*(sampling length)+ 1 mm, H=0 if stitching in X
- c. Overlap: 20%, can be adjusted later if stitching fails
- d. Click reference point and traversal \rightarrow move to the starting point of the measurement
- e. Check no. of rows against Y value of measurement area (consider the overlap). No. of columns should be 1.
- f. Click on "test", check if sample is moving as intended

10. Start the measurement!

11. Open "data analysis" section

- 12. Apply F-Operator 3D filter
 - Remove tilt
- 13. Apply "data restore" filter
 - Start with "legacy" method, 5 iterations. Adjust as necessary

- 14. Apply "stylus analysis" with appropriate parameters:
 - a. Stylus Y
 - b. Sampling lengths: auto select
 - c. Appropriate cutoffs
 - d. Appropriate standard (ISO vs. ASME)

Seneral Settings	Filter Settings	Surface Parameter Settings	Bearing Ratio Settings
Zero Mean S	Stylus Lines		
Apply Data	Restore		
Stylus Options			
O Stylus X			
Stylus Y			
Sampling lengt	th used in calcula	ations	
Number Sam	pling Lengths	4	
Auto Sala			
Auto Sele			
Use evaluati	on length locatio	on at center of unfiltered dat	a
		Calculate C	OK Cancel
		Calculate	OK Cancel
Stylus Analysi	is Settings	Calculate	OK Cancel
Stylus Analysi General Settings	is Settings Filter Settings	Calculate C	DK Cancel X Bearing Ratio Settings
Stylus Analysi General Settings Filter Type:	is Settings Filter Settings Gaussian	Calculate C	OK Cancel × Bearing Ratio Settings
 Stylus Analysi General Settings Filter Type: 	is Settings Filter Settings Gaussian Bandpass	Calculate C	K Cancel
 Stylus Analysi General Settings Filter Type: Short Cutoff (is Settings Filter Settings Gaussian Bandpass As	Calculate C Surface Parameter Settings	X Cancel X Bearing Ratio Settings
Stylus Analysi General Settings Filter Type: Short Cutoff (J Apply Sh	is Settings Filter Settings Gaussian Bandpass As our Cutoff	Calculate C Surface Parameter Settings	X Cancel Cutoff
 Stylus Analysi General Settings Filter Type: Short Cutoff (is Settings Filter Settings Gaussian Bandpass As) oort Cutoff dard Cutoff	Calculate C Surface Parameter Settings	Cutoff
 Stylus Analysi General Settings Filter Type: Short Cutoff (Apply Sh Use Stan Cutoff: 	is Settings Filter Settings Gaussian Bandpass As) oort Cutoff dard Cutoff	Calculate C	Cutoff
 Stylus Analysi General Settings Filter Type: Short Cutoff (is Settings Filter Settings Gaussian Bandpass As) ort Cutoff dard Cutoff	Calculate C	Cutoff
 Stylus Analysi General Settings Filter Type: Short Cutoff (Apply Sh Use Stan Cutoff: Output Total 	is Settings Filter Settings Gaussian Bandpass As) oort Cutoff dard Cutoff	Calculate C Surface Parameter Settings Use Standar Cutoff:	Cutoff
 Stylus Analysi General Settings Filter Type: Short Cutoff (Apply Sh Use Stan Cutoff: Output Otal Primary 	is Settings Filter Settings Gaussian Bandpass As) oort Cutoff dard Cutoff	Calculate C	Cutoff
 Stylus Analysi General Settings Filter Type: Short Cutoff (Apply Sh Use Stan Cutoff: Output Total Primary Roughnes 	is Settings Filter Settings Gaussian Bandpass As) oort Cutoff dard Cutoff	Calculate C	Cutoff

General Settings	Filter Settings	Surface Parameter Settings	Bearing Ratio Setting
Standards			
ISO 4287			
O ASME B46.1			
Spatial Paramet	er Discriminatio	n Settings	
Height 5	% P,W, F	Rz	
Spacing 1	% Samp	ling Length	

- 15. Check results consistency with expected Ra. If not satisfactory, check analysis parameters:
 - a. Right cut-offs?
 - b. Enough sampling lengths (>=4)?
 - c. Right standard?

Measurement of roughness -Troubleshooting

- a.lf 50% or more data are missing: disable autoscan in step 9, repeat measurement
- b.If some "high" data are missing before F-operator is applied: increase backscan in step 9, repeat measurement
- c. If some "low" data are missing before F-operator is applied: increase scan length in step 9, repeat measurement
- d.If stitching fails: increase overlap in step 9, repeat measurement
- e.lf data on steep surfaces are missing:
 - 1. increase data restore iterations
 - 2. Increase threshold in step 8, repeat measurement

Thank you !

Engineering Department

MECHANICAL & MATERIALS ENGINEERING FOR PARTICLE ACCELERATORS AND DETECTORS