

Superconducting Detector Magnet Structures

The second second

Herman ten Kate

Content: 1. Concepts 2. Superconductors 3. Design CMS solenoid 4. Making ATLAS Magnets 5. Future Collider Detector

CERN Accelerator School Sinc-Michielsgestel, Netherlands, June 14, 2024

How to discover new (elementary) particles?

 \checkmark **E** = mc², produce particles in a spot of energy and seek in the escaping particles

We need **E**, an energy production device (accelerator-collider), and an experiment to look at the shower of particles produced (detector).

Example: the Large Hadron circular Collider

Exploring the energy frontier between up to 14 TeV using proton-proton & Pb-Pb collisions

LHC ring,27 km circumference

ALICE

HE Physics and Superconductivity

LHC (and many other accelerators) can not be realized without extensive use of Superconductivity and High-Quality Magnets

No Higgs (and much more) without Superconductivity !

Large HEP Detector Magnets of the past...

Concept: why magnetic field in detectors

How to analyze the shower of particles ? We need:

- Track reconstruction
- Energy measurement (in calorimeters)
- Charge identification in magnetic field
- Momentum measurement in magnetic field.
- A detector magnet is in fact a "magnetic separator".

Information yield:

- left turn => positively charged particle
- right turn => negatively charged particle
- curvature => momentum.

Concept: charged particle tracking

Example: tracking in the CMS Solenoid and iron return yoke

What determines the size of a generic " 4π " detector and its magnetic field?

Radial thickness

- Is the summation of:
- + tracking length inner detector
- + thickness of the solenoid
- + radial build of the calorimeters
- + tracking length
- + thickness of shielding iron yoke

Axial length

Is the summation of:

- + "catch angle" in forward directions sizing the length of the solenoid
- + thickness of iron shielding.

Concept: sizing detector magnet

What counts is momentum resolution!

A particle with charge q and momentum p_t traveling through B is bent by Lorentz force

$$F = q (E + v x B) \qquad (E \cong 0)$$

In the transverse direction, radius R, sagitta s:

$$s = \frac{L}{8R} = \frac{qBL^2}{8p_t}$$

and momentum resolution

$$\frac{\partial p_t}{p_t} = \frac{p_t}{0.3BL^2}$$

p _t (GeV/c)	s [mm] @ B=1T, L=1m
1000	0.037
100	0.37
10	3.7
1	37

- Keeping at minimum the resolution for higher collision energies, so higher momenta, requires to scale up the detector up with BL² !
- 10 times more energy \rightarrow 2xB and $\sqrt{5}$ =2.4x tracking length, say diameter
- And the axial length grows accordingly!
- Thus: detector magnets scale in size with collision energy!

- (1) Momentum resolution \rightarrow sufficient BL²
- (2) For physics we need B, not the magnet (!),

though a rewarding challenge for magnet engineers!

→ Minimum thickness of coils to minimize particle scattering (especially when the calorimeters are put outside the central solenoid!)

ightarrow Material?: in general, all Al, low density, when inside the calorimeters

(3) Hermetically closed detector catching all particles

→ Minimum lost sphere for magnet services and supporting structures.

- (4) Full integration of magnets with detectors interleaved and supported
- (5) Always working to avoid loss of data

→ Requiring high operational margins in terms of temperature and current

(6) Unique and not replaceable (can not really be repaired)

 \rightarrow Very robust design with large margins and high level of redundancy

(7) And low cost as well !

 \rightarrow Use NbTi superconductor at 4.5 K

2. Superconductors for Detector Magnets

Practical superconductors Basic properties Stability requirements Minimum Propagation Zone High Currents and Cables

Cubic alloy, isotropic

0.7 < wire diameter < 1.3 mm

Tc: 9.3 K Bc₂: 13 T

Very well developed ~1 € / kA m

Practical Superconductors for Magnets

Example: Superconductors in ATLAS Detector

Barrel Toroid Conductor: 65 kA at 5 T

- 1.25 mm diameter NbTi/Cu strand, 2900 A/mm² at 5 T
- 40 strands Rutherford cable, ~1700 A / strand
- Co-extruded with high purity Al (RRR>1500)
- Intermetallic bonding Cu-Al is required
- size 57 x 12 mm²
- 56 km made
- Production by 2 suppliers

End Cap Toroid Conductor, size 41 x 12 mm²,

• 26 km made

Central Solenoid Conductor, size 30 x 4.3 mm²

• 9 km made (Ni/Zn doped Al for higher Y-stress)

*57 x 12 mm*²

Adiabatic Filament Stability: d_{fil}

Field penetration in filaments, the Critical State Model

- In the filament magnetic energy is stored.
- When disturbed, the heat must be taken up by the enthalpy of the filament.
- A disturbance $\Delta T1$ will cause a $-\Delta Jc$, so flux motion, leading to E, this leading to heat and so again a $\Delta T2$.
- When ΔT2 > ΔT1, the process will accelerate and the flux profile collapses.
- Based on simple slab model, the adiabatic stability criterion is found:

d_{fil} . J_c < { 3 c (T_c-T_o) / μ_o }^{1/2}

So we see a maximum filament thickness for a given current density, to guarantee stability.

• For NbTi, c = 5600 J/m³; $T_c(5 T) = 7.2 K$, $T_o = 4.2 K$ and $J_c = 3000 A/mm^2$, we find $d_{fil} < 70 \mu m$.

 $B_{ext} \mid T_2 > T_1$

-r

Adiabatic Wire Self field Stability: Dwire

Filaments are coupled by self field

- Adiabatic filament stability requires fine filaments in a matrix
- Following the CSM, we see the magnetic field penetration profile disturbed by a ΔT
- Field profile has to change, field penetrates deeper, causing heat, taken up by enthalpy up to a certain limit
- Assuming η=sc/total ratio and current density ηJ
- We find for the adiabatic self-field criterion:

 $D_{wire}.\eta J < \{ 4 c (T_c - T_o)/\mu_o \}^{1/2} f (I/I_c) \}$

where f (I/I_c) = 1/(-0.5 ln(I) - 3/8 + i²/6 - i⁴/8)

We find a maximum wire diameter for a given Jc and I/I_c Commonly used 0.7 < D_{wire} < 1.3 mm in cables. Thus: we need cables!

Self-field Stability: Cable examples

ITER cable for central solenoid

- 65 kA at 13.5 T, ≈ 1152 Nb₃Sn wires parallel in a twisted multi-stage cable.
- Cable layout with 5 stages: 1x3x4x4x4x6.
- Wire 0.81 mm, filaments 4 μm.
- The strands take all positions in the cable to guarantee equal current sharing.

LHC type Nb₃Sn Rutherford cable

- 33 stands single stage twisted.
- 13 kA at 11 T.

ATLAS Detector Magnet conductor

- Al stabilized 40 strands Rutherford cable.
- 65 kA at 5 T.

~1152 wires ITER Nb₃Sn cable

33 wires LHC-type Nb₃Sn cable

40 strands ATLAS BT cable

Temperature jumps, low heat capacity

Why is release of heat so critical at 4 K ?

- Heat capacity is strongly T-dependent
- Copper-NbTi composite:

Cp(T)= η ((6.8/ η +43.8)T³+(97.4+69.8 B)T) μ J/mm³K, at 5 T and 40% NbTi in a Cu matrix:

- 2.5 μ J/mm³K at 4.2 K and
- 0.5 µJ/mm³K at 1.9 K !
- 2.5 μJ/mm corresponds to a movement in a 1 mm wire at 5 T, 500 A of 1 μm only!

Heat release of µJ/mm³ has to be avoided, otherwise magnet will quench

- avoid friction and slip-stick by introducing low friction sliding (Kapton films wrapped around wires and cables).
- avoid any displacement, vacuum impregnation of coils.
- avoid resin cracks, avoid local stress concentrations at bonded surfaces.

Point disturbance, MPZ

Minimum Propagation Zone (1-d case)

- How large must the distortion be to get a quench?
- Consider a wire with current I, heat removal Q along the wire and central zone in normal state (simple, one dimensional case)

Look for length L where heat produced is equal to heat removed:

$$\rho J^2 A L \approx 2 \lambda A (T_c - T_{bath}) / L$$

$$L = \{ 2 \lambda (T_c - T_{bath}) / \rho J^2 \}^{1/2} = MPZ$$

Propagation occurs when L > MPZ and recovery when L < MPZ !

Minimum Propagation Zone, MPZ

Examples of MPZ in a various wires

- In a bare NbTi wire or filament: take 5 T; 3000 A/mm²; ρ = 6x10⁻⁷ Ω m; λ = 0.1 W/mK; T_c= 7 K and we find MPZ of **0.3** μ m only, pure NbTi can not be used!
- NbTi with CuNi matrix would give MPZ of **3** μ m and 0.1 μ J !
- Such wire is extremely sensitive to any heat pulse
- Remedy: reduceρby using copper matrix $(3x10^{-10} \Omega m, factor 2000 !)$ and increase λ by using copper> 200 W/mK, factor 2000 again !)

We see how wonderful copper (or Al) is, without copper no sc magnets !

- \checkmark factor 2000 improvement, from μ m to few mm and μ J range
- ✓ for a typical LHC cable we get about 15 mm
- and in the ATLAS conductor (600 mm² pure Al and 20 kA) we get about 500 mm !

Request for: high current conductors

200 A HTS tape?

 $\approx 4 \times 0.1 \text{ mm}^2$

Single: No! Cabled: may be, but to be developed

65000 A@5T Al-NbTi/Cu?

 \approx 57 x 12 mm²

Yes!

One can not build large scale magnets from single wires or tapes.

✓ We need superconductors that can be cabled and survive a quench!

 For the next generation detector magnets, conductors are further developed and reinforced, more stored energy, larger size.

3. Designing a Detector Magnet, example CMS solenoid

Design steps: Example CMS solenoid

- Magnetic field calculation
- Effect of the iron yoke
- Magnetic stored energy
- Lorentz forces in the coils
- Hoop stress
- Choosing current vs self-inductance
- Conductor dimensions and layers
- Conductor details
- Stabilizer, Cu or Al

Design steps: Magnetic field, no iron

Field calculation without iron yoke:

Current density: $J = \frac{NI}{L(b-a)}$

Field
$$B_o = Jr\mu_o \beta \left\{ \frac{\alpha + \sqrt{(\alpha^2 + \beta^2)}}{1 + \sqrt{1 + \beta^2}} \right\}$$

 $B_o = \mu_o nI \text{ for } \beta \to \infty$

With real CMS magnet sizes:
 r = 3200 mm; R = 3418 mm

L = 12500 mm N = 2180; l = 19500 A

• We find:
$$B_o(\alpha, \beta) = 3.77 T$$
 (88% of infinite)
 $B_o(\beta = \infty) = 4.27 T$

• With a FEM code we find 3.77 T as well.

	3.772e+UUU:>3.970e+UUU	
	3.573e+000:3.772e+000	
	3.375e+000 : 3.573e+000	
	3.176e+000 : 3.375e+000	
	2.978e+000 : 3.176e+000	
	2.779e+000:2.978e+000	
	2.581e+000:2.779e+000	
	2.382e+000 : 2.581e+000	
	2.184e+000 : 2.382e+000	
	1.985e+000 : 2.184e+000	
	1.787e+000:1.985e+000	
	1.588e+000:1.787e+000	
	1.390e+000 : 1.588e+000	
	1.191e+000 : 1.390e+000	
	9.925e-001 : 1.191e+000	
	7.940e-001 : 9.925e-001	
	5.955e-001 : 7.940e-001	
	3.970e-001 : 5.955e-001	
	1.965e-001 : 3.970e-001	
	<0.000e+000 : 1.985e-001	
Density Plot: B , Tesla		

Design steps: Magnetic field, with iron

Accurate analytical formulae do not exist, a calculation with a FEM code is needed (OPERA-3D, ANSYS, COMSOL).

- Simple solid magnetic yoke:
- B_o = 4.17 T (98% of infinite).

Iron is a magnetic mirror, the coil becomes almost infinite.

- Real iron with gaps for detectors:
- $B_o = 4.0 \text{ T}$ in center
- 4.6 T in conductor.

Stored energy:

- FEM calculation yields: $\frac{1}{2\mu_o} \int B^2(r,z) dV = 2.6 GJ$
- Simple approximation: $\frac{1}{2\mu_o} B^2 V = 2.46 \text{ GJ}$, V = bore volume

4.104e+000 : >4.320e+000
3.888e+000: 4.104e+000
3.672e+000 : 3.888e+000
3.456e+000 : 3.672e+000
3.240e+000 : 3.456e+000
3.024e+000 : 3.240e+000
2.808e+000 : 3.024e+000
2.592e+000 : 2.808e+000
2.376e+000 : 2.592e+000
2.160e+000 : 2.376e+000
1.944e+000 : 2.160e+000
1.728e+000 : 1.944e+000
1.512e+000 : 1.728e+000
1.296e+000 : 1.512e+000
1.08De+000 : 1.296e+000
8.642e-001 : 1.080e+000
6.481e-001 : B.642e-001
4.321e-001 : 6.481e-001
2.161e-001 : 4.321e-001
Z 652a,005 · 2 161a,001

4.685e+000 : >4.932e+000
4.438e+000 : 4.685e+000
4.192e+000 : 4.438e+000
3.945e+000 : 4.192e+000
3.699e+000 : 3.945e+000
3.452e+000 : 3.699e+000
3.206e+000:3.452e+000
2.959e+000 : 3.206e+000
2.712e+000 : 2.959e+000
2.4559+000:2.7129+000
2,2199+000 : 2,4669+000
1.973e+000 : 2.219e+000
1.726e+000 : 1.973e+000
1.479e+000 : 1.726e+000
1.233e+000 : 1.479e+000
9.863e-001 : 1.233e+000
7.397e-001 : 9.863e-001
4.932e-001 : 7.397e-001
2.466e-001 : 4.932e-001
<0.00De+000 : 2.466e-001

Design steps: Magnetic forces

Lorentz forces due to B and J cause axial compressive forces and radial forces causing hoop stress:

 $\overline{F} = \int (\overline{J} x \overline{B}) dV$

- Radial field causes axial force F_a
- Axial field causes radial forces F_r
- In fact the solenoid wants to blow up into a ball shape

For CMS: $F_a = +1.66 \text{ GN},$ $F_r = -140 \text{ MN} (14 \text{ kt})$

The "Ball" Pressure $\approx F_r$ /surface = 6.6 MPa

• Magnetic pressure = ${}^{B^2}/_{2\mu_o} = 6.4 MPa$ or 64 atm.

Design steps: Hoop stress, coil thickness

The radial pressure is reacted in the cylinder with thickness t (windings + extra material) by the hoop stress:

$$\sigma_{hoop} = \frac{a P_r}{t}$$

To be respected design rule:

$$\sigma_{hoop,max} = 2/3 \rho_{yield}$$

Structural coil thickness:

$$t = \frac{3 r P_r}{2 \rho_{yield}} = 320 \, mm$$
 ,

using 100 MPa annealed Al5083, or

t = 190 mm , based on special 170 MPa Al5083-H321.

So we need some 190 - 320 mm thick structural special Al alloy on top of the soft conductor to withstand the radial forces in a safe way.

Design steps: Current vs self-inductance

Self-inductance L_c and current I are linked through the stored energy:

 $E = \frac{L_c I^2}{2} = \frac{1}{2\mu_o} \int B^2 dV \approx \frac{1}{2\mu_o} B_o^2 V$, and $L_c = \mu_o N^2 \pi r^2 2/L$

- Current I must be high for protection reasons, say 20 kA
- Then $L_c \approx 14$ H and for N follows N ≈ 2100 .
- Adaptation to conductor & coil dimensions leads to 19.5 kA / 2180 turns.
- The coil has 42.5 10⁶ ampere-turns.

In the windings section of

- ≈ 320 mm x 12500 mm we have to put in place:
- 2180 turns of superconducting cable with 19.5 kA
- extra stabilizing and quench protection material around the cable
- conductor insulation
- structural reinforcement for handling the hoop stress
- an outer support cylinder for integrity and conduction cooling supply.

Design steps: Conductor size and layers

4 T is made with 2180 turns and 19.5 kA current, but: How many layers is wise?

- Coil winding section is 12500 mm x 263 mm,
- n layers x conductor height = 263 mm
- Use 1 (easy), or even number of layers: 2, 4 or 6
- 1 or 2 layers requires a too thin conductor to be wound on its small edge.
- Then 4 layers is best, few layers only and acceptable conductor size of 66 x 23 mm², 6 layers would mean 44 x 34, almost square.

There is a thermal argument as well:

 winding on small-edge gives less layers, so less thick insulation (resin, glass, polyimide) between the superconductor (NbTi) and the heat sink (cooling pipe), thus a smaller temperature gradient.

Design steps: Superconductor needed

The coil runs at 19.5 kA with a peak field of 4.6 T at 4.5 K:

- Critical current density at 4.6 T/4.5 K including 5% cabling degradation is 3000 A/mm².
- We need margin so we run at 33% of the critical current, at 1000 A/mm².

- 19500 A and 1000 A/mm², \rightarrow need 19.5 A/mm² superconductor per turn in the cable
- Self-field stability \rightarrow wire diameter <1.28 mm
- A minimum Cu/sc ratio is $1:1/1 \rightarrow Asc= 0.61 \text{ mm}^2$
- Number of strands in the cable is then 19.5/0.61 = 32
- Filament size? Adiabatic filament stability requires <40 μm
- The filament section is 0.00126 mm² \rightarrow we need \geq 484 filaments
- Twist pitches of strand and cable can be standard giving a good cable stability as needed for the cable/Al co-extrusion process
- Thus Ls=25 mm and Lc= 185 mm and twist directions SZ.

Design steps: Wire & Cable specification

Following these arguments the cable specification is now as follows:

Strand Constituents	Material	
High homogeneity Nb-Ti	Nb 47±1 W t % Ti	
High Purity Copper	RRR > 300	
Niobium Barrier Reactor Grad		Ι
Strand Design Parameters	Parameters	
Strand Diameter	1.280 ± 0.005 1	mn
(Cu+Barrier)/Nb-Ti ratio	1.1 ± 0.1	
Filament diameter (mm)	< 40	
Number of Filaments	• 552	
Strand Unit length (m)	2750	
Twist Pitch	$45 \pm 5 \text{ mm } Z \text{ (RHS)}$	
Strand Minimum Critical Current Ic (A)	1925	
(Criteria : 5 T, 4.2 K, 10 µV/m)		
<i>n</i> -value 5T	>40	
Final copper RRR	>100	
Rutherford cable		
Cabling direction	S	
Nominal current	19500	А
Critical current at 5T, 4.2K	≥56000	А
Critical temperature at 4.6T	7.35	Κ
Current sharing temperature at 4.6T and 19.5 kA	≥6.33	Κ
strand number	32	
dimensions	20.68x2.34	mm^2
Cable transposition pitch	185	mm
Cable compacting ratio	87	%

The cable is co-extruded with high purity Al (RRR>1500)

Coil windings: radial build-up

Now we have: 4 layers of a soft conductor Al/NbTi/Cu, 127 mm thick and a thick support cylinder of 186 mm.

• Is this thermally and mechanically an optimal design? No !

- High shear stress at interface
- In the 4 layers , axial forces up to 1400 MN gives 55 MPa in the pure Al >> 20 MPa, not possible.
- Soft 4 layers of 127mm +186mm gives 22 MPa, is acceptable but strain and shear stress is not uniform.
- A much better solution is to mix soft Al stabilizer and harder Al-alloy support.
- Cure: slice up the thick support cylinder and redistribute it as reinforcement bars on the conductor, creating force bridges in the winding pack in axial direction.

Real coil: final solution for CMS

- Conductor: soft Al-NbTi with NbTi cable reinforced with Al 6082 bars connected by electron beam welding
- New yield stress is about 250 MPa!

Making of CMS Solenoid: support cylinder

 The CMS magnet cold mass was made in 5 units mostly at ASG – Genua, transported to CERN for on-surface assembly and then insertion as a whole in the CMS cavern.

Support cylinder manufacturing, 5 units

Thermal siphon cooling layout, pipework welded to the cylinder

Making of CMS Solenoid: coil winding

Bend conductor pressed against cylinder

Dedicated coil winding machine allowing winding inside the support cylinder (6.2 m diameter)

Conductor spiral leading into cylinder

Conductor bending

Taping insulation on conductor

Making of CMS Solenoid: vac impregnation

Vacuum impregnation tools, resin curing, result: Clear transparent resin

Making of CMS Solenoid: assembly on site

Modules transport, stacking, integration in cryostat and finished coil ready for insertion in cavern. READY !

4. Making ATLAS magnets.....

ATLAS on surface & underground

- Underground cavern at - 90 m.
 - 2 shafts give access to a 50,000 m³ cavern for the detector.

Cavern length = 55 m width = 32 m height = 35 m.

ATLAS superconducting magnet system

1 Barrel Toroid, 2 End Cap Toroids and 1 Central Solenoid

4 magnets make 2 T in inner detector (solenoid) & ~1 T in muon detectors (toroids) 20 m diameter x 25 m long Detector characteristics Muon Detectors Width: 44m Electromagnetic Calorimeters 8300 m³ volume with field Diameter: 22m Weight: 7000t CERN AC - ATLAS V1997 Solenoid 170 t superconductor Forward Calorimeters End Cap Toroid 700 t cold mass 1320 t magnets 7000 t detector 90 km superconductor 20.5 kA at 4.1 T **1.6 GJ** stored energy 4.7 K conduction cooled 9 yrs of construction 98-07 Inner Detector Barrel Toroid Shielding Hadronic Calorimeters

So far, the largest trio of toroids ever built

Magnetic field configuration

- 2 T in Solenoid closed via return yoke 2.6 T peak in windings
 ≈ 0.8 T average in Barrel Toroid torus 3.9 T peak in windings
- ≈ 1.3 T average in End Cap Toroid
 4.1 T peak in windings

ATLAS: Barrel Toroid manufacturing

ATLAS: Barrel Toroid assembly

- Transport, decent, reception
- Complex but safe manipulations
- Lowering using 2 lifting frames
- Hydraulic winch with load capacity 190 t

ATLAS: Barrel Toroid in cavern (November 2005)

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$ (4e, 4µ, 2e2µ)

VOLUME 13, NUMBER 16

PHYSICAL REVIEW LETTERS

19 October 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland (Received 31 August 1964)

Physics Letters B Volume 716, Issue 1, 17 September 2012, Pages 1–29

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC $\stackrel{\star}{\approx}$

"I certainly had no idea it would happen in my lifetime at the beginning, more than 40 years ago. I think it shows amazing dedication by the young people involved with these colossal collaborations to persist in this way, on what is a really a very difficult task. I congratulate them." Peter Higgs, July 4th, 2012

5. Detector Magnets for a 100 TeV p-p collider

Future Circular Collider study Design drivers Example Baseline Detector for FCC-hh

Options for increasing colliding energy

Collision energy = 0.6 x B x R

B: 1.8 x from NbTi to Nb₃Sn
B: 2.4 x from NbTi to HTS
R: 4-5 x more magnets

- New 80-100 km tunnel in Geneva area
- pp-collider defining the size
- e+e- collider may come first
- Option p-e collider
- CERN-hosted study with international collaboration

Baseline Detector 4T/10m-20m + 2 side Solenoids

100TeV pp collisions, $L_{peak} = 3x10^{35} \text{ cm}^{-2}\text{s}^{-1}$, $L_{int} = 3/30 \text{ ab}^{-1}$ 25ns/5ns bunchcrossing, pileup 1000/200 per bunchcrossing

4T, 10m free bore unshielded solenoid, two 4T unshielded forward solenoids, precision spectroscopy and ECAL up to eta=4, Tracking and Calo up to eta=6

Now you know a bit about detector magnets & its materials....

This concludes the course...

