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Quantum “compilation” infrastructure for NISQ and FT:
• Portable across gates sets (NISQ and FT), QPU architectures
• Supports higher dimension abstractions (multi-qubit gates, qutrits etc.)
• Manipulates circuits in multiple parameterized and concrete encodings
• Provides error mitigation

1. Generates resource efficient circuits
2. Enables hardware and algorithm design exploration

https://github.com/BQSKit - 200K+ downloads
3 IEEE QCE Best Paper Awards (2020, 2021, 2022)

Users:

BQSKit – Berkeley Quantum Synthesis Toolkit

• LANL
• Sandia
• ANL
• ORNL

• U Chicago
• U Kansas
• U Tokyo
• NCSU
• Duke
• CUNY

• AWS - Braket
• Microsoft
• NVIDIA
• UnitaryFund
• HSBC
• ColdQuanta/Infleqtion(Superstaq)

bqskit.lbl.gov

(biss-kit)

https://github.com/BQSKit
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Turn-key functionality, works “everywhere”

Python 3.8+ on Windows, Mac, Linux
(from laptop to supercomputer)

Any gate set in or out, qubits, qutrits, states, many-states, unitaries
(from experiment to programs)



Configurable Compilation Workflows
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Turn-key (-O1 .. -O4):
• No user-defined rules 

necessary; all gates support
• Simply load a circuit, a 

predefined gate set, and 
compile to it.

Configurable:
• MachineModel (topology)
• ir.gates (gate set)
• Compile() 

(transformation workflow)



Berkeley Quantum Synthesis Toolkit Tutorial

6

github.com/bqskit/bqskit-tutorial
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Mathematical 
Representations

Function: fixed
Structure: none
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Concrete 
Quantum Circuits

Mathematical 
Representations

Function: fixed
Structure: none

Function: fixed
Structure: fixed
non-unique



9

Parameterized 
Program Templates

Function: variable
Structure: variable

Mathematical 
Representations

Function: fixed
Structure: none

Function: fixed
Structure: fixed
non-unique

Concrete 
Quantum Circuits
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Parameterized Circuit 
Templates

Mathematical 
Representations

Concrete 
Quantum Circuits

Parameterized qubit 
gates (U3, RZ, B...)

Fixed gates (CNOT, iSWAP..)

Arbitrary Atomic Unit

• Unitary

• Pauli operators

the Qsearch tree.
2) As the number of partial solutions and their eval-

uations may hamper scalability, we conflate the
numerical optimization and search problem. We do
this by using a continuous circuit space. At each
step, the circuit is expanded by one layer. Given an
n-qubit circuit, a layer encodes an arbitrary m-qubit
operation on any m-qubits, with m < n. Thus, our
formulation does not having a branching factor and
solves combinatorially less optimization problems.

3. Gate and Circuit Representations

QFAST models a circuit as a sequence of parameterized
gates. Each gate has a function (hence a size), and a location.

The function encodes the operation (quantum transfor-
mation) performed on an associated number of qubits. When
operating with a gate whose function is parameterized, we
refer to it as a variable function gate. Whenever gate pa-
rameterization is numerically instantiated, the gate becomes
fixed function.

The location describes the set of qubits a gate is applied
on, as placed in a larger circuit. A variable location m-
qubit gate is associated with a set of n-qubits, n > m. In
this case the gate can be applied to any valid subset of m-
qubits from the total n-qubits defined by the target topology.
A fixed location m-qubit gate operates on exactly m-qubits.

The QFAST algorithm uses two parameterizations: vari-
able function with fixed location gates, and variable function
with variable location gates. The second parameterization
allows us to conflate search and optimization. In this section,
we first describe how we encode gate variable function in a
fixed size gate. Then we build on the function encoding to
encode variable location.

3.1. Encoding of Gate Function

A gate’s function is given by a unitary matrix. As
such, encoding gate function is equivalent to structuring the
unitary group. Conveniently, the unitary group U(2n) is a
Lie group. It’s Lie algebra u(2n) is the set of 2n⇥2n skew-
Hermitian matrices. Using the Pauli group as generators for
Hermitian matrices, we can construct the unitary group in
the following way:

U(2n) = {ei(~↵· ~�⌦n) | ~↵ 2 R4n}

where ~� = {�i,�x,�y,�z} are the Pauli matrices, and
~�
⌦n = {�j ⌦ �k | �j 2 ~�,�k 2 ~�

⌦n�1} are the n-qubit
Pauli strings.

This provides a useful parameterization of unitary op-
erations on n-qubits. We can then define an n-qubit gate’s
function with 2n parameters as:

G(~↵) = e
i(~↵· ~�⌦n)

This unitary-valued function is smooth and infinitely-
differentiable. Its derivative is given by the derivative of the

exponential map [43], but when evaluating QFAST, we used
the Padé approximation method with scaling and squaring
[11] to compute the derivative.

3.2. Encoding of Gate Location

A gate’s location determines which qubits it affects. One
simple way to encode a fixed location is to map the Pauli
strings that define the gate function to higher-order ones.

Given Q a fixed m-qubit location on an n-qubit circuit
— a m-length sequence of qubit indicies that are all less
than n — we define a map from m-qubit Pauli strings to
n-qubit Pauli strings:

⇡Q : ~�⌦m �! ~�
⌦n

This map inserts n�m identities into the m-qubit Pauli
string in positions not specified in the location. For example,
if we are given a 2-qubit location Q = (0, 1) on a 3-qubit
circuit, then ⇡Q(XX) = XXI . If instead, Q = (0, 2), then
⇡Q(XX) = XIX .

This leads to a parameterization of an m-qubit gate with
variable function and a fixed location on an n-qubit circuit.

F (Q, ~↵) = exp(i(~↵ · ⇡Q( ~�⌦m)))

If instead of a fixed location, we want variable location,
given a set of valid locations, we can simply multiplex all
possible locations. For example, if we want a formulation
of a gate with variable function that affects either qubits
Q0 = (0, 1) or qubits Q1 = (1, 2), we simply write:

exp(i[l0(~↵ · ⇡Q0(
~�⌦m)) + l1(~↵ · ⇡Q1(

~�⌦m))])

Here either l0 or l1 is 1 and the other is 0. If l0 is
one, then the formulation chooses the location given by
Q0. Likewise, if l1 is one, then the formulation chooses the
location given by Q1. This can be extended to any number
of possible locations ~Q:

V ( ~Q, ~↵,~l) = exp(i
X

Q2~Q

lQ · ~↵ · ⇡Q( ~�⌦m))

3.3. Direct Mapping of Pauli Strings

Using the variable function with fixed location F (Q, ~↵)
and the variable location and function V ( ~Q, ~↵,~l) gates, it is
enough to implement an algorithm that replaces search with
numerical optimization as shown in our first unpublished
version of QFAST [54], [55].

In this formulation, we solve a mixed integer-real op-
timization problem, where the location and the associated

Qutrits, qudits, multi-qubit SU(n), 
mixed radix…



11

Numerical Instantiation with

circuit.instantiate(target)

Instantiation: Given a parameterized quantum circuit
                            and a target unitary                     , solve

General instantiation 
workflow enables the 

optimization, synthesis, and 
transpilation of quantum 

circuits

we recorded a circuit with 3970 two-qubit gates, which is a
51% reduction over Cirq’s circuit with 8064 two-qubit gates.

When examining the execution time overhead, we observe
an average slowdown of 14⇥; however, we demonstrate the
tunability of our algorithms by speeding up a specific execu-
tion by 13⇥ while only reducing quality by 0.6%.

The following intuition provides an explanation for the
quality of our results. During circuit optimization, the available
compilers use a sequence of rule-based peephole transfor-
mations, where at each step, the circuit is only transformed
locally. Similarly, for transpilation, they form two-qubit blocks
and either apply rule-based translations or KAK-based de-
compositions. In contrast, a circuit undergoes many global
transformations with our approach.

Overall, we believe that the results indicate that instanti-
ation can be easily and safely incorporated as a step in the
compilation workflow. The ability to transpile algorithms well
between native gate sets enables interesting architectural com-
parisons. For example, most circuits transpiled to

p
iSWAP

and Sycamore gates required more gates than in other gate-
sets. On the other hand, due to the low gate latency [15], these
long circuits may still yield faster execution and potentially
less error.

The rest of this paper is structured as follows. In Section II,
we introduce parameterized circuit instantiation and provide
a brief survey of it in compiler literature. Then we describe
our optimization and retargeting algorithms in Section III. We
include our experimental setup and verification procedure in
Section IV and evaluate the algorithms in Section V. Lastly, we
discuss the results in Section VI and conclude in Section VII.

II. PARAMETERIZED CIRCUIT INSTANTIATION

Instantiation is the process of finding the parameters for a
circuit’s gates that make it to most closely implement a target
unitary. Techniques that perform instantiation are ubiquitously
deployed in quantum compiler toolchains. The formal problem
definition is given by:
Parameterized Circuit Instantiation Problem: Given a pa-
rameterized quantum circuit C : Rk 7! U(N) and a target
unitary V 2 U(N), solve for

argmax
↵

tr(V †C(↵))

where k is the number of gate parameters in the circuit, and
U(N) is the set of all N⇥N unitary matrices. This definition
is very general and considers the parameterized circuit as a
parameterized unitary operator, see Figure 1. The tr(V †C(↵))
component measures the Hilbert-Schmidt inner product, which
physically represents the overlap between the target unitary
and the circuit’s operator. The maximum value this can have
is equal to N the dimension of the matrix, and this occurs
when C(↵), the unitary of the circuit with gate parameters ↵,
is equivalent to V the target unitary up to a global phase.

The most common form of instantiation is the KAK [13] de-
composition, which uses analytic methods to produce the two-
qubit circuit that implements any two-qubit unitary. Compilers

Fig. 1: This is an example of a parameterized quantum circuit on the left.
It is composed of three-parameter universal single-qubit rotations and two-
qubit CNOT gates. For simulatable circuits, we can represent the circuit by its
unitary operator shown on the right, which is calculated by tensor contraction
of all of its gates. Furthermore, we can represent parameterized circuits by a
parameterized unitary C(↵), which can be instantiated to some other unitary
V by solving for the parameters ↵ that maximize the overlap of C(↵) and
V . This can be accomplished with analytic methods in specific cases and
gradient descent or other numerical methods in the general case. The text
describing a parameterized single-qubit rotation will be left out in the other
figures; a box on a single wire depicts a generic parameterized single-qubit
gate.

have used this decomposition to optimize long sequences of
operations. This is done by first grouping together consecutive
gates on a pair of qubits, then calculating the unitary imple-
mented by the grouped gates, and finally applying the KAK
decomposition to convert to a potentially shorter sequence of
gates.

For every universal gate-set, the KAK decomposition can
yield a parameterized circuit, to which it can instantiate any
two-qubit unitary. Therefore, applying the KAK decomposi-
tion to retarget a circuit’s gate-set is also possible. Once a
template is discovered in the desired gate-set, it can be utilized
similarly to the optimization procedure to convert grouped
gates to gates of a different type. However, producing a circuit
template when designing a new gate-set may be nontrivial.

Recently, bottom-up approaches to quantum synthesis have
been successful through numerical instantiation [7], [8], [9],
[10], [11], [16]. Rather than fixed mathematical identities,
these techniques employ a numerical optimizer to closely
approximate a solution to the instantiation problem. This is
done by minimizing a cost function, often the unitary error or
distance between the circuit’s unitary and a target unitary. This
is given by the following formula using the same notation as
before.

�(C(↵), V ) = 1� |tr(V †C(↵))|
N

Other variations of this distance function include:

�f (C(↵), V ) = 1� Re(tr(V †C(↵)))

N

and

�p(C(↵), V ) =

r
1� |tr(V †C(↵))|2

N2

All three methods have a range of [0, 1], and as they
approach zero, the circuit’s unitary approaches V. For the rest
of our paper, we refer to the unitary distance or error as �,
the first formulation.
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have used this decomposition to optimize long sequences of
operations. This is done by first grouping together consecutive
gates on a pair of qubits, then calculating the unitary imple-
mented by the grouped gates, and finally applying the KAK
decomposition to convert to a potentially shorter sequence of
gates.

For every universal gate-set, the KAK decomposition can
yield a parameterized circuit, to which it can instantiate any
two-qubit unitary. Therefore, applying the KAK decomposi-
tion to retarget a circuit’s gate-set is also possible. Once a
template is discovered in the desired gate-set, it can be utilized
similarly to the optimization procedure to convert grouped
gates to gates of a different type. However, producing a circuit
template when designing a new gate-set may be nontrivial.

Recently, bottom-up approaches to quantum synthesis have
been successful through numerical instantiation [7], [8], [9],
[10], [11], [16]. Rather than fixed mathematical identities,
these techniques employ a numerical optimizer to closely
approximate a solution to the instantiation problem. This is
done by minimizing a cost function, often the unitary error or
distance between the circuit’s unitary and a target unitary. This
is given by the following formula using the same notation as
before.

�(C(↵), V ) = 1� |tr(V †C(↵))|
N

Other variations of this distance function include:

�f (C(↵), V ) = 1� Re(tr(V †C(↵)))

N

and

�p(C(↵), V ) =

r
1� |tr(V †C(↵))|2

N2

All three methods have a range of [0, 1], and as they
approach zero, the circuit’s unitary approaches V. For the rest
of our paper, we refer to the unitary distance or error as �,
the first formulation.

...

Configurable objective functions
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Unitary Synthesis:  Generation and Optimization

Consider tree of possible circuits that can 
implement an unitary

Transformation algorithm implements search on 
tree, instantiate at each step
• Generation: build circuits bottom-up, e.g. synthesis
• Optimization: process top-down, e.g. delete gate

Stop when finding the first “good” solution (multi-
objective)
• Gate count (e.g. CNOT, Clifford+T etc.)
• Depth, gate parallelism
• Heterogenous gates mix
• Defects, patterns

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

Generation

Optimization
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Scaling With Qubits

• Unitary instantiation has width/depth limits
o QFactor scales to 12 (+) qubits!

• Wide circuits are broken into manageable panels
o Each panel has an associated partitioned unitary
o In practice, partitions/panels of 3 qubits are a good tradeoff 

quality vs runtime overhead 

Partitioned unitaries are 
taken from circuit panels

Circuit partitions 
can be handled 

independently and 
in parallel

2K qubits already 
demonstrated J



● QSearch – 3-4 qudits, optimal

● LEAP – 4-6 qudits

● QFAST – 6-7 qudits

● QPredict - 6-12+ qudits

● PAS – 3 qudits

● Optimization (re-synthesis, gate 
deletion)

● Mapping/Routing (Generalized 
SABRE, PAM)

● Approximations (QuEST)

● Gate Set Retargeting

Instantiation-Based Algorithms in BQSKit

14

Direct Unitary  
Synthesis

Instantiation

Workflows, 

Transformations
…

1000s
 qubits



Support for Circuit Verification
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• Small circuits can have their 
error directly calculated

• In most of our publications 
we target 10-10 instantiation 
verification error, most often 
is less

• Larger circuits can be first 
partitioned into large 
simulatable sections, then 
summing the section errors 
gives a tighter upper bound 
on total error

Direct instantiation

Direct simulation

For our ”additive error” objective functions…
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Circuit Optimization, Mapping and Transpilation 
(aka Topology Aware Synthesis)



Hardware is Diverse: Portability
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Google       IBM                        Intel                  IonQ    Rigetti

• Each chip has a native gate set
• Single qubit: parameterized rotations
• Two qubit: CNOT, Syc..

• Each chip has a constrained qubit 
interconnection topology
• Ring, array, tree

Resources == Performance

Number of gates and circuit depth are 
direct measures of performance.
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Constrained Resources == Capability

Coherence time imposes hard 
limit on circuit depth

0 200 400

depth
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Error accumulates over time, 
reducing depth limit

Long depth circuits produce 
erroneous results

…

QITE

TFIM

Resource Optimization
(gates, depth etc.) 

Performance Enhancer + Capability Provider
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• Optimal 3-qubit QFT (analytic): 
6 CNOTs

• Optimal mapping (OLSQ[2]): 
9 CNOTs

Tan, B. et al, Optimal layout synthesis for quantum computing ICCAD. 2020.

Generating 3-qubit QFT (for Linear Architecture)
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QFT3  Synthesis and Mapping

• Optimal mapping (OLSQ): 
9 CNOTs

• QSearch synthesis: 
6 CNOTs

• Permutation Aware Synthesis: 

5 CNOTs
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Permutation-aware synthesis (PAS)

1. Generate all input-output qubit permutations
2. Communication ”absorbed” at unitary level

Caption
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Scaling: Permutation-aware Mapping (PAM)
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Example: Mapping to IBM’s 127-qubit Eagle Chip

CNOT reduction (MAX/AVG)

• 78% / 33%   MQT (QMAP)
• 68% / 18%   Qiskit
• 36% / 9%     Tket
• 67% / 21%   BQSKit    

IBM (copyright)
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Mapping on a Fully-Connected (all-to-all) Device

Most compilers may not change circuit when mapping is already legal.
(e.g. from restricted → all-to-all).



QUANTUM CIRCUIT OPTIMIZATION AND TRANSPILATION VIA PARAMETERIZED 
CIRCUIT INSTANTIATION
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Scientific Achievement
Leverage parameterized circuit instantiation via numerical optimization to 
achieve improved circuit optimization and gate-set transpilation, leading to 
significant reductions in gate counts, enhanced circuit quality, and greater 
portability between quantum processors. Solution scales to 1000s of qubits.

Significance and Impact
Gate deletion and rule-free gate transpilation algorithms enable automatic 
transformations of quantum circuits between any gate-sets, eliminating the need 
for manual user-defined rules, greatly improving quantum program portability 
and reducing barriers to entry for gate-set exploration studies. All algorithms are 
released as part of the BQSKit code. BQSKit significantly outperforms 
commercial compilers (Qiskit, Cirq, Tket).

In gate set transpilation, one native 2-qubit gate is replaced with a series of 
templates implemented in the new target gate set. Instantiation is used to select 
the shortest suitable template. Partial solutions are expressed in a combination of 
gate sets and globally optimized. When comparing to traditional compilers BQSKit 
eliminates the need for theoretical gate-per-gate  decomposition rules and 
provide better quality circuits.

Technical Approach
• Numerical optimization of circuits is leveraged to transform circuits.
• We remove or change gates and reinstantiate the remaining to 

accommodate for the lost or transformed gate.
• Circuit partitioning techniques are used to scale to 1000s of qubits/qudits.

PI: Costin Iancu; Berkeley Lab POC: Ed Younis
ASCR Program: AQRC (AIDE-QC)
ASCR PM: Ceren Susut-Bennett
Publication(s) for this work: Ed Younis, Costin Iancu. “Quantum Circuit Optimization and Transpilation 
via Parameterized Circuit Instantiation,” IEEE International Conference on Quantum Computing and 
Engineering (QCE) (2022): IEEE. doi:10.1109/QCE53715.2022.00068.
Code Developed or Datasets: https://github.com/bqskit/bqskit

https://github.com/bqskit/bqskit


Transpilation and Gate Set Portability
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Specialized algorithms for gate set transpilation, more powerful than 1-1 translation/rewriting  rule in most 
compilers

E. Younis et al., “Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation,”
 in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2022
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The power of circuit synthesis and instantiation 
comes from the ability to do configurable  global 

optimization on programs 
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Handling Higher Dimension Objects
(multi-qubit gates, qutrits etc.)

Alon Kukliansky et al. “QFactor: A Domain-Specific Optimizer for Quantum Circuit 
Instantiation”. IEEE QCE 2023



QFactor: A Domain-Specific Optimizer for Quantum Circuit Instantiation 

30

Scientific Achievement  Novel domain-specific algorithm for numerical 
optimization used by quantum circuit instantiation, synthesis, and compilation 
methods. QFactor uses a tensor network formulation together with analytic 
methods and an iterative local optimization algorithm to reduce the number of 
problem parameters. 

Significance and Impact The formulation is amenable to portable 
parallelization across CPU and GPU architectures, challenging in general purpose 
optimizers (GPO). QFactor achieves exponential memory and performance savings 
with optimization success rates similar to GPOs. QFactor can process directly 
circuits with more than 12 qubits. We enable BQSKit  optimizations of 100+ qubit 
circuits to scale out linearly with the hardware resources allocated for compilation in 
GPU environments. 

Average instantiation time normalized to QF-JAX instantiation time 
(left-hand side y-axis), together with normalized success rate (right-
hand side y-axis), showing the strength of QF actor for larger circuits. Technical Approach

• Tensor network formulation enables  the algorithm to work with whole unitaries. 
Drastically reduced total number of optimized parameters compared to GPOs.

• CPU-based implementation written in Rust, together with a Python 
implementation written using JAX , portable across CPUs and GPUs.

PI: Costin Iancu; Berkeley Lab POC: Costin Iancu
ASCR Program: AQRC (AIDE-QC)
ASCR PM: Ceren Susut-Bennett
Publication(s) for this work: Alon Kukliansky et al. “QFactor: A Domain-Specific Optimizer for Quantum 
Circuit Instantiation”. IEEE QCE 2023
Code Developed or Datasets: https://github.com/bqskit/bqskit

QFactor benefits from 
GPU acceleration and 
enables good strong 
scaling for compilation 
workflows.

https://github.com/bqskit/bqskit
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ℰ!

In this context, what is the best gate 
or set of parameters for the gate?

𝑇𝑟 𝑈!
" ⋅ 𝑢# ⋅⋅⋅ 𝑢$ = 𝑇𝑟(ℰ% ⋅ 𝑢&)

Environment 
matrix

QFactor Enables Scalability

Tensor network formulation allows
• Handling of arbitrary sized unitaries as single parameter
• GPU acceleration and parallelization 
 

𝑢!!"# = 𝑌𝑋"

ℰ# = 𝑋𝐷𝑌"



BQSKit Supports Qutrits, Qudits etc. 

Black Hole Information Scrambling

CSUM|&, (⟩=|&, & + (	mod	3⟩

SUM

Cphase|&, (⟩ =6!"|&, (⟩

7

1

7#

2

		8 		8$

Hadamard Hadamard

=

Qutrit synthesis using CSUM and parameterized 
single qutrit gates

M.S.  Blok et al. “Quantum Information Scrambling on a Superconducting Qutrit Processor”. Phys. Rev. X 11, 021010, 2021
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Portability and Hardware Design Studies
(Quantum Roofline?)

“Where should I run my algorithm?”
“How can I improve my machine?”
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1. Gates have different expressive power
2. Gates have different fidelity, latency
3. Chips have different topology

Fidelity models:

1. Gate count

𝑭 = 	 $
𝒊"𝟏,𝟐

𝒇𝒊𝒏

1. Depth…

2. Depth and parallelism…

𝒊

Depth,
parallelism

Given optimal circuits, I can ask:

What is the better architecture (gates, topology) for a class of algorithms?



Which 2-qubit gate can provide higher fidelity?

1-q fidelity =0.999

Sycamore is better

CZ is better

It depends on algorithm, 
circuit
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Sycamore is better

CZ is better

It depends on algorithm, 
circuit

Which 2-qubit gate can provide higher fidelity?

1-q fidelity = 0.999

1-q fidelity = 0.9995 > 0.999

Avg NISQ 1q 
gate fidelity

Threshold >> NISQ 
fidelity

1q gate count
 matters

NISQ fidelity  >> Threshold
1q gate count DOES  NOT matter

When do 1-q gates matter?
(independent of 2-q fidelity)

Algorithm dependent
range shrinks
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Avg NISQ 1q gate fidelity

Threshold ≫ NISQ fidelity

1q gate count
 matters

NISQ fidelity  ≫ Threshold

1q gate count DOES  NOT matter

When do 1-q gates matter?
(independent of 2-q fidelity)
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Algorithm Exploration for NISQ and Beyond

1. Circuit Approximations (Error mitigation and Performance)
• Wilson et al. "Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices.”, in SC 2021
• T. Patel et al, “QUEST: Systematically Approximating Quantum Circuits for Higher Output Fidelity”, ASPLOS 2022

2. Discover Algorithm Generators
• M. Weiden et al, “Improving Quantum Circuit Synthesis with Machine Learning”, in 2023 IEEE QCE.
• L. Bassman et al, “Constant-Depth Circuits for Free-Fermion Dynamic Simulations on Quantum Computers,” Mat. 

Theory 6, 13 (2022) 
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Why Approximate Quantum Circuits?

● Approximations can minimize the 
number of gates (circuit depth)

○ Circuits up to 2X shorter can produce the same quality output and 
have better fidelity on NISQ devices

○ Circuits will run faster in FT devices

● Approximations are built using process metrics: |U-U’| < 𝜺

● The performance (resources) of a quantum program is determined by the 
number of gates

Wilson et al. "Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices." International Conference for High Performance 
Computing, Networking, Storage, and Analysis (2021).



QuEST: Robust Generation of Quantum Circuit Approximation 
Using Synthesis

T. Patel et al, “QUEST: Systematically Approximating Quantum Circuits for Higher Output Fidelity”, ASPLOS 2022

Funded by DOE ASCR AIDE-QC  

Significance and Impact
Resource efficiency is an important measure of circuit performance. Our 
technique can be directly used for circuit optimization in NISQ and fault-
tolerant quantum computing. In NISQ, we provide additional capability for very 
good error mitigation. 

• We show 30%-80% depth reduction on many important algorithms• We show fidelity improvements of 30% on noisy systems, independent of noise level
• The program output is accurate  for science purposes• Although computationally intensive, the technique scales up to high qubit counts (up 

128 qubits demonstrated)

Research Details
• We use synthesis and circuit partitioning (BQSKit) for circuit generation
• We bound error - theoretical upper bound on HS distance under 

partitioning and approximation. 

• Apriori approximation selection criteria to ensures high fidelity output 
(triangle inequality on Hilbert-Schmidt distance, annealing)

Sampling improves fidelity

Circuit depth reduction

Heisenberg 4

TFIM 4

Scientific Achievement 
We provide a sound and scalable method for generating 
circuit approximations. Approximations significantly reduce 
circuit depth, while providing error mitigation. QuEst provides 
an orthogonal technique to randomized compiling.
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Select “dissimilar” approximations that sample the 
approximation space “uniformly”.
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Depth reduction in the range of 30-90% The output distance to the ground truth is good (< 10-2)

Depth reduction up to 85% for Heisenberg16 Approximations track the ground truth of the 4-spin Heisenberg 
on a quantum computer.

TVD=2e-3



Existing approach is empirical, we finally have a 
soundness and robustness proof.

Hope to answer: 
“ How can I relate my circuit’s output to domain science expectations and 

constraints?”
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Learning Circuit Generating Templates

“Can I discover structure in circuits without domain science knowledge?”
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Detecting Minimal Generating Templates
Can I predict a good ansatz for any given unitary?

1. Collect a large dataset of unitaries
o Consider unitaries from partitioned circuits

o Suite of algorithms
o Variety of circuit widths

2. Enumerate a finite number of circuit 
templates

3. Try instantiating each template given 
each unitary

?

{     }
[  ,        ,    ,          ,…]

circuit.instantiate(target)
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Patterns Occur when Algorithms Scale

Histogram of Circuit Templates in TFIMs with 8, 16, and 50 Qubits

Three templates account for 99% of partitioned TFIM circuit 
blocks of various widths

8 qubits
        16 qubits
        50 qubits

M. Weiden et al, “Improving Quantum Circuit Synthesis with Machine Learning”, in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2023 

TFIM 16 has 99 
partitions. 82/99 

partitions are 
implemented by 

this template
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QFT 12
        Shor 24

Patterns Occur When Algorithms are Composed

QFT 12 is contained in Shor 24 - QFT and IQFT appear 16 times 

Histogram of Circuit Templates in QFT 12 and Shor 24

These templates 
illustrate that 

structure of QFT is 
found within the 

Shor circuit
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Algorithms are Different From Random Programs

Partitioned unitaries are 
taken from circuit panels

• Principal Component Analysis reveals low 
dimensionality of unitaries of interest                  

128 -> 16, 32
• Implies learning patterns in unitaries is possible

PCA quantifies how much we 
can compress these unitaries
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Learning with Unitaries
§ Neural networks can learn interesting 

properties of partitioned unitaries
§ We can train networks to predict the 

depth of the minimal template that 
implements a unitary

Confusion Matrix of 
Predicted Partitioned Unitary 

Depths

Autoencoder pre-
trained to do unitary 

reconstruction

New task specific 
head is finetuned 
after pretraining

Architecture and Training
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A seeded synthesis algorithm that uses machine 
learning to predict good seed circuits

QSeed
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Measuring Speedup and Solution Quality

3.7X Speedup: most synthesis 
runs require only one instantiation 

call

Similar solution quality: gate counts 
very closely match optimal 

implementation
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Measuring Speedup and Solution Quality

Speedup: most synthesis runs 
require only one instantiation call

Solution quality: gate counts very 
closely match optimal 

implementation

QSeed makes an average of 2.4 
instantiation calls per unitary

Full bottom-up synthesis requires an 
average of 12.1 instantiation calls
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Measuring Speedup and Solution Quality

Speedup: most synthesis runs 
require only one instantiation call

Solution quality: gate counts very 
closely match optimal 

implementation

QSeed solutions closely match 
gate counts of full bottom-up 

solutions
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Verifying Error Thresholds
Error in synthesized unitaries for test benchmarks 

remains low ⟹ These are good generators

For many benchmarks, 
errors are close to 
machine precision
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Discovering Analytical, Scalable Circuit Generators

“Can I discover circuit, algorithm structure with domain science knowledge?”



Scientific Achievement
A method for generating circuits which are 
constant in depth with increasing time-step, thus 
enabling dynamic simulations on near-term 
quantum computers out to arbitrarily long 
simulation times.

Significance and Impact
High-fidelity simulation results for long-time 
dynamic simulations of quantum materials can be 
obtained on currently available  quantum 
computers.

N qubits in free fermion model need N(N-1) CNOTS

Constant-Depth Circuits for Free-Fermion Dynamic Simulations on QC

Comparison of simulation results and CX gate count for the TFIM and the XY 
model using the constant-depth circuits versus the IBM-compiled circuits. 

IBM

Ground Truth

Constant Depth

Bassman, Van Beeumen, Younis, Smith, Iancu, de Jong
Mat. Theory 6, 13 (2022) - 56 -
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For one-dimensional TFXY, XY, IM and TFIM Hamiltonians of the form

𝐻 𝑡 = 𝐻(( + 𝐻)) + 𝐻* 𝑡 = −𝐽( (
+,-

./-

𝜎+(𝜎+0-( − 𝐽) (
+,-

./-

𝜎+
)𝜎+0-

) − ℎ*(𝑡)(
+,-

.

𝜎+*

•Approx. time-evolution operator:

𝑈! 𝑛Δ𝑡 =+
"#$

%

𝑒&"(("")(##)∆,𝑒&"($(%∆,)∆,

• Independent of timestep 𝑡- = 𝑛∆𝑡

•Only gate parameters change
•1-qubit gate complexity: 𝒪(𝑁.)
•CNOT gate complexity: 𝑁(𝑁 − 1)

U2q(n�t) =
U3 • U3 • U3

U3 U3 U3

U3q(n�t) =

U3 • U3 • U3 U3 • U3 • U3

U3 U3 U3 • U3 • U3 U3 U3

U3 U3 U3

U4q(n�t) =

U3 • U3 • U3 U3 • U3 • U3

U3 U3 U3 • U3 • U3 U3 U3 • U3 • U3

U3 • U3 • U3 U3 U3 • U3 • U3 U3 U3

U3 U3 U3 U3 U3 U3

- 57 -

BQSKit finds Constant-depth Circuits for Time-evolution
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Generalization to higher Dimensions (TF)IM, (TF)XY Models Approximate Time-Evolution Matrix

Timestep 1:

U(�t) = e
�i�tHxx e

�i�tHz (�t)

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵)

=

G1

G2

G1

G2

G1

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 3

Matchgates
1

Definition

Let the matrices A and B be in SU(2)

A =


p q

r s

�
, B =


w x

y z

�
, det(A) = det(B)

Then the 2-qubit matchgate G (A,B) is defined as follows

G (A,B) =

2

664

p q

w x

y z

r s

3

775

1
Valiant 2002

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 5

U(�t)

G1

G2

G1

G2

G1

U(2�t)

G1 G1

G2 G2

G1 G1

G2 G2

G1 G1

U(3�t)

G1 G1 G1

G2 G2 G2

G1 G1 G1

G2 G2 G2

G1 G1 G1

U(n�t)

G1

· · ·
G1

G2

· · ·
G2

G1

· · ·
G1

G2

· · ·
G2

G1

· · ·
G1

· · ·

=

G G G

G G G

G G G

G G G

G G G

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 4

…

Constant Depth
O(q2) 

TFIM Matchgates

G =

2

64

e�i(✓0+✓3) cos
✓1�✓2

2 �iei(✓0�✓3) sin
✓1�✓2

2

cos
✓1+✓2

2 �i sin ✓1+✓2
2

�i sin ✓1+✓2
2 cos

✓1+✓2
2

�ie�i(✓0�✓3) sin
✓1�✓2

2 ei(✓0+✓3) cos
✓1�✓2

2

3

75

G =
Rz (✓0) Rx (⇡/2) • Rx (✓1) • Rx (�⇡/2) Rz (✓3)

Rz (✓0) Rx (⇡/2) Rz (✓2) Rx (�⇡/2) Rz (✓3)

G G = G

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 7



• Resource efficacy == Performance == Capability
o Optimization
o Transpilation
o Mixed radix primitive support
o Clifford + T support 

• Hardware design exploration
• Algorithm design and generation exploration
• Mid-measurement, DQC … published soon

BQSKit is useful during NISQ and Beyond



1. Domain science benchmark specifications (e.g. what error 
can I tolerate? ..)

• Domain constraints may inform compilation 
o What does this benchmark do?
o How to encode into programs/circuits?

2. Scalable circuit generation from domain science specification
• Try generating a > 2048 qubit QFT..
• Algorithms may not parallelize
• Numerical stability problems may lead to approximations, circuit errors

3. It might take a data center to compile a big program

Open Problems



Thank You!
cciancu@lbl.gov

bqskit.lbl.gov

Acknowledgements: DOE ASCR, NERSC
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QFactor – Circuit Tensor Initialization
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QFactor – The Sweep

Remove gate by applying inverse on right
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QFactor – The Sweep

Remove gate by applying inverse on right
Find optimal new value
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QFactor – The Sweep

Put the optimized gate back on the left, keeping the cost function trace value

𝑇𝑟 𝑈!
" ⋅ 𝑢# ⋅⋅⋅ 𝑢$ = 𝑇𝑟 𝑢$ ⋅ 𝑈!

" ⋅ 𝑢# ⋅⋅⋅ 𝑢$'#
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QFactor – The Sweep

After finishing one sweep, repeat in reverse order
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QFactor – Local Optimization

In this context, what is the 
best gate or set of 

parameters for the gate?

𝑇𝑟 𝑈!
" ⋅ 𝑢# ⋅⋅⋅ 𝑢$ = 𝑇𝑟 𝑈& ⋅ 𝑢&


