
Exploring the Quantum Design Space with Circuit
Synthesis

Costin Iancu – Lawrence Berkeley National Laboratory
cciancu@lbl.gov

Team

Ed Younis Wim Lavrijsen Marc Davis Mathias Weiden Alon Kukliansky Ji Liu

Aaron Szasz Justin Kallor Siyuan Niu Bert de Jong

Past:
 Lindsay Bassman
 Xin-Chuan Ryan Wu (Intel)
 Tirthak Patel (Rice)
 Ethan Smith

Roel van Beeumen

Quantum “compilation” infrastructure for NISQ and FT:
• Portable across gates sets (NISQ and FT), QPU architectures
• Supports higher dimension abstractions (multi-qubit gates, qutrits etc.)
• Manipulates circuits in multiple parameterized and concrete encodings
• Provides error mitigation

1. Generates resource efficient circuits
2. Enables hardware and algorithm design exploration

https://github.com/BQSKit - 200K+ downloads
3 IEEE QCE Best Paper Awards (2020, 2021, 2022)

Users:

BQSKit – Berkeley Quantum Synthesis Toolkit

• LANL
• Sandia
• ANL
• ORNL

• U Chicago
• U Kansas
• U Tokyo
• NCSU
• Duke
• CUNY

• AWS - Braket
• Microsoft
• NVIDIA
• UnitaryFund
• HSBC
• ColdQuanta/Infleqtion(Superstaq)

bqskit.lbl.gov

(biss-kit)

https://github.com/BQSKit

4

Turn-key functionality, works “everywhere”

Python 3.8+ on Windows, Mac, Linux
(from laptop to supercomputer)

Any gate set in or out, qubits, qutrits, states, many-states, unitaries
(from experiment to programs)

Configurable Compilation Workflows

5

Turn-key (-O1 .. -O4):
• No user-defined rules

necessary; all gates support
• Simply load a circuit, a

predefined gate set, and
compile to it.

Configurable:
• MachineModel (topology)
• ir.gates (gate set)
• Compile()

(transformation workflow)

Berkeley Quantum Synthesis Toolkit Tutorial

6

github.com/bqskit/bqskit-tutorial

7

Mathematical
Representations

Function: fixed
Structure: none

8

Concrete
Quantum Circuits

Mathematical
Representations

Function: fixed
Structure: none

Function: fixed
Structure: fixed
non-unique

9

Parameterized
Program Templates

Function: variable
Structure: variable

Mathematical
Representations

Function: fixed
Structure: none

Function: fixed
Structure: fixed
non-unique

Concrete
Quantum Circuits

10

Parameterized Circuit
Templates

Mathematical
Representations

Concrete
Quantum Circuits

Parameterized qubit
gates (U3, RZ, B...)

Fixed gates (CNOT, iSWAP..)

Arbitrary Atomic Unit

• Unitary

• Pauli operators

the Qsearch tree.
2) As the number of partial solutions and their eval-

uations may hamper scalability, we conflate the
numerical optimization and search problem. We do
this by using a continuous circuit space. At each
step, the circuit is expanded by one layer. Given an
n-qubit circuit, a layer encodes an arbitrary m-qubit
operation on any m-qubits, with m < n. Thus, our
formulation does not having a branching factor and
solves combinatorially less optimization problems.

3. Gate and Circuit Representations

QFAST models a circuit as a sequence of parameterized
gates. Each gate has a function (hence a size), and a location.

The function encodes the operation (quantum transfor-
mation) performed on an associated number of qubits. When
operating with a gate whose function is parameterized, we
refer to it as a variable function gate. Whenever gate pa-
rameterization is numerically instantiated, the gate becomes
fixed function.

The location describes the set of qubits a gate is applied
on, as placed in a larger circuit. A variable location m-
qubit gate is associated with a set of n-qubits, n > m. In
this case the gate can be applied to any valid subset of m-
qubits from the total n-qubits defined by the target topology.
A fixed location m-qubit gate operates on exactly m-qubits.

The QFAST algorithm uses two parameterizations: vari-
able function with fixed location gates, and variable function
with variable location gates. The second parameterization
allows us to conflate search and optimization. In this section,
we first describe how we encode gate variable function in a
fixed size gate. Then we build on the function encoding to
encode variable location.

3.1. Encoding of Gate Function

A gate’s function is given by a unitary matrix. As
such, encoding gate function is equivalent to structuring the
unitary group. Conveniently, the unitary group U(2n) is a
Lie group. It’s Lie algebra u(2n) is the set of 2n⇥2n skew-
Hermitian matrices. Using the Pauli group as generators for
Hermitian matrices, we can construct the unitary group in
the following way:

U(2n) = {ei(~↵· ~�⌦n) | ~↵ 2 R4n}

where ~� = {�i,�x,�y,�z} are the Pauli matrices, and
~�
⌦n = {�j ⌦ �k | �j 2 ~�,�k 2 ~�

⌦n�1} are the n-qubit
Pauli strings.

This provides a useful parameterization of unitary op-
erations on n-qubits. We can then define an n-qubit gate’s
function with 2n parameters as:

G(~↵) = e
i(~↵· ~�⌦n)

This unitary-valued function is smooth and infinitely-
differentiable. Its derivative is given by the derivative of the

exponential map [43], but when evaluating QFAST, we used
the Padé approximation method with scaling and squaring
[11] to compute the derivative.

3.2. Encoding of Gate Location

A gate’s location determines which qubits it affects. One
simple way to encode a fixed location is to map the Pauli
strings that define the gate function to higher-order ones.

Given Q a fixed m-qubit location on an n-qubit circuit
— a m-length sequence of qubit indicies that are all less
than n — we define a map from m-qubit Pauli strings to
n-qubit Pauli strings:

⇡Q : ~�⌦m �! ~�
⌦n

This map inserts n�m identities into the m-qubit Pauli
string in positions not specified in the location. For example,
if we are given a 2-qubit location Q = (0, 1) on a 3-qubit
circuit, then ⇡Q(XX) = XXI . If instead, Q = (0, 2), then
⇡Q(XX) = XIX .

This leads to a parameterization of an m-qubit gate with
variable function and a fixed location on an n-qubit circuit.

F (Q, ~↵) = exp(i(~↵ · ⇡Q(~�⌦m)))

If instead of a fixed location, we want variable location,
given a set of valid locations, we can simply multiplex all
possible locations. For example, if we want a formulation
of a gate with variable function that affects either qubits
Q0 = (0, 1) or qubits Q1 = (1, 2), we simply write:

exp(i[l0(~↵ · ⇡Q0(
~�⌦m)) + l1(~↵ · ⇡Q1(

~�⌦m))])

Here either l0 or l1 is 1 and the other is 0. If l0 is
one, then the formulation chooses the location given by
Q0. Likewise, if l1 is one, then the formulation chooses the
location given by Q1. This can be extended to any number
of possible locations ~Q:

V (~Q, ~↵,~l) = exp(i
X

Q2~Q

lQ · ~↵ · ⇡Q(~�⌦m))

3.3. Direct Mapping of Pauli Strings

Using the variable function with fixed location F (Q, ~↵)
and the variable location and function V (~Q, ~↵,~l) gates, it is
enough to implement an algorithm that replaces search with
numerical optimization as shown in our first unpublished
version of QFAST [54], [55].

In this formulation, we solve a mixed integer-real op-
timization problem, where the location and the associated

Qutrits, qudits, multi-qubit SU(n),
mixed radix…

11

Numerical Instantiation with

circuit.instantiate(target)

Instantiation: Given a parameterized quantum circuit
 and a target unitary , solve

General instantiation
workflow enables the

optimization, synthesis, and
transpilation of quantum

circuits

we recorded a circuit with 3970 two-qubit gates, which is a
51% reduction over Cirq’s circuit with 8064 two-qubit gates.

When examining the execution time overhead, we observe
an average slowdown of 14⇥; however, we demonstrate the
tunability of our algorithms by speeding up a specific execu-
tion by 13⇥ while only reducing quality by 0.6%.

The following intuition provides an explanation for the
quality of our results. During circuit optimization, the available
compilers use a sequence of rule-based peephole transfor-
mations, where at each step, the circuit is only transformed
locally. Similarly, for transpilation, they form two-qubit blocks
and either apply rule-based translations or KAK-based de-
compositions. In contrast, a circuit undergoes many global
transformations with our approach.

Overall, we believe that the results indicate that instanti-
ation can be easily and safely incorporated as a step in the
compilation workflow. The ability to transpile algorithms well
between native gate sets enables interesting architectural com-
parisons. For example, most circuits transpiled to

p
iSWAP

and Sycamore gates required more gates than in other gate-
sets. On the other hand, due to the low gate latency [15], these
long circuits may still yield faster execution and potentially
less error.

The rest of this paper is structured as follows. In Section II,
we introduce parameterized circuit instantiation and provide
a brief survey of it in compiler literature. Then we describe
our optimization and retargeting algorithms in Section III. We
include our experimental setup and verification procedure in
Section IV and evaluate the algorithms in Section V. Lastly, we
discuss the results in Section VI and conclude in Section VII.

II. PARAMETERIZED CIRCUIT INSTANTIATION

Instantiation is the process of finding the parameters for a
circuit’s gates that make it to most closely implement a target
unitary. Techniques that perform instantiation are ubiquitously
deployed in quantum compiler toolchains. The formal problem
definition is given by:
Parameterized Circuit Instantiation Problem: Given a pa-
rameterized quantum circuit C : Rk 7! U(N) and a target
unitary V 2 U(N), solve for

argmax
↵

tr(V †C(↵))

where k is the number of gate parameters in the circuit, and
U(N) is the set of all N⇥N unitary matrices. This definition
is very general and considers the parameterized circuit as a
parameterized unitary operator, see Figure 1. The tr(V †C(↵))
component measures the Hilbert-Schmidt inner product, which
physically represents the overlap between the target unitary
and the circuit’s operator. The maximum value this can have
is equal to N the dimension of the matrix, and this occurs
when C(↵), the unitary of the circuit with gate parameters ↵,
is equivalent to V the target unitary up to a global phase.

The most common form of instantiation is the KAK [13] de-
composition, which uses analytic methods to produce the two-
qubit circuit that implements any two-qubit unitary. Compilers

Fig. 1: This is an example of a parameterized quantum circuit on the left.
It is composed of three-parameter universal single-qubit rotations and two-
qubit CNOT gates. For simulatable circuits, we can represent the circuit by its
unitary operator shown on the right, which is calculated by tensor contraction
of all of its gates. Furthermore, we can represent parameterized circuits by a
parameterized unitary C(↵), which can be instantiated to some other unitary
V by solving for the parameters ↵ that maximize the overlap of C(↵) and
V . This can be accomplished with analytic methods in specific cases and
gradient descent or other numerical methods in the general case. The text
describing a parameterized single-qubit rotation will be left out in the other
figures; a box on a single wire depicts a generic parameterized single-qubit
gate.

have used this decomposition to optimize long sequences of
operations. This is done by first grouping together consecutive
gates on a pair of qubits, then calculating the unitary imple-
mented by the grouped gates, and finally applying the KAK
decomposition to convert to a potentially shorter sequence of
gates.

For every universal gate-set, the KAK decomposition can
yield a parameterized circuit, to which it can instantiate any
two-qubit unitary. Therefore, applying the KAK decomposi-
tion to retarget a circuit’s gate-set is also possible. Once a
template is discovered in the desired gate-set, it can be utilized
similarly to the optimization procedure to convert grouped
gates to gates of a different type. However, producing a circuit
template when designing a new gate-set may be nontrivial.

Recently, bottom-up approaches to quantum synthesis have
been successful through numerical instantiation [7], [8], [9],
[10], [11], [16]. Rather than fixed mathematical identities,
these techniques employ a numerical optimizer to closely
approximate a solution to the instantiation problem. This is
done by minimizing a cost function, often the unitary error or
distance between the circuit’s unitary and a target unitary. This
is given by the following formula using the same notation as
before.

�(C(↵), V) = 1� |tr(V †C(↵))|
N

Other variations of this distance function include:

�f (C(↵), V) = 1� Re(tr(V †C(↵)))

N

and

�p(C(↵), V) =

r
1� |tr(V †C(↵))|2

N2

All three methods have a range of [0, 1], and as they
approach zero, the circuit’s unitary approaches V. For the rest
of our paper, we refer to the unitary distance or error as �,
the first formulation.

we recorded a circuit with 3970 two-qubit gates, which is a
51% reduction over Cirq’s circuit with 8064 two-qubit gates.

When examining the execution time overhead, we observe
an average slowdown of 14⇥; however, we demonstrate the
tunability of our algorithms by speeding up a specific execu-
tion by 13⇥ while only reducing quality by 0.6%.

The following intuition provides an explanation for the
quality of our results. During circuit optimization, the available
compilers use a sequence of rule-based peephole transfor-
mations, where at each step, the circuit is only transformed
locally. Similarly, for transpilation, they form two-qubit blocks
and either apply rule-based translations or KAK-based de-
compositions. In contrast, a circuit undergoes many global
transformations with our approach.

Overall, we believe that the results indicate that instanti-
ation can be easily and safely incorporated as a step in the
compilation workflow. The ability to transpile algorithms well
between native gate sets enables interesting architectural com-
parisons. For example, most circuits transpiled to

p
iSWAP

and Sycamore gates required more gates than in other gate-
sets. On the other hand, due to the low gate latency [15], these
long circuits may still yield faster execution and potentially
less error.

The rest of this paper is structured as follows. In Section II,
we introduce parameterized circuit instantiation and provide
a brief survey of it in compiler literature. Then we describe
our optimization and retargeting algorithms in Section III. We
include our experimental setup and verification procedure in
Section IV and evaluate the algorithms in Section V. Lastly, we
discuss the results in Section VI and conclude in Section VII.

II. PARAMETERIZED CIRCUIT INSTANTIATION

Instantiation is the process of finding the parameters for a
circuit’s gates that make it to most closely implement a target
unitary. Techniques that perform instantiation are ubiquitously
deployed in quantum compiler toolchains. The formal problem
definition is given by:
Parameterized Circuit Instantiation Problem: Given a pa-
rameterized quantum circuit C : Rk 7! U(N) and a target
unitary V 2 U(N), solve for

argmax
↵

tr(V †C(↵))

where k is the number of gate parameters in the circuit, and
U(N) is the set of all N⇥N unitary matrices. This definition
is very general and considers the parameterized circuit as a
parameterized unitary operator, see Figure 1. The tr(V †C(↵))
component measures the Hilbert-Schmidt inner product, which
physically represents the overlap between the target unitary
and the circuit’s operator. The maximum value this can have
is equal to N the dimension of the matrix, and this occurs
when C(↵), the unitary of the circuit with gate parameters ↵,
is equivalent to V the target unitary up to a global phase.

The most common form of instantiation is the KAK [13] de-
composition, which uses analytic methods to produce the two-
qubit circuit that implements any two-qubit unitary. Compilers

Fig. 1: This is an example of a parameterized quantum circuit on the left.
It is composed of three-parameter universal single-qubit rotations and two-
qubit CNOT gates. For simulatable circuits, we can represent the circuit by its
unitary operator shown on the right, which is calculated by tensor contraction
of all of its gates. Furthermore, we can represent parameterized circuits by a
parameterized unitary C(↵), which can be instantiated to some other unitary
V by solving for the parameters ↵ that maximize the overlap of C(↵) and
V . This can be accomplished with analytic methods in specific cases and
gradient descent or other numerical methods in the general case. The text
describing a parameterized single-qubit rotation will be left out in the other
figures; a box on a single wire depicts a generic parameterized single-qubit
gate.

have used this decomposition to optimize long sequences of
operations. This is done by first grouping together consecutive
gates on a pair of qubits, then calculating the unitary imple-
mented by the grouped gates, and finally applying the KAK
decomposition to convert to a potentially shorter sequence of
gates.

For every universal gate-set, the KAK decomposition can
yield a parameterized circuit, to which it can instantiate any
two-qubit unitary. Therefore, applying the KAK decomposi-
tion to retarget a circuit’s gate-set is also possible. Once a
template is discovered in the desired gate-set, it can be utilized
similarly to the optimization procedure to convert grouped
gates to gates of a different type. However, producing a circuit
template when designing a new gate-set may be nontrivial.

Recently, bottom-up approaches to quantum synthesis have
been successful through numerical instantiation [7], [8], [9],
[10], [11], [16]. Rather than fixed mathematical identities,
these techniques employ a numerical optimizer to closely
approximate a solution to the instantiation problem. This is
done by minimizing a cost function, often the unitary error or
distance between the circuit’s unitary and a target unitary. This
is given by the following formula using the same notation as
before.

�(C(↵), V) = 1� |tr(V †C(↵))|
N

Other variations of this distance function include:

�f (C(↵), V) = 1� Re(tr(V †C(↵)))

N

and

�p(C(↵), V) =

r
1� |tr(V †C(↵))|2

N2

All three methods have a range of [0, 1], and as they
approach zero, the circuit’s unitary approaches V. For the rest
of our paper, we refer to the unitary distance or error as �,
the first formulation.

we recorded a circuit with 3970 two-qubit gates, which is a
51% reduction over Cirq’s circuit with 8064 two-qubit gates.

When examining the execution time overhead, we observe
an average slowdown of 14⇥; however, we demonstrate the
tunability of our algorithms by speeding up a specific execu-
tion by 13⇥ while only reducing quality by 0.6%.

The following intuition provides an explanation for the
quality of our results. During circuit optimization, the available
compilers use a sequence of rule-based peephole transfor-
mations, where at each step, the circuit is only transformed
locally. Similarly, for transpilation, they form two-qubit blocks
and either apply rule-based translations or KAK-based de-
compositions. In contrast, a circuit undergoes many global
transformations with our approach.

Overall, we believe that the results indicate that instanti-
ation can be easily and safely incorporated as a step in the
compilation workflow. The ability to transpile algorithms well
between native gate sets enables interesting architectural com-
parisons. For example, most circuits transpiled to

p
iSWAP

and Sycamore gates required more gates than in other gate-
sets. On the other hand, due to the low gate latency [15], these
long circuits may still yield faster execution and potentially
less error.

The rest of this paper is structured as follows. In Section II,
we introduce parameterized circuit instantiation and provide
a brief survey of it in compiler literature. Then we describe
our optimization and retargeting algorithms in Section III. We
include our experimental setup and verification procedure in
Section IV and evaluate the algorithms in Section V. Lastly, we
discuss the results in Section VI and conclude in Section VII.

II. PARAMETERIZED CIRCUIT INSTANTIATION

Instantiation is the process of finding the parameters for a
circuit’s gates that make it to most closely implement a target
unitary. Techniques that perform instantiation are ubiquitously
deployed in quantum compiler toolchains. The formal problem
definition is given by:
Parameterized Circuit Instantiation Problem: Given a pa-
rameterized quantum circuit C : Rk 7! U(N) and a target
unitary V 2 U(N), solve for

argmax
↵

tr(V †C(↵))

where k is the number of gate parameters in the circuit, and
U(N) is the set of all N⇥N unitary matrices. This definition
is very general and considers the parameterized circuit as a
parameterized unitary operator, see Figure 1. The tr(V †C(↵))
component measures the Hilbert-Schmidt inner product, which
physically represents the overlap between the target unitary
and the circuit’s operator. The maximum value this can have
is equal to N the dimension of the matrix, and this occurs
when C(↵), the unitary of the circuit with gate parameters ↵,
is equivalent to V the target unitary up to a global phase.

The most common form of instantiation is the KAK [13] de-
composition, which uses analytic methods to produce the two-
qubit circuit that implements any two-qubit unitary. Compilers

Fig. 1: This is an example of a parameterized quantum circuit on the left.
It is composed of three-parameter universal single-qubit rotations and two-
qubit CNOT gates. For simulatable circuits, we can represent the circuit by its
unitary operator shown on the right, which is calculated by tensor contraction
of all of its gates. Furthermore, we can represent parameterized circuits by a
parameterized unitary C(↵), which can be instantiated to some other unitary
V by solving for the parameters ↵ that maximize the overlap of C(↵) and
V . This can be accomplished with analytic methods in specific cases and
gradient descent or other numerical methods in the general case. The text
describing a parameterized single-qubit rotation will be left out in the other
figures; a box on a single wire depicts a generic parameterized single-qubit
gate.

have used this decomposition to optimize long sequences of
operations. This is done by first grouping together consecutive
gates on a pair of qubits, then calculating the unitary imple-
mented by the grouped gates, and finally applying the KAK
decomposition to convert to a potentially shorter sequence of
gates.

For every universal gate-set, the KAK decomposition can
yield a parameterized circuit, to which it can instantiate any
two-qubit unitary. Therefore, applying the KAK decomposi-
tion to retarget a circuit’s gate-set is also possible. Once a
template is discovered in the desired gate-set, it can be utilized
similarly to the optimization procedure to convert grouped
gates to gates of a different type. However, producing a circuit
template when designing a new gate-set may be nontrivial.

Recently, bottom-up approaches to quantum synthesis have
been successful through numerical instantiation [7], [8], [9],
[10], [11], [16]. Rather than fixed mathematical identities,
these techniques employ a numerical optimizer to closely
approximate a solution to the instantiation problem. This is
done by minimizing a cost function, often the unitary error or
distance between the circuit’s unitary and a target unitary. This
is given by the following formula using the same notation as
before.

�(C(↵), V) = 1� |tr(V †C(↵))|
N

Other variations of this distance function include:

�f (C(↵), V) = 1� Re(tr(V †C(↵)))

N

and

�p(C(↵), V) =

r
1� |tr(V †C(↵))|2

N2

All three methods have a range of [0, 1], and as they
approach zero, the circuit’s unitary approaches V. For the rest
of our paper, we refer to the unitary distance or error as �,
the first formulation.

...

Configurable objective functions

12

Unitary Synthesis: Generation and Optimization

Consider tree of possible circuits that can
implement an unitary

Transformation algorithm implements search on
tree, instantiate at each step
• Generation: build circuits bottom-up, e.g. synthesis
• Optimization: process top-down, e.g. delete gate

Stop when finding the first “good” solution (multi-
objective)
• Gate count (e.g. CNOT, Clifford+T etc.)
• Depth, gate parallelism
• Heterogenous gates mix
• Defects, patterns

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

Generation

Optimization

13

Scaling With Qubits

• Unitary instantiation has width/depth limits
o QFactor scales to 12 (+) qubits!

• Wide circuits are broken into manageable panels
o Each panel has an associated partitioned unitary
o In practice, partitions/panels of 3 qubits are a good tradeoff

quality vs runtime overhead

Partitioned unitaries are
taken from circuit panels

Circuit partitions
can be handled

independently and
in parallel

2K qubits already
demonstrated J

● QSearch – 3-4 qudits, optimal

● LEAP – 4-6 qudits

● QFAST – 6-7 qudits

● QPredict - 6-12+ qudits

● PAS – 3 qudits

● Optimization (re-synthesis, gate
deletion)

● Mapping/Routing (Generalized
SABRE, PAM)

● Approximations (QuEST)

● Gate Set Retargeting

Instantiation-Based Algorithms in BQSKit

14

Direct Unitary
Synthesis

Instantiation

Workflows,

Transformations
…

1000s
 qubits

Support for Circuit Verification

15

• Small circuits can have their
error directly calculated

• In most of our publications
we target 10-10 instantiation
verification error, most often
is less

• Larger circuits can be first
partitioned into large
simulatable sections, then
summing the section errors
gives a tighter upper bound
on total error

Direct instantiation

Direct simulation

For our ”additive error” objective functions…

16

Circuit Optimization, Mapping and Transpilation
(aka Topology Aware Synthesis)

Hardware is Diverse: Portability

17

Google IBM Intel IonQ Rigetti

• Each chip has a native gate set
• Single qubit: parameterized rotations
• Two qubit: CNOT, Syc..

• Each chip has a constrained qubit
interconnection topology
• Ring, array, tree

Resources == Performance

Number of gates and circuit depth are
direct measures of performance.

18

Constrained Resources == Capability

Coherence time imposes hard
limit on circuit depth

0 200 400

depth

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
at

ion
va

lue

Depolarizing decay
Identity

GE rotation

EF rotation

Hadamard

Ide
nti

ty

GE
rot

ati
on

EF
rot

ati
on

Had
am

ard
10°4

10°3

10°2

Er
ro

rp
er

ga
te

Error per gate

Error accumulates over time,
reducing depth limit

Long depth circuits produce
erroneous results

…

QITE

TFIM

Resource Optimization
(gates, depth etc.)

Performance Enhancer + Capability Provider

19

• Optimal 3-qubit QFT (analytic):
6 CNOTs

• Optimal mapping (OLSQ[2]):
9 CNOTs

Tan, B. et al, Optimal layout synthesis for quantum computing ICCAD. 2020.

Generating 3-qubit QFT (for Linear Architecture)

20

QFT3 Synthesis and Mapping

• Optimal mapping (OLSQ):
9 CNOTs

• QSearch synthesis:
6 CNOTs

• Permutation Aware Synthesis:

5 CNOTs

21

Permutation-aware synthesis (PAS)

1. Generate all input-output qubit permutations
2. Communication ”absorbed” at unitary level

Caption

22

Scaling: Permutation-aware Mapping (PAM)

23

Example: Mapping to IBM’s 127-qubit Eagle Chip

CNOT reduction (MAX/AVG)

• 78% / 33% MQT (QMAP)
• 68% / 18% Qiskit
• 36% / 9% Tket
• 67% / 21% BQSKit

IBM (copyright)

24

Mapping on a Fully-Connected (all-to-all) Device

Most compilers may not change circuit when mapping is already legal.
(e.g. from restricted → all-to-all).

QUANTUM CIRCUIT OPTIMIZATION AND TRANSPILATION VIA PARAMETERIZED
CIRCUIT INSTANTIATION

25

Scientific Achievement
Leverage parameterized circuit instantiation via numerical optimization to
achieve improved circuit optimization and gate-set transpilation, leading to
significant reductions in gate counts, enhanced circuit quality, and greater
portability between quantum processors. Solution scales to 1000s of qubits.

Significance and Impact
Gate deletion and rule-free gate transpilation algorithms enable automatic
transformations of quantum circuits between any gate-sets, eliminating the need
for manual user-defined rules, greatly improving quantum program portability
and reducing barriers to entry for gate-set exploration studies. All algorithms are
released as part of the BQSKit code. BQSKit significantly outperforms
commercial compilers (Qiskit, Cirq, Tket).

In gate set transpilation, one native 2-qubit gate is replaced with a series of
templates implemented in the new target gate set. Instantiation is used to select
the shortest suitable template. Partial solutions are expressed in a combination of
gate sets and globally optimized. When comparing to traditional compilers BQSKit
eliminates the need for theoretical gate-per-gate decomposition rules and
provide better quality circuits.

Technical Approach
• Numerical optimization of circuits is leveraged to transform circuits.
• We remove or change gates and reinstantiate the remaining to

accommodate for the lost or transformed gate.
• Circuit partitioning techniques are used to scale to 1000s of qubits/qudits.

PI: Costin Iancu; Berkeley Lab POC: Ed Younis
ASCR Program: AQRC (AIDE-QC)
ASCR PM: Ceren Susut-Bennett
Publication(s) for this work: Ed Younis, Costin Iancu. “Quantum Circuit Optimization and Transpilation
via Parameterized Circuit Instantiation,” IEEE International Conference on Quantum Computing and
Engineering (QCE) (2022): IEEE. doi:10.1109/QCE53715.2022.00068.
Code Developed or Datasets: https://github.com/bqskit/bqskit

https://github.com/bqskit/bqskit

Transpilation and Gate Set Portability

26

Specialized algorithms for gate set transpilation, more powerful than 1-1 translation/rewriting rule in most
compilers

E. Younis et al., “Quantum Circuit Optimization and Transpilation via Parameterized Circuit Instantiation,”
 in 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2022

27

The power of circuit synthesis and instantiation
comes from the ability to do configurable global

optimization on programs

1. M.Davis et al., “Towards Optimal Topology Aware Quantum Circuit Synthesis,” in 2020 IEEE
QCE. (Best Paper Award)

2. E. Younis et al, “QFast: Conflating Search and Numerical Optimization for Scalable Quantum
Circuit Synthesis,” in 2021 IEEE QCE. (Best Paper Award)

3. E. Younis et al., “Quantum Circuit Optimization and Transpilation via Parameterized Circuit
Instantiation,” in 2022 IEEE QCE.

4. X.C. Wu et al, “Reoptimization of Quantum Circuits via Hierarchical Synthesis,” in 2021 IEEE
International Conference on Rebooting Computing (ICRC), IEEE, 2021

5. T. Patel et al, “QUEST: Systematically Approximating Quantum Circuits for Higher Output
Fidelity”, ASPLOS 2022

6. J. Liu et al, “Tackling the Qubit Mapping Problem with Permutation-Aware Synthesis”, IEEE
QCE 2023

29

Handling Higher Dimension Objects
(multi-qubit gates, qutrits etc.)

Alon Kukliansky et al. “QFactor: A Domain-Specific Optimizer for Quantum Circuit
Instantiation”. IEEE QCE 2023

QFactor: A Domain-Specific Optimizer for Quantum Circuit Instantiation

30

Scientific Achievement Novel domain-specific algorithm for numerical
optimization used by quantum circuit instantiation, synthesis, and compilation
methods. QFactor uses a tensor network formulation together with analytic
methods and an iterative local optimization algorithm to reduce the number of
problem parameters.

Significance and Impact The formulation is amenable to portable
parallelization across CPU and GPU architectures, challenging in general purpose
optimizers (GPO). QFactor achieves exponential memory and performance savings
with optimization success rates similar to GPOs. QFactor can process directly
circuits with more than 12 qubits. We enable BQSKit optimizations of 100+ qubit
circuits to scale out linearly with the hardware resources allocated for compilation in
GPU environments.

Average instantiation time normalized to QF-JAX instantiation time
(left-hand side y-axis), together with normalized success rate (right-
hand side y-axis), showing the strength of QF actor for larger circuits. Technical Approach

• Tensor network formulation enables the algorithm to work with whole unitaries.
Drastically reduced total number of optimized parameters compared to GPOs.

• CPU-based implementation written in Rust, together with a Python
implementation written using JAX , portable across CPUs and GPUs.

PI: Costin Iancu; Berkeley Lab POC: Costin Iancu
ASCR Program: AQRC (AIDE-QC)
ASCR PM: Ceren Susut-Bennett
Publication(s) for this work: Alon Kukliansky et al. “QFactor: A Domain-Specific Optimizer for Quantum
Circuit Instantiation”. IEEE QCE 2023
Code Developed or Datasets: https://github.com/bqskit/bqskit

QFactor benefits from
GPU acceleration and
enables good strong
scaling for compilation
workflows.

https://github.com/bqskit/bqskit

31

ℰ!

In this context, what is the best gate
or set of parameters for the gate?

𝑇𝑟 𝑈!
" ⋅ 𝑢# ⋅⋅⋅ 𝑢$ = 𝑇𝑟(ℰ% ⋅ 𝑢&)

Environment
matrix

QFactor Enables Scalability

Tensor network formulation allows
• Handling of arbitrary sized unitaries as single parameter
• GPU acceleration and parallelization

𝑢!!"# = 𝑌𝑋"

ℰ# = 𝑋𝐷𝑌"

BQSKit Supports Qutrits, Qudits etc.

Black Hole Information Scrambling

CSUM|&, (⟩=|&, & + (mod	3⟩

SUM

Cphase|&, (⟩ =6!"|&, (⟩

7

1

7#

2

		8 		8$

Hadamard Hadamard

=

Qutrit synthesis using CSUM and parameterized
single qutrit gates

M.S. Blok et al. “Quantum Information Scrambling on a Superconducting Qutrit Processor”. Phys. Rev. X 11, 021010, 2021

33

Portability and Hardware Design Studies
(Quantum Roofline?)

“Where should I run my algorithm?”
“How can I improve my machine?”

Tr
an

sp
ile

d
Ra

tio
 to

 C
N

OT

De
pt

h
Co

un
t

34

1. Gates have different expressive power
2. Gates have different fidelity, latency
3. Chips have different topology

Fidelity models:

1. Gate count

𝑭 = 	 $
𝒊"𝟏,𝟐

𝒇𝒊𝒏

1. Depth…

2. Depth and parallelism…

𝒊

Depth,
parallelism

Given optimal circuits, I can ask:

What is the better architecture (gates, topology) for a class of algorithms?

Which 2-qubit gate can provide higher fidelity?

1-q fidelity =0.999

Sycamore is better

CZ is better

It depends on algorithm,
circuit

36

Sycamore is better

CZ is better

It depends on algorithm,
circuit

Which 2-qubit gate can provide higher fidelity?

1-q fidelity = 0.999

1-q fidelity = 0.9995 > 0.999

Avg NISQ 1q
gate fidelity

Threshold >> NISQ
fidelity

1q gate count
 matters

NISQ fidelity >> Threshold
1q gate count DOES NOT matter

When do 1-q gates matter?
(independent of 2-q fidelity)

Algorithm dependent
range shrinks

37

Avg NISQ 1q gate fidelity

Threshold ≫ NISQ fidelity

1q gate count
 matters

NISQ fidelity ≫ Threshold

1q gate count DOES NOT matter

When do 1-q gates matter?
(independent of 2-q fidelity)

38

Algorithm Exploration for NISQ and Beyond

1. Circuit Approximations (Error mitigation and Performance)
• Wilson et al. "Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices.”, in SC 2021
• T. Patel et al, “QUEST: Systematically Approximating Quantum Circuits for Higher Output Fidelity”, ASPLOS 2022

2. Discover Algorithm Generators
• M. Weiden et al, “Improving Quantum Circuit Synthesis with Machine Learning”, in 2023 IEEE QCE.
• L. Bassman et al, “Constant-Depth Circuits for Free-Fermion Dynamic Simulations on Quantum Computers,” Mat.

Theory 6, 13 (2022)

39

Why Approximate Quantum Circuits?

● Approximations can minimize the
number of gates (circuit depth)

○ Circuits up to 2X shorter can produce the same quality output and
have better fidelity on NISQ devices

○ Circuits will run faster in FT devices

● Approximations are built using process metrics: |U-U’| < 𝜺

● The performance (resources) of a quantum program is determined by the
number of gates

Wilson et al. "Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices." International Conference for High Performance
Computing, Networking, Storage, and Analysis (2021).

QuEST: Robust Generation of Quantum Circuit Approximation
Using Synthesis

T. Patel et al, “QUEST: Systematically Approximating Quantum Circuits for Higher Output Fidelity”, ASPLOS 2022

Funded by DOE ASCR AIDE-QC

Significance and Impact
Resource efficiency is an important measure of circuit performance. Our
technique can be directly used for circuit optimization in NISQ and fault-
tolerant quantum computing. In NISQ, we provide additional capability for very
good error mitigation.

• We show 30%-80% depth reduction on many important algorithms• We show fidelity improvements of 30% on noisy systems, independent of noise level
• The program output is accurate for science purposes• Although computationally intensive, the technique scales up to high qubit counts (up

128 qubits demonstrated)

Research Details
• We use synthesis and circuit partitioning (BQSKit) for circuit generation
• We bound error - theoretical upper bound on HS distance under

partitioning and approximation.

• Apriori approximation selection criteria to ensures high fidelity output
(triangle inequality on Hilbert-Schmidt distance, annealing)

Sampling improves fidelity

Circuit depth reduction

Heisenberg 4

TFIM 4

Scientific Achievement
We provide a sound and scalable method for generating
circuit approximations. Approximations significantly reduce
circuit depth, while providing error mitigation. QuEst provides
an orthogonal technique to randomized compiling.

41

Select “dissimilar” approximations that sample the
approximation space “uniformly”.

42

Depth reduction in the range of 30-90% The output distance to the ground truth is good (< 10-2)

Depth reduction up to 85% for Heisenberg16 Approximations track the ground truth of the 4-spin Heisenberg
on a quantum computer.

TVD=2e-3

Existing approach is empirical, we finally have a
soundness and robustness proof.

Hope to answer:
“ How can I relate my circuit’s output to domain science expectations and

constraints?”

44

Learning Circuit Generating Templates

“Can I discover structure in circuits without domain science knowledge?”

45

Detecting Minimal Generating Templates
Can I predict a good ansatz for any given unitary?

1. Collect a large dataset of unitaries
o Consider unitaries from partitioned circuits

o Suite of algorithms
o Variety of circuit widths

2. Enumerate a finite number of circuit
templates

3. Try instantiating each template given
each unitary

?

{ }
[, , , ,…]

circuit.instantiate(target)

46

Patterns Occur when Algorithms Scale

Histogram of Circuit Templates in TFIMs with 8, 16, and 50 Qubits

Three templates account for 99% of partitioned TFIM circuit
blocks of various widths

8 qubits
 16 qubits
 50 qubits

M. Weiden et al, “Improving Quantum Circuit Synthesis with Machine Learning”, in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2023

TFIM 16 has 99
partitions. 82/99

partitions are
implemented by

this template

47

QFT 12
 Shor 24

Patterns Occur When Algorithms are Composed

QFT 12 is contained in Shor 24 - QFT and IQFT appear 16 times

Histogram of Circuit Templates in QFT 12 and Shor 24

These templates
illustrate that

structure of QFT is
found within the

Shor circuit

48

Algorithms are Different From Random Programs

Partitioned unitaries are
taken from circuit panels

• Principal Component Analysis reveals low
dimensionality of unitaries of interest

128 -> 16, 32
• Implies learning patterns in unitaries is possible

PCA quantifies how much we
can compress these unitaries

49

Learning with Unitaries
§ Neural networks can learn interesting

properties of partitioned unitaries
§ We can train networks to predict the

depth of the minimal template that
implements a unitary

Confusion Matrix of
Predicted Partitioned Unitary

Depths

Autoencoder pre-
trained to do unitary

reconstruction

New task specific
head is finetuned
after pretraining

Architecture and Training

50

A seeded synthesis algorithm that uses machine
learning to predict good seed circuits

QSeed

51

Measuring Speedup and Solution Quality

3.7X Speedup: most synthesis
runs require only one instantiation

call

Similar solution quality: gate counts
very closely match optimal

implementation

52

Measuring Speedup and Solution Quality

Speedup: most synthesis runs
require only one instantiation call

Solution quality: gate counts very
closely match optimal

implementation

QSeed makes an average of 2.4
instantiation calls per unitary

Full bottom-up synthesis requires an
average of 12.1 instantiation calls

53

Measuring Speedup and Solution Quality

Speedup: most synthesis runs
require only one instantiation call

Solution quality: gate counts very
closely match optimal

implementation

QSeed solutions closely match
gate counts of full bottom-up

solutions

54

Verifying Error Thresholds
Error in synthesized unitaries for test benchmarks

remains low ⟹ These are good generators

For many benchmarks,
errors are close to
machine precision

55

Discovering Analytical, Scalable Circuit Generators

“Can I discover circuit, algorithm structure with domain science knowledge?”

Scientific Achievement
A method for generating circuits which are
constant in depth with increasing time-step, thus
enabling dynamic simulations on near-term
quantum computers out to arbitrarily long
simulation times.

Significance and Impact
High-fidelity simulation results for long-time
dynamic simulations of quantum materials can be
obtained on currently available quantum
computers.

N qubits in free fermion model need N(N-1) CNOTS

Constant-Depth Circuits for Free-Fermion Dynamic Simulations on QC

Comparison of simulation results and CX gate count for the TFIM and the XY
model using the constant-depth circuits versus the IBM-compiled circuits.

IBM

Ground Truth

Constant Depth

Bassman, Van Beeumen, Younis, Smith, Iancu, de Jong
Mat. Theory 6, 13 (2022) - 56 -

57

For one-dimensional TFXY, XY, IM and TFIM Hamiltonians of the form

𝐻 𝑡 = 𝐻((+ 𝐻)) + 𝐻* 𝑡 = −𝐽((
+,-

./-

𝜎+(𝜎+0-(− 𝐽) (
+,-

./-

𝜎+
)𝜎+0-

) − ℎ*(𝑡)(
+,-

.

𝜎+*

•Approx. time-evolution operator:

𝑈! 𝑛Δ𝑡 =+
"#$

%

𝑒&"(("")(##)∆,𝑒&"($(%∆,)∆,

• Independent of timestep 𝑡- = 𝑛∆𝑡

•Only gate parameters change
•1-qubit gate complexity: 𝒪(𝑁.)
•CNOT gate complexity: 𝑁(𝑁 − 1)

U2q(n�t) =
U3 • U3 • U3

U3 U3 U3

U3q(n�t) =

U3 • U3 • U3 U3 • U3 • U3

U3 U3 U3 • U3 • U3 U3 U3

U3 U3 U3

U4q(n�t) =

U3 • U3 • U3 U3 • U3 • U3

U3 U3 U3 • U3 • U3 U3 U3 • U3 • U3

U3 • U3 • U3 U3 U3 • U3 • U3 U3 U3

U3 U3 U3 U3 U3 U3

- 57 -

BQSKit finds Constant-depth Circuits for Time-evolution

58- 58 -

Generalization to higher Dimensions (TF)IM, (TF)XY Models Approximate Time-Evolution Matrix

Timestep 1:

U(�t) = e
�i�tHxx e

�i�tHz (�t)

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵) • Rx (✓) •

Rz (↵)

=

G1

G2

G1

G2

G1

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 3

Matchgates
1

Definition

Let the matrices A and B be in SU(2)

A =


p q

r s

�
, B =


w x

y z

�
, det(A) = det(B)

Then the 2-qubit matchgate G (A,B) is defined as follows

G (A,B) =

2

664

p q

w x

y z

r s

3

775

1
Valiant 2002

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 5

U(�t)

G1

G2

G1

G2

G1

U(2�t)

G1 G1

G2 G2

G1 G1

G2 G2

G1 G1

U(3�t)

G1 G1 G1

G2 G2 G2

G1 G1 G1

G2 G2 G2

G1 G1 G1

U(n�t)

G1

· · ·
G1

G2

· · ·
G2

G1

· · ·
G1

G2

· · ·
G2

G1

· · ·
G1

· · ·

=

G G G

G G G

G G G

G G G

G G G

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 4

…

Constant Depth
O(q2)

TFIM Matchgates

G =

2

64

e�i(✓0+✓3) cos
✓1�✓2

2 �iei(✓0�✓3) sin
✓1�✓2

2

cos
✓1+✓2

2 �i sin ✓1+✓2
2

�i sin ✓1+✓2
2 cos

✓1+✓2
2

�ie�i(✓0�✓3) sin
✓1�✓2

2 ei(✓0+✓3) cos
✓1�✓2

2

3

75

G =
Rz (✓0) Rx (⇡/2) • Rx (✓1) • Rx (�⇡/2) Rz (✓3)

Rz (✓0) Rx (⇡/2) Rz (✓2) Rx (�⇡/2) Rz (✓3)

G G = G

R. Van Beeumen (Berkeley Lab) Constant-Depth Circuits for Dynamic Simulation March 16, 2021 7

• Resource efficacy == Performance == Capability
o Optimization
o Transpilation
o Mixed radix primitive support
o Clifford + T support

• Hardware design exploration
• Algorithm design and generation exploration
• Mid-measurement, DQC … published soon

BQSKit is useful during NISQ and Beyond

1. Domain science benchmark specifications (e.g. what error
can I tolerate? ..)

• Domain constraints may inform compilation
o What does this benchmark do?
o How to encode into programs/circuits?

2. Scalable circuit generation from domain science specification
• Try generating a > 2048 qubit QFT..
• Algorithms may not parallelize
• Numerical stability problems may lead to approximations, circuit errors

3. It might take a data center to compile a big program

Open Problems

Thank You!
cciancu@lbl.gov

bqskit.lbl.gov

Acknowledgements: DOE ASCR, NERSC

62

67

QFactor – Circuit Tensor Initialization

68

QFactor – The Sweep

Remove gate by applying inverse on right

69

QFactor – The Sweep

Remove gate by applying inverse on right
Find optimal new value

70

QFactor – The Sweep

Put the optimized gate back on the left, keeping the cost function trace value

𝑇𝑟 𝑈!
" ⋅ 𝑢# ⋅⋅⋅ 𝑢$ = 𝑇𝑟 𝑢$ ⋅ 𝑈!

" ⋅ 𝑢# ⋅⋅⋅ 𝑢$'#

71

QFactor – The Sweep

After finishing one sweep, repeat in reverse order

72

QFactor – Local Optimization

In this context, what is the
best gate or set of

parameters for the gate?

𝑇𝑟 𝑈!
" ⋅ 𝑢# ⋅⋅⋅ 𝑢$ = 𝑇𝑟 𝑈& ⋅ 𝑢&

