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BQSKit — Berkeley Quantum Synthesis Toolkit

(biss-kit)

Quantum “compilation” infrastructure for NISQ and FT:

®* Portable across gates sets (NISQ and FT), QPU architectures

® Supports higher dimension abstractions (multi-qubit gates, qutrits etc.)
® Manipulates circuits in multiple parameterized and concrete encodings
® Provides error mitigation

1. Generates resource efficient circuits
2. Enables hardware and algorithm design exploration

https://github.com/BQSKit - 200K+ downloads
3 IEEE QCE Best Paper Awards (2020, 2021, 2022)

bgskit.lbl.gov

Users:
* LANL . U Chicago . AWS - Braket
e Sandia . U Kansas . Microsoft
« ANL . U Tokyo . NVIDIA
« ORNL . NCSU . UnitaryFund
. Duke . HSBC

CUNY «  ColdQuanta/Infleqtion(Superstaq)


https://github.com/BQSKit

Turn-key functionality, works “everywhere”

Python 3.8+ on Windows, Mac, Linux
(from laptop to supercomputer)

Any gate set in or out, qubits, qutrits, states, many-states, unitaries
(from experiment to programs)

pip tnstall bgsktit

bgsk1it

out_ctircuitt = bgskit.compile(circutit)
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Configurable Compilation Workflows

bgskit Circuit Turn-key (-01 " -04):

* No user-defined rules
necessary; all gates support

» Simply load a circuit, a

bgskit MachineModel predefined gate set, and

bgskit.ir.gates CZGate, U3Gate compile to it.

gate _set = {CZGate(), U3Gate()}

circuit = Circuit.from_file('in.qgasm’)

Configurable:

* MachineModel (topology)

* ir.gates (gate set)
bgskit compile * Compile ()

out_circuit = compile(circuit, model) (transformation workflow)

model = MachineModel (64, gate_set=gate set)

out_circuit.save('out.gasm’)
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Berkeley Quantum Synthesis Toolkit Tutorial

B° SKit

github.com/bgskit/bgskit-tutorial
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Mathematical

Representations

Function: fixed
Structure: none
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Mathematical

Representations

Function: fixed
Structure: none

Concrete
Quantum Circuits
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Function: fixed
Structure: fixed
non-unique
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Function: fixed
Structure: none

Concrete
Quantum Circuits

Mathematical
Representations
4 . )
U=eiH
o b e
2000
\ <H> )
—{ ] [ ]
—{ oL K - [
—{1 valll Svg il o

Parameterized
Program Templates

Function: variable
Structure: variable

]

Function: fixed
Structure: fixed
non-unique
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Mathematical Concrete

Representations Quantum Circuits
4 . )
U=t i i
o b e
2000
\ <H> y

Parameterized qubit
gates (U3, RZ, B...)

Arbitrary Atomic Unit

W2 0 0 2
. 11 0 1—i 1—4 0
o Unltal'y 2|:i o) 0 0 \/i

Fixed gates (CNOT, iSWAP..)

0 —-14+21-2 0

* Pauli operators

Qutrits, qudits, multi-qubit SU(), Parameterized Circuit F(Q, &) = exp(i(@ - g (a®™)))
mixed radix... Templates
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Numerical Instantiationwith B SKit

N\ Configurable objective functions

Instantiation: Given a parameterized quantum circuit R (VO

. Cla),V)=1—-— ——1 =
C:R"— U(N) and a target unitary V € U(N), solve (v o)
Ap(C(a), V) =1— fnrettrtv &a)))

.'. N

argmax tr(V'C(«a)) RN e 7

P ) N2

\_ . J

2|-iv2 0 0 V2

0 —1+il-4 0
Instantiation * *

K circuit.instantiate(target) )
@
acceptable?
Yes J 140 b )

Synthesized Circuit

[|:z\/§ 0 0 2]\
1] 0 1—i 1—i 0

Extend Circuit
Template
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Unitary Synthesis: Generation and Optimization

Consider tree of possible circuits that can
implement an unitary

Transformation algorithm implements search on
tree, instantiate at each step

® Generation: build circuits bottom-up, e.g. synthesis
¢ Optimization: process top-down, e.g. delete gate

Stop when finding the first “good” solution (multi-
objective)

Gate count (e.g. CNOT, Clifford+T etc.)
Depth, gate parallelism

Heterogenous gates mix

Defects, patterns

£
(o

S HHF

14

%\[13

12
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. . . [u] [ [v]
Scaling With Qubits T — T
[l | C /I_/[U]
- Unitary instantiation has width/depth limits = N[y
o QFactor scales to 12 (+) qubits! Partitioned unitaries are
- Wide circuits are broken into manageable panels taken from circuit panels
o Each panel has an associated partitioned unitary
o In practice, partitions/panels of 3 qubits are a good tradeoff @ Circuit partitions
quality vs runtime overhead can be handled
independently and
in parallel
g — | __ P y
H—& Y | ] LS iﬁ& (" | )
- | > = 2K qubits already
— [ demonstrated ©
EL,“ — S~ it - Y

B- SKit 13



Instantiation-Based Algorithms in BQSKit

® Optimization (re-synthesis, gate

® (QSearch - 3-4 qudits, optimal deletion)

® LEAP - 4-6 qudits ® Mapping/Routing (Generalized

® QFAST - 6-7 qudits 1000s SABRE, PAM)

® QPredict - 6-12+ qudits Aubits ® Approximations (QUEST)

® PAS - 3 qudits ® Gate Set Retargeting
(e —

Direct Unitary Workflows,

Synthesis Transformations

Instantiation

B SKit 14



Support for Circuit Verification

 Small circuits can have their

Direct simulation error directly calculated
Direct instantiation k! « In most of our publications
: we target 10-'0instantiation
A = € : verification error, most often
1 : is less

:  Larger circuits can be first
A — €3 : ... partitioned into large
: simulatable sections, then
summing the section errors

>
|

. A — esim < ez' on total error
. 7

For our "additive error” objective functions...
B SKit 15



Circuit Optimization, Mapping and Transpilation
(aka Topology Aware Synthesis)

B® SKit 16



Hardware is Diverse: Portability

Google IBM Intel lonQ Rigetti

« Each chip has a native gate set
» Single qubit: parameterized rotations
« Two qubit: CNOT, Syc..

- Each chip has a constrained qubit e N
interconnection topology Resources == Performance
* Ring, array, tree

Number of gates and circuit depth are
direct measures of performance.

\_
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Resource Optimization
(gates, depth etc.)

Performance Enhancer + Capability Provider




Generating 3-qubit QFT (for Linear Architecture)

6 CNOTs

fany
A\

Us q1

fany
A\

Us

q1

« Optimal 3-qubit QFT (analytic): % U Us 90 (9)
a‘

92 DU DU D Us D Us - @2 e

_SWAP _
: : 2 U S . a ©

« Optimal mapping (OLSQI2]): 1o | ;
9 CNOTs 0 —{0s {05 -——H{ U ] @ (M
& o{v}o s Fo{ Us Fo{ U | @2 @

Tan, B. et al, Optimal layout synthesis for quantum computing ICCAD. 2020.
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QFT3 Synthesis and Mapping

_SWAP
90 | U; : Do q

« Optimal mapping (OLSQ): | |
9 CNOTs )l b Us b Us ~D OE Us 90
92 b Us D Us b Us D Us |- 2

« QSearch synthesis: 90 1 Us Us Us Us Us - 40
6 CNOTs T ‘ I ‘
91  Us Us U Us Us U Us q1

\ I 3 D \\» T 3 [0
1 92 HUs Us Us p)

» Permutation Aware Synthesis: 90 - Us Us Us Ustt @
5 CNOTs 0 91 | Us D Us [4—| Us (D Us |4 Us [ Us [{ @0
A
92 - Us & Us o Us e B SKit 20




Permutation-aware synthesis (PAS)

90— —q0 9 j —
Regmar Q- U —q > Q1 —aq1
Synthesis l :g

Permutatlon- 90 - - — /”w]):g: — P, (q)
Aware P! U PP 01 —> m—P,.T — P,UP, | PI —a1 =P/ (a1) —1— — PT(q1)
Synthesis - - g PX(q,) & — Pl (g)

1. Generate all input-output qubit permutations
2. Communication "absorbed” at unitary level
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Scaling: Permutation-aware Mapping (PAM)
1) Partition Circuit
i e
; g D ; 1 B

S —adn qn : —qn

2) Synthesize all permutations of each block l l
for all possible block architectures

o 2 9 9
0, O ® © Py B1Pi(n) Po(n)BuPin)
(2 ® (®)

J
q1— q1
92— P,y B1 Py(y) ——— - @ <
q3— o B — -a3 3) Map the circuit with a forward pass,
: X - Bu |- selecting the best block permutations as
an - ~n they are passed.

Mapped Not Mapped
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Example: Mapping to IBM’s 127-qubit Eagle Chip

[ MQT [ Qiskit [0 tket [ BQSKit W PAM3

L CNOT reduction (MAX/AVG)
nd
m 124
5 ) - . 78%/33% MQT (QMAP)
R A | N = — . « 68%/18% Qiskit
s = . o EEs + 36%/9% Tket
5 i B AT T . 67%/21% BQSKit
O [~ ) [
zZ 0.6 ~ o
O
G
a 0.4 1
Ko
1S
2 0.2 1
00 grover5s huI:|:18 mu|I60 qaolalz qf'tS qft|64 sholr
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Mapping on a Fully-Connected (all-to-all) Device

Number of CNOTs relative to SABRE

1.0 4

0.8 A

0.6

0.4

0.2 A

0.0

[ SABRE [ Qiskit 3 tket =3 MQT [ BQSKit N PAM3
To)Te) D[] EE o =] [
S SS o8 R 2 5 Se88E
[~ =@ N
© ﬁ‘_
o~ I~
(2]
(=2
N
2
=
| ©
S
[32]
adder63 grover5 hub18 mul60 qaoal2 qft5 qft64 shor26 tfim64 tfxy64
Circuits

Most compilers may not change circuit when mapping is already legal.

(e.g. from restricted — all-to-all).
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QUANTUM CIRCUIT OPTIMIZATION AND TRANSPILATION VIA PARAMETERIZED
CIRCUIT INSTANTIATION

Scientific Achievement

Leverage parameterized circuit instantiation via numerical optimization to
achieve improved circuit optimization and gate-set transpilation, leading to
significant reductions in gate counts, enhanced circuit quality, and greater
portability between quantum processors. Solution scales to 1000s of qubits.

Significance and Impact

Gate deletion and rule-free gate transpilation algorithms enable automatic
transformations of quantum circuits between any gate-sets, eliminating the need
for manual user-defined rules, greatly improving quantum program portability
and reducing barriers to entry for gate-set exploration studies. All algorithms are
released as part of the BQSKit code. BQSKit significantly outperforms
commercial compilers (Qiskit, Cirg, Tket).

Technlcal Approach
Numerical optimization of circuits is leveraged to transform circuits.
* Weremove or change gates and reinstantiate the remaining to

accommodate for the lost or transformed gate.
® Circuit partitioning techniques are used to scale to 1000s of qubits/qudits.

PI: Costin lancu; Berkeley Lab POC: Ed Younis

ASCR Program: AQRC (AIDE-QC)

ASCR PM: Ceren Susut-Bennett

Publication(s) for this work: Ed Younis, Costin lancu. “Quantum Circuit Optimization and Transpilation
via Parameterized Circuit Instantiation,” IEEE International Conference on Quantum Computing and
Engineering (QCE) (2022): IEEE. doi:10.1109/QCE53715.2022.00068.

Code Developed or Datasets: https://github.com/bgskit/bgskit

1) Replace gate wtih 3) Select best circuit with

varying number of new gate acceptable error

e T&E
- e a H j
L mmEtt e Tt

L Rttt E Tt

In gate set transpilation, one native 2-qubit gate is replaced with a series of
templates implemented in the new target gate set. Instantiation is used to select
the shortest suitable template. Partial solutions are expressed in a combination of
gate sets and globally optimized. When comparing to traditional compilers BQSKit
eliminates the need for theoretical gate-per-gate decomposition rules and

provide better quality circuits.
All Gate Types per CNOT

2.00 -
1.75-
1.50-
1.25-
1.00 -
0.75 -
0.50 -
0.25 -

s Sycamore
= SQISW+Sycamore

adder9 adder63 mull0 mul60 gqaoa5 qaoal0 hub4 hub8 hubl2 grover5 tfiml6 tfim64 tfxyl6 tfxy64

DY gagkit’'t 2

[

(AIDEIQC)


https://github.com/bqskit/bqskit

Transpilation and Gate Set Portability

Specialized algorithms for gate set transpilation, more powerful than 1-1 translation/rewriting rule in most
compilers

Average Sycamore Gates per CNOT

2.00 - g
17D =g i [ [ A
150§ S SR | Iy [ A
1.25 — o ) R ---® R T
1.00-—1F vy A ) R | Eni (Rl o R 7 Eal - R
0.75 1l A S L B ( EEi < R 7 R A 5 I S
050~ | ;- D SRRk I paiiit | Rt Rl Sniiy i 7 et (7 iy 1 5 R ) |
0.25 —|™== Cir N B S I () IS 4 N | 7 SR 7 NE—— | ) S| N E— | N E— B S Y B I B I
2] Instantiation

adder9 adder63 mull0 mul60 qgaoa5 gaoal0 hub4 hub8 hubl2 grover5 tfimlée tfim64 tfxylé tfxy64

B' SKit
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The power of circuit synthesis and instantiation

comes from the ability to do configurable global
optimization on programs




1. M.Davis et al,, “Towards Optimal Topology Aware Quantum Circuit Synthesis,” in 2020 |EEE
QCE. (Best Paper Award)

2. E. Younis et al, “QFast: Conflating Search and Numerical Optimization for Scalable Quantum
Circuit Synthesis,” in 2021 |EEE QCE. (Best Paper Award)

3. E. Younis et al., “Quantum Circuit Optimization and Transpilation via Parameterized Circuit
Instantiation,” in 2022 |IEEE QCE.

4. X.C. Wu et al, "Reoptimization of Quantum Circuits via Hierarchical Synthesis,” in 20271 |EEE
International Conference on Rebooting Computing (ICRC), IEEE, 2021

5. T. Patel et al, “QUEST: Systematically Approximating Quantum Circuits for Higher Output
Fidelity”, ASPLOS 2022

6. J. Liu et al, “Tackling the Qubit Mapping Problem with Permutation-Aware Synthesis’, IEEE
QCE 2023

- ~
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Handling Higher Dimension Objects
(multi-qubit gates, qutrits etc.)

Alon Kukliansky et al. “QFactor: A Domain-Specific Optimizer for Quantum Circuit
Instantiation”. IEEE QCE 2023
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QFactor: A Domain-Specific Optimizer for Quantum Circuit Instantiation

Scientific Achievement Novel domain-specific algorithm for numerical U= e s
. : : A At ; 1ati = F:Pf\lj(STj 1= E:RAlj(STJ [
optimization used by quantum circuit instantiation, synthesis, and compilation o =2 P .

methods. QFactor uses a tensor network formulation together with analytic
methods and an iterative local optimization algorithm to reduce the number of
problem parameters.

Significance and Impact The formulation is amenable to portable
parallelization across CPU and GPU architectures, challenging in general purpose
optimizers (GPO). QFactor achieves exponential memory and performance savings 7 .
with optimization success rates similar to GPOs. QFactor can process directly s s e 7 8 9 10 u .
circuits with more than 12 qubits. We enable BQSKit optimizations of 100+ qubit Qubttnumber

circuits to scale out linearly with the hardware resources allocated for compilation in Average instantiation time normalized to QF-JAX instantiation time

GPU environments. (left-hand side y-axis), together with normalized success rate (right-
Techn|ca| Approach hand side y-axis), showing the strength of QF actor for larger circuits.

Tensor network formulation enables the algorithm to work with whole unitaries. AACTOR A pdterss

Drastically reduced total number of optimized parameters compared to GPOs. -
* CPU-based implementation written in Rust, together with a Python :

implementation written using JAX , portable across CPUs and GPUs.

=
=)
-
-
o o
0 ~
o a

Normelized average instantiation time (log-scale)

1
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Normelized average success rate

=
=)
.
=3
N
o

°
o
S)

o
0

QFactor benefits from
GPU acceleration and

o
o

Relative compile time

PI: Costin lancu; Berkeley Lab POC: Costin lancu enables good strong
ASCR Program: AQRC (AIDE-QC) o ' scaling for compilation
ASCR PM: Ceren Susut-Bennett — partition size=3 workflows
Publication(s) for this work: Alon Kukliansky et al. “QFactor: A Domain-Specific Optimizer for Quantum bg | pamnsze—s _\/\ )
Circuit Instantiation”. IEEE QCE 2023 — partition size=6
Code Developed or Datasets: https://github.com/baskit/baskit 00 [T
5 10 15 20 25 30 35
gpu count
(ERSS)
= 2 BagKit 30

(AIDE|QC)


https://github.com/bqskit/bqskit

=
o
i
~
o
=)

© —— CERES_P ——- CERES_P
I —— QF-JAX —-=- QF-JAX L
- —— QF-RUSTP -—-- QFRUSTP

-
A

QFactor Enables Scalability

Tensor network formulation allows
« Handling of arbitrary sized unitaries as single parameter s ]
* GPU acceleration and parallelization 210

—_— — Qubit number

— U, I In this context, what is the best gate
— - or set of parameters for the gate?

— L~

_ <. i
— y - & = XDyt

— T
ukopt =YX

Environment
matrix Tr(UtT TUQ up) =Tr(&; - ug)
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BQSKit Supports Qutrits, Qudits etc.

Black Hole Information Scrambling

G Back HGE A s Scrambing at 1w — iy

Alos | |#), = a2 |0) O 5, HO— |
i o) 1] ,
EeEtemalWormhole Hawking EPR Q3 |0} LA
|0) ) photons
o) - UdlE a4 10) O seranta

Bob o) E | _BlackHole B |¢>0 Qs |0) - El
......... EPR pair

Quitrit synthesis using CSUM and parameterized
single qutrit gates
cos(6; )cos(0; )e'® sin(@; )e': cos (8 )sin(6; )e'%
sin(6; )sin(65 Yo s ~ibs _ sin(@) )cos(0; )cos(03 J& istuidg=ig, cos(0 )cos(03 )e'?: —cos(6; )sin(63 Je~ i~ s _ sin(0) )sin(6 )cos(63 )e'?2 =195 * 14

—sin(8) Yeos(/ thetay )sin(03)e'® =" + s _ gin0, )cos(03)e™ 2 7% cos(8) )sin(03)e's  cos(0)cos(03)e” N T2 — sin(8) )sin(0y )sin(0 )e s t 14 + 19

CSUMI, j)=li,i +j mod 3) Cphaseli,j) =w7lij)

L
1
1
1
1
1
\

Hadamard Hadamard
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Portability and Hardware Design Studies
(Quantum Roofline?)

“Where should | run my algorithm?”
“How can | improve my machine?”

B' SKit
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1. Gates have different expressive power
2. Gates have different fidelity, latency
3. Chips have different topology

Given optimal circuits, | can ask:

What is the better architecture (gates, topology) for a class of algorithms?

10

gegnim
L RELE

@&
A
55
22

Depth

N Fidelity models:

5] 1. Gate count

Transpiled Ratio to CNOT
z
1
i
i
>
Il
oy
-

Adders Hubbard QAE QAOA QFT QML QPE SHOR VQE Grover
10 i= 1,2
-—
-
- c e
g D P 1 Depth
3 syc
— @A sqdcnot
% E=3 sq8cnof .
3 s 2. Depth and parallelism...
44
2]
B' SKit
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Which 2-qubit gate can provide higher fidelity?

1.008

1.006 z:

1.004

1.002

Sycamore Fidelity / CZ Fidelity

o o
© ©
G )
o ©

0.994

0.992

Sycamore is better

Lessrrrresrees
seseesane
..

1.000 A

lllllllllll

ooooooo
-

CZ is better

CZ Fidelity

It depends on algorithm,

— circuit

1-q fidelity =0.999

0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998
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Which 2-qubit gate can provide higher fidelity?

Sycamore Fidelity / CZ Fidelity

1.00:¢

1.00¢

g
o
o

1.00:

1.00

0.99:

o
©
©

0.99

0.992

1-q fidelity = 0.999

8

Sycamore is better

6

’ It depends on algorithm,
' . circuit

1-q fidelity = 0.9995 > 0.999

1.008 T;

4

CZ is better

T T T T T T T =
0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998
CZ Fidelity

992+
0.990 0.991 0.992 0.993 0.994 0.995 0.996 0.
€z Fidelity

Algorithm dependent
range shrinks

1.000

0.998

0.996

0.994

Threshold 1-qubit fidelity

0.992

0.990

When do 1-q gates matter?
(independent of 2-q fidelity)

Avg NISQ 1q
gate fidelity

é °
¢ a---0

P fidelity

matters

1q gate count

-
45

=

T ee oS

NISé fidelity >> Threshold
Threshold >> NISQ 1q gate count DOES N(

CX vs Sycamore

CXvsB

CX vs 4thRootCNOT

CX vs 8thRoOtCNOT

Sycamore vs B

Sycamore vs 4thRootCNOT
Sycamore vs 8thRootCNOT

B vs 4thRootCNOT

B vs 8thRootCNOT
4thRootCNOT vs 8thRootCNOT

DT matter

T T
4 6
Machine B 2q count / Machine A 2q count

8

10

B' SKit
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Threshold 1-qubit fidelity

When do 1-q gates matter?
(independent of 2-q fidelity)

1.000 A
--------- R . e e e
2008 NISQ fidelity > Threshold
Threshold >> NISQ fidelity 1q gate count DOES NOT matter
0.996 - - - @ CXvs Sycamore
& CXvsB
& CXvs 4thRootCNOT
0.994 - & CXvs 8thRootCNOT
1q gate count Sycamore vs B
matters ® Sycamore vs 4thRootCNOT
0.992 4 ® Sycamore vs 8thRootCNOT
B vs 4thRootCNOT
m B vs 8thRootCNOT
4thRootCNOT vs 8thRootCNOT
0.990 1 - : : , , ,
0 2 4 6 8 10

Machine B 2g count / Machine A 2q count

Avg NISQ 1q gate fidelity

B- SKit
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Algorithm Exploration for NISQ and Beyond

1. Circuit Approximations (Error mitigation and Performance)

» Wilson et al. "Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices.", in SC 2021
« T. Patel et al, “QUEST: Systematically Approximating Quantum Circuits for Higher Output Fidelity’, ASPLOS 2022

2. Discover Algorithm Generators

. M. Weiden et al, “lImproving Quantum Circuit Synthesis with Machine Learning’, in 2023 |IEEE QCE.
. L. Bassman et al, “Constant-Depth Circuits for Free-Fermion Dynamic Simulations on Quantum Computers,” Mat.
Theory 6, 13 (2022)

B- SKit
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Why Approximate Quantum Circuits?

e Approximations are built using process metrics: |U-U’| < €

e The performance (resources) of a quantum program is determined by the

number Of gateS 10 —— Noise free reference
3 Noisy reference
S 08 . R
. 3 3 3 3 ﬁ -
e Approximations can minimize the £ ..
[ =1 5
[ ] [ ] o'
number of gates (circuit depth) 8 :
u ] ® -
O Circuits up to 2X shorter can produce the same quality output and g = : =22 .
have better fidelity on NISQ devices g : ° 4 .
» i -
O Circuits will run faster in FT devices = 02 : $ 2 R
= LA o2 Y
00 3 f. i « 0
0 5 10 15 20
. e . o o . . . _ Interval
Wilson et al. "Empirical Evaluation of Circuit Approximations on Noisy Quantum Devices." International Conference for High Performance B S Klt 39

Computing, Networking, Storage, and Analysis (2021).



QUuEST: Robust Generation of Quantum Circuit Approximation
USing SyntheSiS Sampling improves fidelity

Scientific Achievement Pt
We provide a sound and scalable method for generating mm‘.' o
circuit approximations. Approximations significantly reduce
circuit depth, while providing error mitigation. QuEst provides

g [Synthesized Block 1= | el Do 1=

Synthe: mzed Block 1a
Original @ ul
Block 1 |:>

ircu Original

io \ng Block 2 ‘:>

an orthogonal technique to randomized compiling. i5ge

Synthe: mzchl ck 2a ” al

Annealing | Sy
Soiesized B Tngine | Fall Circu

Research Details Cireuit d“mth? g et
® We use synthesis and circuit partitioning (BQSKit) for circuit generation redt :eimre ue /2 ussr S —

® We bound error - theoretical upper bound on HS distance under ;5 "
partitioning and approximation. EE RN I I
ZE o
2 1 Ij]jl_-]]\l Ign |
® Apriori approximation selection criteria to ensures high fidelity output 3% ITTE REAE e g EERRE:
(triangle inequality on Hilbert-Schmidt distance, annealing) EEIE F B gg 20T
. - Ground Tluth Qiskit
. . re Heisenberg 4 _ sk
Significance and Impact L S
Resource efficiency is an important measure of circuit performance. Our 5 . /_\\ e
technique can be directly used for circuit optimization in NISQ and fault- g3 o] /
tolerant quantum computing. In NISQ, we provide additional capability for very = i i
good error mitigation. TEIM 4 310 15 20 25 30 3 40 45 30
B0
®  We show 30%-80% depth reduction on many important algorithms ?5 0.91
®  We show fidelity improvements of 30% on noisy systems, independent of noise level <% -
®  The program output is accurate for science purposes - ———
° 10 20 30 40 j')O 60 70 80 90

Although computationally intensive, the technique scales up to high qubit counts (up
128 qubits demonstrated)

~

AY
i

frreeee

T. Patel et al, "“QUEST: Systematically Approximating Quantum Circuits for Higher Output Fidelity”, ASPLOS 2022

Funded by DOE ASCR AIDE-QC BERKETEVLAD




Select “dissimilar” approximations that sample the
approximation space “uniformly”.

Original
Full Circuit

Original

Block 1

Circuit Original
Partitioning Block 2

oo tETIITE

Process
Distance

Boundary

s Target Output

[ Synthesis Samples

@ Average of Samples

1 Sample 3 Samples
JQL | Synthes1zed Block la | Synthesized - )
rY Y Full Circuit 1 []
Approximsis | Synthesized Block 1z | | > s — a
Synthesis [ Synthesized Block 24 | ° Produce N dissimilar
[ 'l> bAL es1ie. S ock ~d Dual circuits with low
= Annealing | Synthesized CNOT gate count
| Synthesized Block 2z | Engine Full Circuit N
A D

If C > max(A, B), dissimilar
Else similar

B SKit
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Approximations track the ground truth of the 4-spin Heisenberg

Depth reduction up to 85% for Heisenberg16

on a quantum computer.
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Existing approach is empirical, we finally have a
soundness and robustness proof.

Hope to answer:

How can | relate my circuit’s output to domain science expectations and
constraints?”




Learning Circuit Generating Templates

“Can | discover structure in circuits without domain science knowledge?”

B SKit 44



Detecting Minimal Generating Templates

Can | predict a good ansatz for any given unitary?

1. Collect a large dataset of unitaries

o Consider unitaries from partitioned circuits
o Suite of algorithms
o Variety of circuit widths

£s | a3 | B | B

2. Enumerate a finite number of circuit
templates circuit.instantiate(target)
g B: SKit

,_.
oo

3. Try instantiating each template given
each unitary

loococo

,d
—~oocoo

Sl=
3
Cococococor~—
coocococol ~
coco~roo
A
I 1
LlLloocoocoo
—~lcocoocococo
—
|
-

ccocor /|

»—\
co |
co




Patterns Occur when Algorithms Scale

Histogram of Circuit Templates in TFIMs with 8, 16, and 50 Qubits

0.0 0.2 0.4 0.6 0.8

r N

TFIM 16 has 99
partitions. 82/99
partitions are
implemented by

this template

J

7‘

=18 qubits

@16 qubits
%% EEN50 qubits

Three templates account for 99% of partitioned TFIM circuit

blocks of various widths

M. Weiden et al, “lmproving Quantum Circuit Synthesis with Machine Learning”, in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), IEEE, 2023
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Patterns Occur When Algorithms are Composed

Histogram of Circuit Templates in QFT 12 and Shor 24

0.0 0. 0.3 0.4

These templates

-
-
mie
‘
—
\(

Ddcdo orndnds | -,
_Dw—
—
BaPSnBiantatiu MERATE

illustrate that
structure of QFT is

P, | foundwithinthe
—=a0 & Shor circuit
—

Eg%g% mi%@% %%99 % | '

- Il CQFT 12

—

D001 0—hD | B Shor 24

- H{} H{} S+

QFT 12 is contained in Shor 24 - QFT and IQFT appear 16 times
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Algorithms are Different From Random Programs

Cumulative Variance Explained (%)

Principal Component Analysis reveals low
dimensionality of unitaries of interest

Implies learning patterns in unitaries is possible

100+

(o]
o

(e)]
o

40 1

20

128 -> 16, 32

| 31.0%

90.7%

‘0""
| 57.2%

—— Partitioned Unitaries
----- Random Unitaries

[u]

vl

~
I

[u]-

/—I\\

~Y]

Partitioned unitaries are
taken from circuit panels

UECGLI

16 24 32 40 48 56 64
Principle Components

ZeR

UeC™

PCA quantifies how much we
can compress these unitaries

B SKit
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Confusion Matrix of
Predicted Partitioned Unitary
Depths

Learning with Unitaries

= Neural networks can learn interesting
properties of partitioned unitaries

=  We can train networks to predict the
depth of the minimal template that )
implements a unitary

- 0.8

4 Architecture and Training

Predicted Depth

¢ : ® ;
Autoencoder pre- New task specific
trained to do unitary head is finetuned 8
\ reconstruction after pretraining / S

True Depth
B SKit 49



1) A target unitary

and topology
information are

given as inputs.

cocoo

QSeed

A seeded synthesis algorithm that uses machine
learning to predict good seed circuits 2) A recommender

model analyzes
the inputs and
produces a seed

oLooococoo

coo—

4 N\ circuit.
Circuit Name Training Widths Test Widths

add 17, 65 41

grover - 10

heisenberg | 4, 6,7, 8, 16, 32, 64 5 Seed m

hhl 8 6 Circuit

hubbard 4, 18, 50 8
mult 8, 32, 64 16
qae 11, 33, 101 65 "
oft 3.4, 8, 16, 32 64 3) See_ded synthems
qml 4,25, 60, 108 128 begins using the
qpe 6, 10, 14 18 seed circuit pro-
shor 16, 32 64 vided by the
tfim 3,4,5,6,7, 8, 16, 32, 64 recommender.
vge 12, 14 18

Table I: Split of circuits withheld from recommender training
\for testing. No Grover’s algorithm circuits are used in training. ) 4) An instantiated cir-

cuit that implements (H] "E-“ Z]
the target unitary is Srakd D]

produced as output.




Measuring Speedup and Solution Quality

1.0 0.8
} —e— QSeed: F[calls] =2.37 —e— QSeed: F[cnots] =0.92
—e— QSearch: E[calls]=12.05 —e— QSearch: E[cnots] =0.91
08 —e— Randomly Seeded: £[calls] =2.79 0.6 —e— Randomly Seeded: £[cnots] =1.19
206 0
§ § 0.4-
50.4- g
- o - 0.2
0.0 0.0
1 23 456 7 8 9 10111213 14 15 16 17 18 19 20 ‘02 06 10 14 18 22 26 30
Number of Instantiation Calls Optimized / Original CNOT Gate Count
3.7X Speedup: most synthesis Similar solution quality: gate counts
runs require only one instantiation very closely match optimal
call implementation
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Measuring Speedup and Solution Quality

10 QSeed makes an average of 2.4 )
o . . . —e— QSeed: F[cnots] =0.92
‘ instantiation calls per unitary —e— Qsearch: Efcnots] = 0.91
Lo l —e— Randomly Seeded: £[cnots] =1.19
go.s =
- Full bottom-up synthesis requires an
i average of 12.1 instantiation calls
0.2 1
0.0 1 . MMW
123456 7 8 9 10111213 1415 16 17 18 19 20 02 06 10 14 18 22 26 30
Number of Instantiation Calls Optimized / Original CNOT Gate Count
Speedup: most synthesis runs Solution quality: gate counts very
require only one instantiation call closely match optimal
implementation

B SKit 52



Measuring Speedup and Solution Quality

Ho ! : — —e— QSeed: F[cnots] =0.92
08 QSeed solutions closely match e e 2110
. gate counts of full bottom-up
5 solutions
50.4- w
- 02 1 - 0.2 1
0.0 1 0.0
123456 7 8 9 10111213 1415 16 17 18 19 20 02 06 10 14 18 22 26 30
Number of Instantiation Calls Optimized / Original CNOT Gate Count
Speedup: most synthesis runs Solution quality: gate counts very
require only one instantiation call closely match optimal

implementation
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Verifying Error Thresholds

Error in synthesized unitaries for test benchmarks
remains low = These are good generators

(" Circuit Upper Bound on Approximation Error N
add 41 1.4 % 1079
grover 10 2.4 x 10~12
heisenberg 5 5.6 x 10~1°
hhl 6 2.2 x 10—16
hubbard 8 3.1 x 10~ 14
mult 16 2.5 x 10—14
q?e 662 g'i % ig_z For many benchmarks,
qtt 4 x10™
qml 128 4.2 x 10—14 | errors are close to
qpe 18 6.8 x 1013 machine precision
shor 64 3.1x10°7 /
tfim 64 1.8 x 1019
\ Ve 18 7.8 x 10~16 )
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Discovering Analytical, Scalable Circuit Generators

“Can | discover circuit, algorithm structure with domain science knowledge?”
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Constant-Depth Circuits for Free-Fermion Dynamic Simulations on QC

Scientific Achievement spin THM = P
A method for generating circuits which are Constant Depth R - i
constant in depth with increasing time-step, thus gm
enabling dynamic simulations on near-term % 100 e
quantum computers out to arbitrarily long Grownd Truh | = g Constant Depth |

0 5 10 15 20 25 30 35 5 10 Sirililaﬁggﬁnf;te;o 35 40

Simulation Timestep

simulation times.

5-spin XY
Significance and Impact 2600 — 5 spin
High-fidelity simulation results for long-time émo “
dynamic simulations of quantum materials can be %“200 AAAAAAAAAAAAAAAAAAAAAA
obtained on currently available quantum P
35 5 10 15 20 25 30 35 40

computers. 0 5 10 15 20 25 30
Simulation Timestep

Simulation Timestep

N qubits in free fermion model need N(N-1 ) CNOTS Comparison of simulation results and CX gate count for the TFIM and the XY
model using the constant-depth circuits versus the IBM-compiled circuits.

Bassman, Van Beeumen, Younis, Smith, lancu, de Jong
Mat. Theory 6, 13 (2022)



BQSKit finds Constant-depth Circuits for Time-evolution

For one-dimensional TFXY, XY, IM and TFIM Hamiltonians of the form

N—-1 N—-1 N
H(t) = Hyy + H,,, + H,(t) = —J, z 0] 01— Iy z 0, 07,1 — hz(t)z o
i=1 =1 =1

» Approx. time-evolution operator:

Uy(nAt) = 1_[e_i(Hxx"'Hyy)Ate—in(nAt)At
i=1

*Independent of timestep t,, = nAt Usq(nAt) = ~:53f3::3

*Only gate parameters change

« 1-qubit gate complexity: O(N?)
*CNOT gate complexity: N(N — 1)

oo o
: L]
Usq(nAt) = [357s
L] LN ]




Generalization to higher Dimensions (TF)IM, (TF)XY Models

—isin

cos 21162 0146,
Let the matrices A and B be in SU(2) G= iein 0l coptitts
_je—i(00=03) gy 171?//; - h £1(00+03) g "\ZUJ
- A= {P "] . B= [W X] . det(A) =det(B)
- — r S y z
G
B G Then the 2-qubit matchgate G(A, B) is defined as follows - ARL HRCP) Ri(01) R/ HRe(0s) |-
T —{Re(60) HRe(+/2) Re(62) Re(~72)H Re(63) |-
= Gy P q
= con=| 7
GI s -

U(At) U(2At) U(3At)

Gy G G Gy

1] 1]
Gy Gy Gy G1 Gy
Gy G;

Gy Gy

Constant Depth

0(a?)

B SKit 58



BQSK:it is useful during NISQ and Beyond

. Resource efficacy == Performance == Capability
o Optimization
o Transpilation
o Mixed radix primitive support
o Clifford + T support

- Hardware design exploration
. Algorithm design and generation exploration
- Mid-measurement, DQC ... published soon



Open Problems

1. Domain science benchmark specifications (e.g. what error
can | tolerate? ..)

- Domain constraints may inform compilation
o What does this benchmark do?
o How to encode into programs/circuits?

2. Scalable circuit generation from domain science specification
« Try generating a > 2048 qubit QFT..

« Algorithms may not parallelize
* Numerical stability problems may lead to approximations, circuit errors

3. It might take a data center to compile a big program



Thank Youl!

cciancu@lbl.gov

B® SKit
z[m]

"-F"* "Ll

bgskit.lbl.gov
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QFactor — Circuit Tensor Initialization

L J
T

Inverse of Target
Unitary

B® SKit
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QFactor — The Sweep

D
YV

Remove gate by applying inverse on right

B® SKit



QFactor — The Sweep

S - @ —

—_— . —_—

S— Ut’r an = — Ui
O

Remove gate by applying inverse on right
Find optimal new value

B- SKit



QFactor — The Sweep

N
VYV

I

Put the optimized gate back on the left, keeping the cost function trace value

Tr(Uf - uq - up) = Tr(u, - U - uy - upy_y)
B SKit



QFactor — The Sweep

. I— —_—
@ —

& Ul — = — U,
® —

After finishing one sweep, repeat in reverse order

B- SKit



QFactor — Local Optimization

- In this context, what is the

U, - — best gate or set of

parameters for the gate?

Tr(U;r cUQ up) = Tr(Uy - uy)

B- SKit



