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Motivation

• Quantum Computers offer the possibility to tackle problems intractable by 
classical computers.
• Time dynamics of quantum field theories

• Study of electronic structure and reactions in chemistry

• Solving traditionally hard optimization problems

• For time dynamics of physical systems classical methods encounter memory 
bottlenecks or sign problems. 



Simulations of Compact 
Scalar QED
Why physics has a qudit bias: 

arXiv:2201.04546, 

Phys. Rev. D 103, 114505 (2021)

https://arxiv.org/abs/2201.04546


1+1d Scalar QED

• Two degrees of freedom
• Photon field (𝑈)

• Compact Scalar 𝜙 = 𝑅 𝑒𝑖𝜃

• 1 dimensional system as initial study
• 2d and 3d systems also possible

• Closely related to O(2) model

• Action:
𝑆 = 𝑆𝑔𝑎𝑢𝑔𝑒 + 𝑆𝑚𝑎𝑡𝑡𝑒𝑟
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Time continuum limit and the Hamiltonian
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Time continuum limit and the Hamiltonian
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These operators are formally infinite dimensional



Model physically
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Model physically
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Model physically
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Model physically
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How does one regulate the field degrees of freedom?

• We regulate infinite degrees of 
freedom by approximating the theory 
with some truncation
• Electric Field magnitude

• Group Space Decimation

• Quantum Links

• Loop-String-Hadron

• Other Novel methods



Constructing Gates

Qubits

• Pros:
• Easy to control

• Lots of resources already built up

• Cons:
• Possibly wasted Hilbert space 

• Moderately high interconnectivity 
required

Qudits

• Pros:
• Hilbert space maps to hardware 

space

• Gate operations more intuitive / 
physically motivated

• Cons:
• Harder to control (Engineering)

• More noisy



Constructing Gates: (Lz – Lz)

From Gustafson arXiv:2201.04546



Constructing Gates: Ux

From Gustafson arXiv:2201.04546



Extensions to larger truncations is doable



Fiducial simulation: two-point correlator



Parameter Selection
• G2a = 5

• 4 Sites

• dt = 0.235

• Truncate to 3 states



Accuracy versus Two qubit Pauli Error p2



Accuracy versus Amplitude damping time, T1



Combined Comparison

p2 p2



So where could we go from here?

• If we are looking toward QCD
• Use both qubits and qudits, fermions and gauge 

fields

• Use a qudit to describe all color / spin indices for 
quarks.

• Pure gauge theories
• Use qudits to help represent Hilbert space 

• Could we use non-error corrected qubit-qudits to 
perform some smaller computation quickly that 
can be extrapolated to large scale fault-tolerant 
qubit hardware. 



Leveraging error mitigation 
strategies to improve quantum 
simulations
Gustafson et al. “Simulating Z2 Lattice gauge theory on a quantum computer” 
arXiv:2305.02361
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Noise will ruin a quantum simulation

• Environmental couplings

• Gate imperfections

• Readout errors



Noise will ruin a quantum simulation

• Environmental couplings
• Dynamic Decoupling

• Gate imperfections
• Randomized Compiling

• Zero Noise Extrapolation

• Improved Tuning

• Readout errors
• Whole Suite of post processing tools



Other fields have started leveraging error mitigation

• Quantum Simulations for particle physics is 
lagging behind other fields.

• We need to have a set of bare minimum 
best practices for quantum simulations
• Caveat: different hardware has different 

requirements

• We need to understand how each 
mitigation technique will interact with each 
other piece and the simulation as a whole.



𝑍2 Gauge theory in (1+1)d

• Nice toy model that maps 
cleanly to qubit based 
hardware

• Has qualitative behaviors 
similar to Schwinger model

• Has explicit gauge fields 
which will be important in 2 
and 3d simulations

• We want to measure: 
𝐶 𝑡 = ⟨Ω 𝑆+ 𝑡 𝑆 0 Ω⟩
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Readout Error 
Mitigation Induces 
Correlations
• ෨𝐵 𝑀−1 → 𝐵

• Raw bit string, ෨𝐵, is passed 
through an estimated filter 
M

• Figure to the right shows the 
errors on the absolute shift by 
neglecting and including 
correlations. 

• If we want precision calculations 
these correlations can be 
important.



Dynamic decoupling removes oscillations  



Putting all the pieces together



Fourier Spectrum 
Example
• Error Mitigation allows a 

resolvable signal on the Fourier 
Spectrum

• Ringing is an artifact of 
interpolation

• Error mitigation is crucial.



Outlook and future?

• Need to quantify systematic errors for precision calculations
• Address bias from gate and machine errors

• Understand possible correlations induced by machine errors

• Effects of inexact state preparation (VQE, Adiabatic)

• Can we use gauge symmetries to perform some level of error correction or 
mitigation?

• Are error mitigation techniques going to be scalable or how do we make them 
scalable for quantum simulations?



Physics has a qudit bias



Error mitigation is technical 
and important
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