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Application of Quantum Computation  
to

Quantum Field Theory (QFT)

This talk is on

・Generic motivation:

simply would like to use powerful computers?

・Specific motivation:

Quantum computation is more natural in operator formalism

Liberation from infamous sign problem in Monte Carlo?



Charge-𝑞 Schwinger model with topological term 
1+1d QED

supposed to be difficult in the conventional approach:

topological “theta term”

・∃sign problem even in Euclidean case when 𝜃 isn’t small

・real time

Results:

・Construction of the ground state

・Computation of ⟨ ത𝜓𝜓⟩ & consistency check/prediction 

[cf. Tensor Network approach:
Banuls-Cichy-Jansen-Saito ’16 , 
Funcke-Jansen-Kuhn ’19, etc. ]

・Exploration of the screening vs confinement problem 
& negative string tension behavior for some parameters

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[MH-Itou-Kikuchi-Nagano-Okuda ’21] [MH-Itou-Kikuchi-Tanizaki ’21]

Our recent works

・energy spectrum by coherent imaging spectroscopy
[work in progress, MH-Ghim ]
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“Regularization” of Hilbert space

Hilbert space of QFT is typically ∞ dimensional

Make it finite dimensional!

・Fermion is easiest (up to doubling problem)

Putting on spatial lattice, Hilbert sp. is finite dimensional

・scalar
Hilbert sp. at each site is ∞ dimensional

・gauge field (w/ kinetic term)

no physical d.o.f. in 0+1D/1+1D (w/ open bdy. condition)

∞ dimensional Hilbert sp. in higher dimensions

(need truncation or additional regularization)



Charge-𝑞 Schwinger model
Continuum:

Taking temporal gauge 𝐴0 = 0,

Physical states are constrained by Gauss law:

(Π: conjugate momentum of 𝐴1 )

0 = −𝜕1Π − 𝑞𝑔 ത𝜓𝛾0𝜓



Map of accessibility/difficulty

𝑚

𝜃

Pure
Maxwell

Monte Carlo

solvable

Mass
perturb.

via boson-
-ization

We can make

prediction here



Put the theory on lattice 
・Fermion (on site): [Susskind, Kogut-Susskind ’75]

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2
lattice spacing

odd site

even site

“Staggered fermion”



Put the theory on lattice 
・Fermion (on site): [Susskind, Kogut-Susskind ’75]

x x x x x x
・・・

𝜙1, 𝐿1 𝜙2, 𝐿2 𝜙𝑁−2, 𝐿𝑁−2

𝜒1 𝜒2 𝜒𝑁−2

・Gauge field (on link):

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2
lattice spacing

odd site

even site

“Staggered fermion”

𝜙𝑛 ↔ −𝑎𝑔𝐴1 𝑥 , 𝐿𝑛 ↔ −
Π 𝑥

𝑔

𝜙0, 𝐿0

𝜒𝑁−1𝜒3𝜒0
𝑎



Lattice theory w/ staggered fermion
Hamiltonian:

Commutation relation:

Gauss law:



Eliminate gauge d.o.f.
1. Take open b.c. & solve Gauss law:

2. Take the gauge 𝑈𝑛 = 1

Then,

This acts on finite dimensional Hilbert space

w/ 𝐿−1 = 0



Insertion of the probe charges
① Introduce the probe charges ±𝑞𝑝:

𝑒𝑖𝑞𝑝 𝐶׬ 𝐴 𝐶
ℓ

𝑡 = +∞

𝑡 = −∞

➁ Include it to the action & switch to Hamilton formalism

𝑒𝑖𝑞𝑝 𝑆,𝜕𝑆=𝐶׬ 𝐹 local 𝜃-term w/ 𝜃 = 2𝜋𝑞𝑝!!

𝑥

+𝑞𝑝 −𝑞𝑝

ℓ

𝜃 = 𝜃0 𝜃 = 𝜃0𝜃 = 𝜃0 + 2𝜋𝑞𝑝

③ Compute the ground state energy (in the presence of the probes)



Going to spin system

This is satisfied by the operator:
[Jordan-Wigner’28]

Now the system is purely a spin system:

Qubit description of the Schwinger model !!

“Jordan-Wigner transformation”

(𝑋𝑛, 𝑌𝑛, 𝑍𝑛: 𝜎1,2,3 at site 𝑛)
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Constructing ground state

∃various quantum algorithms to construct vacuum:

・adiabatic state preparation 

・algorithms based on variational method

・imaginary time evolution etc…

Here, let’s apply

adiabatic state preparation 



Adiabatic state preparation

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

Step 3: 

Step 2:



Adiabatic state preparation

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: 

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Adiabatic state preparation

If 𝐻𝐴(𝑡) has a unique ground state w/ a finite gap for ∀𝑡,
then the ground state of 𝐻target is obtained by

Step 1: Choose an initial Hamiltonian 𝐻0 of a simple system
whose ground state |vac0⟩ is known and unique

・ 𝐻𝐴 0 = 𝐻0, 𝐻𝐴 𝑇 = 𝐻target

Step 3: Use the adiabatic theorem

vac = lim
𝑇→∞

𝒯 exp −𝑖 න
0

𝑇

𝑑𝑡 𝐻𝐴 𝑡 |vac0⟩

Step 2: Introduce adiabatic Hamiltonian 𝐻𝐴 𝑡 s.t.

・
𝑑𝐻𝐴

𝑑𝑡
≪ 1 for 𝑇 ≫ 1



Adiabatic state preparation (cont’d)

Here, we choose

𝐻0 = 𝐻 ቚ
𝑤→0, 𝜗𝑛→0, 𝑚→𝑚0

vac0 = |1010⋯ ⟩

𝐻𝐴(𝑡) = 𝐻 ቚ
𝑤→𝑤 𝑡 ,𝜗𝑛→𝜗𝑛 𝑡 , 𝑚→𝑚 𝑡

𝑤 𝑡 = 𝑓
𝑡

𝑇
𝑤,  𝜗𝑛 𝑡 = 𝑓

𝑡

𝑇
𝜗𝑛, 𝑚 𝑡 = 1 − 𝑓

𝑡

𝑇
𝑚0 + 𝑓

𝑡

𝑇
𝑚

𝑓(𝑠): smooth function s.t. 𝑓 0 = 0,  𝑓 1 = 1



Demo: chiral condensate in massless case
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

exact result

(after continuum limit)



2. Schwinger model as qubits

3. Algorithm to prepare ground state

Plan

6. Summary & Outlook

4. Screening, confinement & negative   
string tension

1. Introduction

5. Algorithm to compute energy spectrum

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

[MH-Itou-Kikuchi-Nagano-Okuda ’21, MH-Itou-Kikuchi-Tanizaki ’21]

[work in progress, MH-Ghim ]



Screening versus Confinement

potential between 2 heavy charged particles

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2
𝑥 ?

Let’s consider

Classical picture:

+𝑞𝑝−𝑞𝑝

confinement

Coulomb law in 1+1d

too naive in the presence of dynamical fermions



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

screening



Expectations from previous analyzes

[Iso-Murayama ’88, Gross-Klebanov-Matytsin-Smilga ’95 ]

Potential between probe charges ±𝑞𝑝 has been analytically computed 

・massless case:

・massive case:

𝑉 𝑥 =
𝑞𝑝
2 𝑔2

2𝜇
(1 − 𝑒−𝑞𝜇𝑥)

𝜇 ≡ 𝑔/ 𝜋

(m ≪ 𝑔, 𝑥 ≫ 1/𝑔 )

screening

screening

but sometimes negative slope!

Σ ≡ 𝑔𝑒𝛾/2𝜋3/2

= Const.

∝ 𝑥

for qp/q = 𝐙

for qp/q ≠ 𝒁

𝑉 𝑥 ∼ 𝑚𝑞Σ cos
𝜃 + 2𝜋𝑞𝑝

𝑞
− cos

𝜃

𝑞
𝑥

[cf. Misumi-Tanizaki-Unsal ’19 ]

confinement?



Let’s explore this aspect by quantum simulation!

That is, as changing the parameters…



Massless vs massive for 𝜃0 = 0 & 𝑞𝑝/𝑞 ∈ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 15 & 21, 𝑇 = 99, 𝑞𝑝/𝑞 = 1

Lines: analytical results in the continuum limit (finite & ∞ vols.)

Consistent w/ expected screening behavior

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

𝑞𝑝 = 1,𝑚 = 0 𝑞𝑝 = 1,𝑚/𝑔 = 0.2



Results for 𝜃0 = 0 & 𝑞𝑝/𝑞 ∉ 𝒁

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 15, 𝑇 = 99, 𝑞𝑝/𝑞 = 1/4,𝑚 = 0 & 0.2

Lines: analytical results in the continuum limit (finite & ∞ vol.)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

(probe distance)Consistent w/ expected confinement behavior



Positive / negative string tension
[MH-Itou-Kikuchi-Tanizaki ’21]

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15

Sign(tension) changes as changing 𝜃-angle!!



Energy density @ negative tension regime
[MH-Itou-Kikuchi-Tanizaki ’21]

𝑔 = 1, 𝑎 = 0.4,𝑁 = 25, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15, 𝜃0 = 2𝜋

Lower energy inside the probes!!
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Energy spectrum in quantum field theory
Information in energy spectrum:

・degeneracy of ground states

・energy gap between ground & 1st excited states

・distribution of excited states at low levels

phase structure, mass spectrum of particles 



Energy spectrum in quantum field theory
Information in energy spectrum:

・degeneracy of ground states

・energy gap between ground & 1st excited states

・distribution of excited states at low levels

phase structure, mass spectrum of particles 

Desired algorithm:

(doesn’t need ground state energy itself)

efficient computation of spectrum at low levels

For this purpose, it seems inefficient to explicitly construct 

energy eigenstates one by one and measure their energies



Algorithm: coherent imaging spectroscopy

Time dependent Hamiltonian:

෡𝐻 𝑡; 𝜈 = ෡𝐻target + 𝐵sin 𝜈𝑡 ⋅ ෠𝑂

𝑃(𝜈) ≔ |⟨0|𝒯𝑒−𝑖׬ 𝑑𝑡 ෡𝐻 (𝑡;𝜈) 0 |2

We’d like to know spectrum of excited energies:

෡𝐻target 𝑛 = 𝐸𝑛|𝑛⟩

becomes small when 𝜈 ∼ 𝐸𝑛

Survival probability of ground state after some time:

[Senko-Smith-Richerme-Lee-Campbell-Monroe ’14]

[working in progress, MH-Ghim]



Coherent imaging spectroscopy in Ising model

Known phase diagram:

෡𝐻Ising = −𝐽෍

𝑛=1

𝑁−1

𝑍𝑛𝑍𝑛+1 − ℎ෍

𝑛=1

𝑁

𝑋𝑛 −𝑚෍

𝑛=1

𝑁

𝑍𝑛

[working in progress, MH-Ghim]

෡𝐻Ising + 𝐵sin 𝜈𝑡 ෍

𝑛=1

𝑁

𝑌𝑛

ℎ/𝐽

m/𝐽

1

critical
𝒁𝟐

Let’s consider time evolution by

unique gapped



Coherent imaging spectroscopy in Ising model (cont’d)

𝑁 = 8,𝑚/𝐽 = 0.1 （|0⟩ by adiabatic state preparation)

[working in progress, MH-Ghim]



Coherent imaging spectroscopy in Schwinger model

𝑚𝑒𝑖𝜃

parity
critical

unique gapped

Expected phase diagram for 𝑞 = 1:

−0.33?

෡𝐻 + 𝐵sin 𝜈𝑡 ෍

𝑛=0

𝑁−1

−1 𝑛 (𝜒𝑛
†𝜒𝑛+1 − 𝜒𝑛+1

† 𝜒𝑛)

Let’s consider time evolution by (perturbed by “ ത𝜓𝛾5𝜓”)



Coherent imaging spectroscopy in Schwinger model (cont’d)

preliminary

(𝑁 = 13, 𝑔 = 1,𝑤 = 1, |0⟩ by adiabatic state preparation)



Summary & Outlook



Summary
・Quantum computation is suitable for operator formalism

that is free from sign problem

・constructed the ground state of the Schwinger model
w/ the topological term by adiabatic state preparation

・Instead we have to deal with huge vector space.
Quantum computers in future may do this job. 

・found agreement in the chiral condensate with the exact   
result for 𝑚 = 0 & mass perturbation theory for small 𝑚

・explored the screening vs confinement problem &
negative string tension behavior [MH-Itou-Kikuchi-Nagano-Okuda ’21]

[MH-Itou-Kikuchi-Tanizaki ’21]

[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

・energy spectrum by coherent imaging spectroscopy
[work in progress, MH-Ghim]



Towards “quantum supremacy”?

[ MH-Itou-Tanizaki ’22]

The problems in this talk involve only ground state in 1+1D

→ Tensor Network is better → able to take 𝑁 = 𝒪(100)



Towards “quantum supremacy”?

[ MH-Itou-Tanizaki ’22]

The problems in this talk involve only ground state in 1+1D

→ Tensor Network is better → able to take 𝑁 = 𝒪(100)

Tensor Network (DMRG):Adiabatic state preparation:



Towards “quantum supremacy”?

should study problems not efficiently simulated by MC & TN 

[ MH-Itou-Tanizaki ’22]

The problems in this talk involve only ground state in 1+1D

→ Tensor Network is better → able to take 𝑁 = 𝒪(100)

Tensor Network (DMRG):

・long time evolution, many pt. function, non-local op. 

・system w/ strong entanglement (matrix models?) Thanks!

Adiabatic state preparation:



Appendix



Symmetries in charge-𝑞 Schwinger model

・𝒁𝒒 chiral symmetry for 𝑚 = 0

・𝒁𝒒 1-form symmetry

ABJ anomaly: 𝑈 1 𝐴 → 𝒁𝒒

remnant of 𝑈(1) 1-form sym. in pure Maxwell

known to be spontaneously broken

Hilbert sp. is decomposed into 𝑞 sectors “universe”

(cf. common for 𝑑 − 1 -form sym. in 𝑑 dimensions)



Accessible region by analytic computation

・Massive limit:

・Bosonization: [Coleman ’76]

The fermion can be integrated out

ℒ =
1

8𝜋
𝜕𝜇𝜙

2
−

𝑞𝑔 2

8𝜋2
𝜙2 +

𝑒𝛾𝑞𝑔

2𝜋3/2
𝑚 cos(𝜙 + 𝜃/𝑞)

the theory becomes effectively pure Maxwell theory w/ 𝜃

&

exactly solvable for 𝑚 = 0

small 𝑚 regime is approximated by perturbation

&



Sign problem in path integral formalism

In Euclidean space,

In Minkowski space,

𝒪 =
׬ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒𝑖𝑆

׬ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒𝑖𝑆

𝑆 = ׬ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 +

𝑔𝜃

4𝜋
׬ 𝐹 ∈ 𝑹

𝒪 =
׬ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝒪 𝑒−𝑆

׬ 𝐷𝐴𝐷𝜓𝐷 ത𝜓 𝑒−𝑆

𝑆 = ׬ 𝑑4𝑥 −
1

4
𝐹𝜇𝜈
2 + ത𝜓 𝑖𝛾𝜇𝐷𝜇 −𝑚 𝜓 + 𝑖

𝑔𝜃

4𝜋
׬ 𝐹 ∈ 𝑪

highly oscillating

highly oscillating for non-small θ



Comments on choices of setup

There were many choices of setup to come here…

・Formulation of continuum theory?

・Type of lattice fermion?

・Boundary condition?

・Impose Gauss law?

・Even 𝑁 or odd 𝑁? 

・How to map fermion to spin system?



Choice of continuum theory

[cf. Fujikawa’79]

(used for the case w/ probes)

(used for the case w/o probes)

“chiral anomaly”

・Equivalent for continuum theory w/o bdy.

(generically) inequivalent for theory on lattice or w/ bdy.

・The latter doesn’t violate 𝜃-periodicity even for open b.c.



Choice of boundary conditions

Gauss law:

Open b.c. Periodic b.c.

・𝐿𝑛 = (fermion op.) ・one of 𝐿𝑛’s remains

dim ℋphys < ∞ dim ℋphys = ∞

additional truncation needed

・𝜃-periodicity is lost ・∃𝜃-periodicity 

・momentum not conserved ・momentum conserved



Even 𝑁 or odd 𝑁?

𝜓(𝑥) =
𝜓𝑢
𝜓𝑑

𝜒𝑛
𝑎1/2

odd site

even site

x x x x x x
・・・𝜒1 𝜒2 𝜒𝑁−2 𝜒𝑁−1𝜒3𝜒0

・Usually even 𝑁 is taken (p.b.c. allows only even 𝑁)

Staggered fermion:

・Open b.c. allows both but parity is different: 𝜒𝑛 → 𝑖 −1 𝑛𝜒𝑁−𝑛−1

even 𝑁 changes

𝑛 mod 2

odd 𝑁 invariant

ത𝜓𝛾5𝜓 ∼෍

𝑛

−1 𝑛 (𝜒𝑛
†𝜒𝑛+1 − h. c. )ത𝜓𝜓 ∼෍

𝑛

−1 𝑛 𝜒𝑛
†𝜒𝑛

invariant

invariantflipped

flipped

Odd 𝑁 seems more like the continuum theory?



Improvement of Suzuki-Trotter decomposition

The leading order decomposition:

The 2nd order improvement:

This increases the number of gates at each time step
but we can take larger δt (smaller M) to achieve similar accuracy.
Totally we save the number of gates.

cf. Baker-Campbell-Hausdorff formula:



Time evolution operator
Suzuki-Trotter decomposition:

(𝑀 ∈ 𝒁, 𝑀 ≫ 1)

Can we express it in terms of elementary gates?

(more precisely, we actually use its improvement but I skip it)



Time evolution operator (cont’d)

・The 1st one is trivial:

・For the others, use the identities: 

Only elementary gates !!

(proof skipped)



Tradeoff of symmetries in Suzuki-Trotter dec.

Suzuki-Trotter decomposition:
(𝑀 ∈ 𝒁, 𝑀 ≫ 1)

(more precisely, we actually use its improvement but I skip it)

𝑒−𝑖𝐻𝑡 = 𝑒−𝑖𝐻
𝑡
𝑀

𝑀

≃ 𝑒−𝑖𝐻1
𝑡
𝑀𝑒−𝑖𝐻2

𝑡
𝑀

𝑀

+ 𝒪(1/𝑀)

Symmetries may be broken by decomposition

𝐻eff =
1

−𝑖𝑡
log 𝑒−𝑖𝐻1

𝑡
𝑀𝑒−𝑖𝐻2

𝑡
𝑀

𝑀

Tradeoff:

・Parity friendly (& translation if p.b.c.)

𝐻 = 𝐻𝑋𝑋 + 𝐻𝑌𝑌 + 𝐻𝑍𝑍 +𝐻𝑍

・𝑈(1) friendly

𝐻 = 𝐻𝑋𝑋+𝑌𝑌
(even)

+ 𝐻𝑋𝑋+𝑌𝑌
(odd)

+𝐻𝑍𝑍 + 𝐻𝑍

𝑈(1)

𝑃



Comment on adiabatic state preparation

Advantage:

・costly — likely requires many gates 

・guaranteed to be correct for 𝑇 ≫ 1 & 𝛿𝑡 ≪ 1
if 𝐻𝐴(𝑡) has a unique gapped vacuum

Disadvantage:

・can directly get excited states under some conditions

・doesn’t work for degenerate vacua

more appropriate for FTQC than NISQ 

("systematic error") ∼
1

𝑇 gap 2



Without probes



VEV of mass operator (chiral condensation)

Instead of the local op., we analyze the average over the space: 

Once we get the vacuum, we can compute the VEV as

How can we obtain the vacuum?



Massless case

[Hetrick-Hosotani ’88]
∃Exact result:

For massless case, 

𝜃 is absorbed by chiral rotation

Nevertheless,

it’s difficult in conventional approach because computation of 
fermion determinant becomes very heavy

Can we reproduce it?

No sign problem

𝜃 = 0 w/o loss of generality



Expectation value of mass op. (chiral condensation)

Instead of the local op., we analyze the average over the space: 

Once we get the vacuum, we can compute the VEV as



Chiral condens. for massive case at g=1
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]

mass perturbation

Tensor Network

[Banuls-Cichy-Jansen-Saito ’16]



Estimation of systematic errors
[Chakraborty-MH-Kikuchi-Izubuchi-Tomiya ’20]Approximation of vacuum:

Approximation of VEV:

Introduce the quantity

independent of t if

dependent on t if

This quantity describes  intrinsic ambiguities in prediction

Useful to estimate systematic errors



Estimation of systematic errors (Cont’d)

Oscillating around the correct value

Define central value & error as

&



Massive case

Result of mass perturbation theory: [Adam ’98]

∃subtlety in comparison: this quantity is UV divergent

Use a regularization scheme to have the same finite part

However,

Here we subtract free theory result before taking continuum limit:

ത𝜓 𝑥 𝜓 𝑥 ≃ −0.160𝑔 + 0.322𝑚 cos𝜃 + 𝒪(𝑚2)



Thermodynamic & Continuum limit

#(measurements)

Thermodynamic limit (w/ fixed 𝑎) Continuum limit (after 𝑉 → ∞)



𝜃 dependence at 𝑚 = 0.1 & 𝑔 = 1

⟨ ത𝜓𝜓⟩

mass perturbation



With probes



FAQs on negative tension behavior
Q1. It sounds that many pair creations are favored. 

Is the theory unstable?

No. Negative tension appears only for 𝑞𝑝 ≠ 𝑞𝒁. 

So, such unstable pair creations do not occur.

+𝑞−𝑞

−𝑞 +𝑞

annihilation

+𝑞−𝑞

∞ particles favored?

creation

attractive

repulsive



FAQs on negative tension behavior (cont’d)
[cf. MH-Itou-Kikuchi-Tanizaki ’21]

Inside & outside are in different “superselect. sectors”

decomposed by 𝑍𝑞 1-form sym.  

“universe”

𝑊𝑞𝑝
𝐸inside 𝐸outside (= 𝐸0? )

Q2. It sounds 𝐸inside < 𝐸outside.  Strange?

𝐸inside = min
ℋℓ+𝑞𝑝

(𝐸) , 𝐸outside = min
ℋℓ

𝐸

ℋ =⊕ℓ=0
𝑞−1

ℋℓ

𝐸inside & 𝐸outside are lowest in each universe:



“String tension” for 𝜃0 = 0
Parameters: 𝑔 = 1, 𝑎 = 0.4, 𝑁 = 15, 𝑇 = 99,𝑚/𝑔 = 0.2

Classical Coulomb 

mass pert. (∞-vol.)

(~probe charge)

mass pert. (finite V) 
“string tension”

(slope for large

distance)

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

𝑞𝑝/𝑞
confinement by nontrivial dynamics!



Comment: density plots of energy gap

smaller gap for larger ℓ

[MH-Itou-Kikuchi-Nagano-Okuda ’21]

Parameters: 𝑔 = 1, 𝑎 = 0.4,𝑁 = 15, 𝑞𝑝/𝑞 = 1,𝑚/𝑔 = 0.15

larger systematic error for larger ℓ

(known as “Tuna slice plot” inside the collaboration)



Continuum limit of string tension
[MH-Itou-Kikuchi-Tanizaki ’21]

𝑔 = 1, (Vol. ) = 9.6/𝑔, 𝑇 = 99, 𝑞𝑝/𝑞 = −1/3,𝑚 = 0.15, 𝜃0 = 2𝜋

basically agrees with mass perturbation theory



𝑁-dependence of 𝑉 w/ fixed physical volume
[MH-Itou-Kikuchi-Tanizaki ’21]



Comparison of 𝑞𝑝/𝑞 = −1/3 & 𝑞𝑝/𝑞 = 2/3
[MH-Itou-Kikuchi-Tanizaki ’21]

Parameters: q = 3, 𝑔 = 1, 𝑎 = 0.4,𝑁 = 25, 𝑇 = 99,𝑚 = 0.15

Similar slopes → (approximate)𝒁𝟑 symmetry



Adiabatic scheduling
[MH-Itou-Kikuchi-Tanizaki ’21]


