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Motivations and background

• The simulation of lattice gauge theories and more general 
quantum many-body systems is expected to become a 
major target of application of quantum computers in the 
future. 


• We should be preparing 


• by developing the theory of quantum simulation and


• by implementing quantum algorithms on the 
available real devices.
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• Currently, we only have noisy intermediate-scale 
quantum (NISQ) devices.  Their abilities are limited by 
noise (errors) and size.


• Q1: Can we quantify the effects of quantum noise 
using a many-body system? 


• Q2: Is there a way to put discretization errors under 
control?
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• Because the realistic lattice gauge theories (such as lattice 
QCD) are hard to simulate on current devices, we consider 
a spin chain as a toy model.


• It is generally expected that integrable models provide 
useful benchmarks for quantum simulation because they 
allow greater analytical control, even when the system size 
is so large that classical simulation is impossible.


• Today I report the results of our quantum simulation of the 
Heisenberg spin 1/2 XXX spin chain on real devices.


• Trapped-ion device (IonQ)


• Superconducting devices (IBM)
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Integrable Trotterization
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Integrable Trotterization

7

• XXX Hamiltonian: 

 . 

• Ideally, we want to implement 
.  This is not possible and 

we resort to the Suzuki-Trotter 
approximation

H ∝
N

∑
j=1

σj ⋅ σj+1 = He + Ho

e−itH

σ ≡ (σx, σy, σz) ≡ (X, Y, Z)

1 2N
3

[Vanicat, Zadnik & Prosen ’17]

: number of repetitions  depth

(e−i(t/d)Hee−i(t/d)Ho)d = e−it(He+Ho)(1 + 𝒪(d−1)) .

d ∼
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The Trotterized small-time evolution (even , periodic b.c.) can 
be expressed in terms of the R(-check) matrix: 

 

  

  ( )

N

e−iαHee−iαHo =
N/2

∏
j=1

R2j−1,2j(δ)
N/2

∏
j=1

R2j,2j+1(δ) =: 𝒰(δ) ,

Rij(δ) = (1 + iδPij)/(1 + iδ)

= (phase)eiα(XiXj+YiYj+ZiZj) .

δ = tan α

Time evolution =

𝒰
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•  commutes with the transfer matrix with specific 
inhomogeneity 

 for any . 

• Charges  are exactly 

conserved even with Trotterization, which give rise to 
time-discretization errors for other observables. 

•  is also conserved.

𝒰(δ)

Tδ(λ) = tr0[
⟵
∏

1≤ j≤N

R0j(λ − (−1) jδ)] λ ∈ ℂ

Q±
n (δ) ∼

dn

dλn
log Tδ(λ)

λ=±δ/2

Qdif
n ≡ [Q+

n (δ) − Q−
n (δ)]/δ

Conserved charges



• Densities  in higher charges


 


 


can be computed via the recursion relation  on 
an infinite chain, where  is a discrete (Lorentz) boost 
transformation. [Vanicat et al.]


• We implemented the recursion in Mathematica programs.

q[n,±]
j,j+1,…,j+2n

Q+
n (δ) =

N/2

∑
j=1

q[n,+]
2j−2,2j−1,…,2j+2n−2(δ) ,

Q−
n (δ) =

N/2

∑
j=1

q[n,−]
2j−1,2j,…,2j+2n−1(δ)

Q±
n+1 ∼ [B, Q±

n ]
B
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q[1,±]
1,2,3 (�) = �1 · �2 + �2 · �3 ⌥ ��1 · (�2 ⇥ �3) + �2�2 · �3 ,

q[2,±]
1,2,3,4,5(�) = ⌥2�(�3 · �4 + �4 · �5 � �3 · �5)� (1� �2)�3 · (�4 ⇥ �5)� �2 · (�3 ⇥ �4)� �2�2 · (�3 ⇥ �5)

��2�1 · (�3 ⇥ �4)� �4�1 · (�3 ⇥ �5)± ��2 · (�3 ⇥ �4 ⇥ �5)± ��1 · (�2 ⇥ �3 ⇥ �4)

±�3�1 · (�3 ⇥ �4 ⇥ �5)± �3�1 · (�2 ⇥ �3 ⇥ �5)� �2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5) ,

q[3,+]
1,2,3,4,5,6,7 = �4�6 · �7 + 2�5 · �7 � 4�5 · �6 + 2�4 · �6 + 2�4 · (�5 ⇥ �6 ⇥ �7) + 2�3 · (�4 ⇥ �5 ⇥ �6)

+�
⇣
10�5 · (�6 ⇥ �7)� 2�4 · (�6 ⇥ �7)� 4�4 · (�5 ⇥ �7) + 8�4 · (�5 ⇥ �6)� 4�3 · (�5 ⇥ �6)

�2�3 · (�4 ⇥ �6)� 4�3 · (�4 ⇥ �5 ⇥ �6 ⇥ �7)� 2�2 · (�3 ⇥ �4 ⇥ �5 ⇥ �6)
⌘

+�2
⇣
2�6 · �7 � 10�5 · �7 + 2�5 · �6 + 2�4 · �7 + 2�4 · �6 + 2�3 · �6

�6�4 · (�5 ⇥ �6 ⇥ �7) + 6�3 · (�5 ⇥ �6 ⇥ �7) + 2�3 · (�4 ⇥ �6 ⇥ �7) + 6�3 · (�4 ⇥ �5 ⇥ �7)

�6�3 · (�4 ⇥ �5 ⇥ �6) + 2�2 · (�3 ⇥ �5 ⇥ �6)

+2�2 · (�3 ⇥ �4 ⇥ �5 ⇥ �6 ⇥ �7) + 2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5 ⇥ �6)
⌘

+�3
⇣
6�5 · (�6 ⇥ �7)� 2�4 · (�6 ⇥ �7) + 4�4 · (�5 ⇥ �7)� 2�3 · (�6 ⇥ �7)� 8�3 · (�5 ⇥ �7)

�2�3 · (�4 ⇥ �6) + 4�3 · (�5 ⇥ �6)� 2�3 · (�4 ⇥ �7) + 4�3 · (�4 ⇥ �5 ⇥ �6 ⇥ �7)

�2�2 · (�3 ⇥ �5 ⇥ �6 ⇥ �7)� 2�2 · (�3 ⇥ �4 ⇥ �5 ⇥ �7)� 2�1 · (�3 ⇥ �4 ⇥ �5 ⇥ �6)

�2�1 · (�2 ⇥ �3 ⇥ �5 ⇥ �6)� 2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5 ⇥ �6 ⇥ �7)
⌘

+�4
⇣
� 2�6 · �7 � 8�5 · �7 � 2�5 · �6 + 2�4 · �7 + 2�3 · �6 + 2�3 · �7 � 2�3 · (�5 ⇥ �6 ⇥ �7)

+2�3 · (�4 ⇥ �6 ⇥ �7)� 2�3 · (�4 ⇥ �5 ⇥ �7) + 2�2 · (�3 ⇥ �5 ⇥ �7) + 2�1 · (�3 ⇥ �5 ⇥ �6)

+2�1 · (�3 ⇥ �4 ⇥ �5 ⇥ �6 ⇥ �7) + 2�1 · (�2 ⇥ �3 ⇥ �5 ⇥ �6 ⇥ �7) + 2�1 · (�2 ⇥ �3 ⇥ �4 ⇥ �5 ⇥ �7)
⌘

+�5
⇣
4�5 · (�6 ⇥ �7)� 2�3 · (�6 ⇥ �7)� 2�3 · (�4 ⇥ �7)� 2�1 · (�3 ⇥ �5 ⇥ �6 ⇥ �7)

�2�1 · (�3 ⇥ �4 ⇥ �5 ⇥ �7)� 2�1 · (�2 ⇥ �3 ⇥ �5 ⇥ �7)
⌘

+�6
⇣
� 4�5 · �7 + 2�3 · �7 + 2�1 · (�3 ⇥ �5 ⇥ �7)

⌘
.
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new

<latexit sha1_base64="vYu+NE6QDeTlBmfCSzlvljxeN1k="></latexit>

�1 · (�2 ⇥ �3 ⇥ · · ·⇥ �`�1 ⇥ �`) := �1 · (�2 ⇥ (�3 ⇥ (· · ·⇥ (�`�1 ⇥ �`) · · · )))Here

known

Densities and charges 
are traceless.
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e
i↵
2 (X⌦X+Y⌦Y ) =

• H • RZ(�↵) • H •

RZ(↵)

e
i↵
2 Z⌦Z =

• •
RZ(�↵)

The R matrix  can be implemented 
by elementary gates.

Rij(δ) = (phase)eiα(XiXj+YiYj+ZiZj)



Quantum circuit
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• Initialization: by default the quantum device prepares .  We 
further apply some of , , and Pauli gates (  and ) to prepare a 
simultaneous eigenstate   of  with 
eigenvalues .


• Time evolution:  repetitions of  


 .


• Measurement: we measure the eigenvalue of , or  for each qubit.

|00…0⟩
H S X, Y, Z

|s1…sN⟩P1…PN
Pi ∈ {X, Y, Z}

(−1)si

d

𝒰(δ) = (
N/2

∏
j=1

R2j−1,2j(δ))(
N/2

∏
j=1

R2j,2j+1(δ))
X, Y Z

state 
initialization time evolution measurement

1

N

2



Estimating observables
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• One can compute (estimate) the expectation value of a charge 


,   , 


from the measurement results in various measurement bases.

Q = ∑
P∈{I,X,Y,Z}⊗N

cQ,PP cQ,P ∈ ℂ



Quantum devices
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IBM: Superconducting devices

• Superconducting transmon qubits made of materials such 
as niobium and aluminum placed on a silicon chip.  Two 
energy-levels form an approximate qubit.

16 source: https://japan.zdnet.com/article/35174399/

• We obtained access to 
the devices through 
the University of Tokyo.   
(Supported by UTokyo 
Quantum Initiative).


• We used the 
ibm_kawasaki (27-
qubit, before upgrade) 
and ibm_washington 
(127-qubit) processors.



IonQ: trapped ion devices

• We mainly used IonQ’s older device called Harmony.  (There is a 
newer device called Aria.)


• A linear chain of  ions near an electrode trap.171Yb+

17 arXiv:1903.08181

• 11 qubits with 
all-to-all 
couplings.


• We got indirect 
access 
through 
Google Cloud 
and direct 
access 
through IonQ 
itself.



Results of real-device 
simulations
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Simulation results for ibm_kawasaki
•  decays 

exponentially to zero 
asymptotically, due to noise.  
No error mitigation.


• Error bars are hidden by 
markers.  Rescaled for better 
visibility.  The theoretical 
values are shown by dotted 
lines.  Fit by .


• The initial state is 
.


• Large fluctuations from one 
step to the next (most likely 
due to change in device 
parameters).

⟨Q+
1 ⟩ = tr(ρQ+

1 )

c1e−γd + c2

|0101…01⟩

19

2625

24

2321

2219

20

18

17

15

1614

13

12107

6

118

9

5

41

2

3

0
>

Only the 12-site 
simulation is for a 
circular topology.
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• Similar results for .

• The initial states are chosen appropriately to give non-

zero theoretical expectation values.

Qdif
1 = [Q+

1 (δ) − Q−
1 (δ)]/2



Simulations on a 127-qubit IBM device

• Quantum device 
ibm_washington with 
127 qubits.


• We ran simulations with 
qubits on loops of size 
12, 20, and 84.  The 84-
qubit loop is shown in 
the figure.


• To have slower decays, 
it is important to avoid 
faulty (purple) qubits 
and connections.
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Simulation results on large chains

• Loops of size 12, 20, 
and 84.


• Similar exponential 
decays of .


• For the 84-site run, we 
had  shots (circuit 
executions) for each 
value of .


• (There were significant 
time gaps between 
some data.)

⟨Q+
1 ⟩

106

d
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Simulation results for IonQ Harmony

•Similar exponential 
decays.

•To have slower decays, it 
seems important to use 
the qubits (ions) in the 
middle of the linear chain.




Emulator results and 
theoretical analysis
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Numerical noise models

• We ran digital quantum simulations on the Qiskit (classical) 
simulator with noise models.


• We considered two noise models:


1. (1-qubit) depolarizing error channels inserted after 1- and 2-
qubit gate operations.


2. (1-qubit) amplitude-and-phase damping error channels 
inserted after 1- and 2-qubit gate operations.
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Classical emulation of quantum 
simulation with a depolarizing 
noise model

•  with 

 

 

inserted after gate operations.


•  and  decay 
exponentially to zero.  This 
suggests that the finite state is 
completely mixed.

Φdepo(ρ) =
4

∑
j=1

DjρD†
j

D1 = 1 −
3p
4

I , D2 =
p
4

X ,

D3 =
p
4

Y , D4 =
p
4

Z

⟨Q+
j ⟩ ⟨Qdif

j ⟩

26



Classical emulation of quantum 
simulation with a amplitude-and-
phase damping noise model

•  with 

 

 

inserted after gate operations.


•  (and ) asymptote to finite 
values.  The finite state is unique and is 
NOT completely mixed.  Checked by 
quantum tomography.

Φdamp(ρ) =
3

∑
j=1

DjρD†
j

D1 =
1 0
0 1 − λa − λp

,

D2 = (0 λa

0 0 ) , D3 =
0 0
0 λp

⟨Q+
j ⟩ ⟨Qdif

j ⟩
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Analysis fo quantum channels

• The initial state  is mapped, at Trotter step , to 
, where  is a noisy time evolution for a single step.


• The expectation value of a conserved charge  at step  is 
.


• We studied the eigenvalue distribution of the linear map 
.

ρ0 = |ψ0⟩⟨ψ0 | d
Φd(ρ) Φ

Q d
⟨Q⟩d = tr[Φd(ρ)Q]

ρ → Φ(ρ)
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Noiseless Depolarizing noise model

• The eigenvalues for the single time step  on 4 sites.  

• In the noiseless case, the evolution is unitary and the eigenvalues are 

on a unit circle.

• In the depolarizing noise model, all the eigenvalues except one are 

strictly inside the unit circle.  There remains a single eigenvalue 1, 
corresponding to the unique fixed point (completely mixed state) of .

Φ

Φ



Possible use of conserved charges 
as benchmarks for future quantum 
computing
• For future quantum 

devices we expect smaller 
error rates.  We propose to 
use the higher conserved 
charges of the integrable 
Trotterization as 
benchmarks.


• On a classical simulator, 
we numerically computed 
the time evolution on 8 
sites.


• The slopes of early-tiime 
decays depend on the 
types and the degrees of 
the charges.
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Summary 

• We implemented the integrable Trotterization of the Heisenberg 
spin 1/2 XXX spin chain on real quantum computers and on 
classical simulators.  We used superconducting devices of IBM 
and trapped ion devices of IonQ.


• As expected, conserved charges decay due to noise on the 
current quantum devices.


• The early-time decay rate seems to depend on the type and the 
degree of the charge.  Higher charges are candidates of 
benchmarks for the future quantum simulation.
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Future directions 

• With H. Sukeno, we proposed a measurement-based scheme for 
quantum-simulating abelian lattice gauge theories in SciPost 
Phys. 14, 129 (2023).  This involves preparing a cluster state first 
and then performing adaptive measurements.


• When measurements can be performed more efficiently than 
entangling gates, the measurement-based scheme may be faster 
than the circuit-based scheme.


• I’m hoping to implement the measurement-based quantum 
simulation on a real device with mid-circuit measurement 
capabilities (in a couple of years).
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Back-up slides
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More details on devices

• 


• ibm_kawasaki: 


• 27 qubits, QV=unknown, Falcon r5.11.


• 90K shots per step for the 4-site simulation.


• ibm_washington: 127 qubits, QV=64, Eagle r1.


• IonQ 


• Uses the Sorenen-Molmer 2-qubit gate.


• 2.3K shots per step for the 4-site simulation.

α = 0.3
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