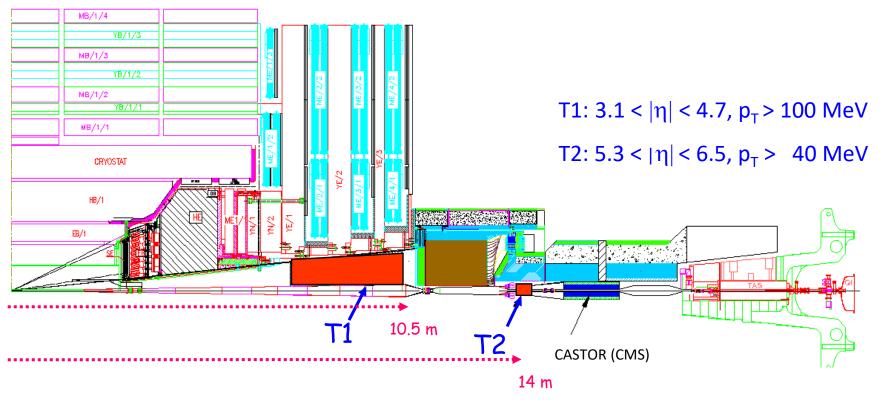
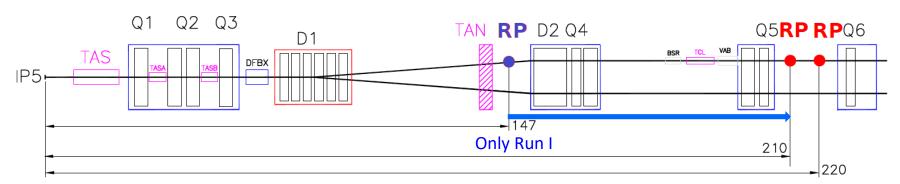


The discovery of the Odderon

and forward physics results

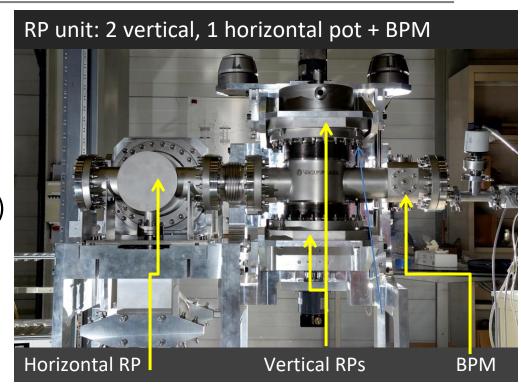
Frigyes NEMES on behalf of the TOTEM and D0 experiments CERN*

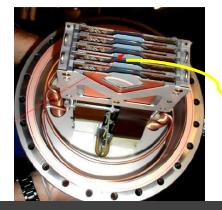

EMMI Workshop, Forward Physics in ALICE 3

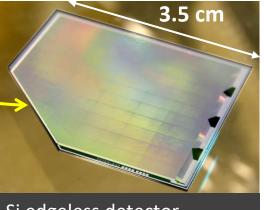

Physics Institute, Heidelberg University, Germany October 18 – 20 2023

*Also at MATE, Gödöllő – Gyöngyös Wigner RCP, Budapest, Hungary

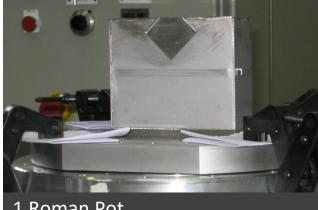
Experimental layout of the TOTEM experiment (LHC Run II)





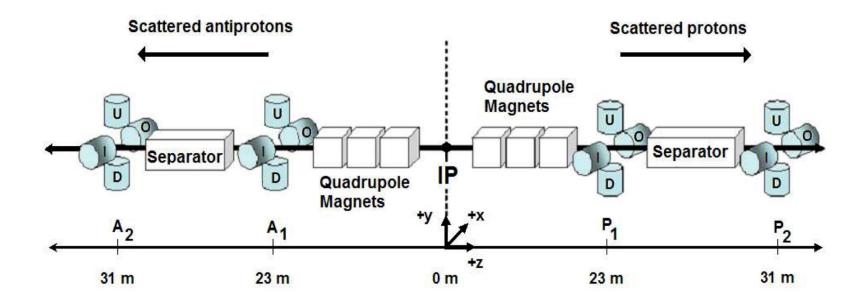


- Two RP stations at 210 and 220 m. from the IP contain measuring planes separated by 10 and 5 m respectively
- Unit: 3 moveable RP to approach the beam and detect very small proton scattering angles (few µrad)
- BPM: precise position rel. to beam
- Overlapping detectors: relative alignment (10 µm inside unit among 3 RPs)



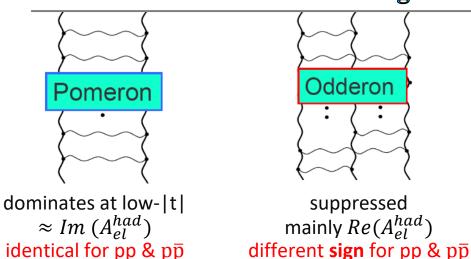
10 planes of edgeless detectors

Si edgeless detector



1 Roman Pot

Experimental layout of the D0 experiment (Tevatron, Fermilab)



- Elastic $\overline{p}p\ d\sigma/dt$ measurements: measure both the intact $\overline{p}\ \&\ p$ in D0 Roman Pots at 23 31 m from IP with scintillating fibre detectors
- Measurement at \sqrt{s} = 1.96 TeV: PRD 86 (2012) 012009.

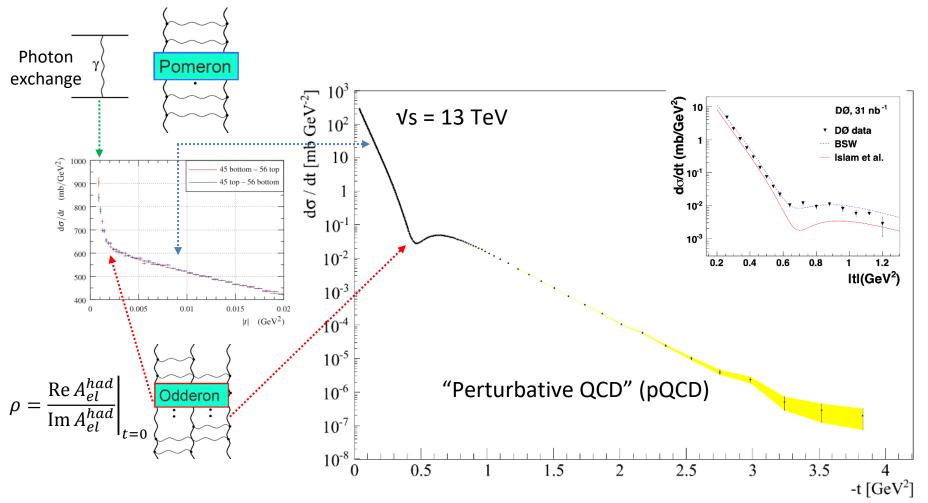
Elastic scattering: multi-gluon exchanges


Elastic hadron-hadron scattering at very highenergies: **colourless** multi-gluon t-channel exchanges

- @ TeV-scale: gluon exchanges dominate \Rightarrow pp and $p\bar{p}$ difference due to C-odd exchange
- gluonic compounds: colourless gluon combinations bound sufficiently strongly not to interact with individual p/\bar{p} partons

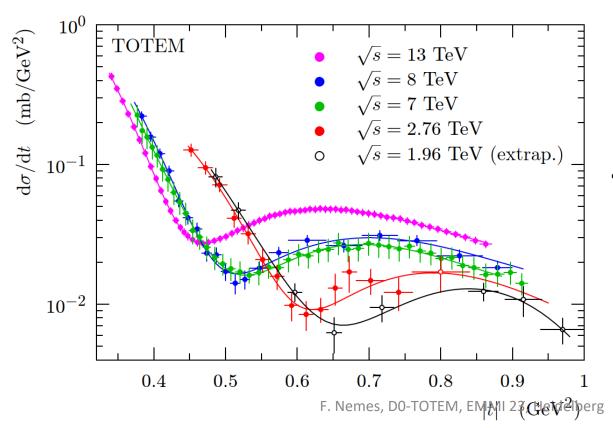
Odderon / C-odd gluon compound:

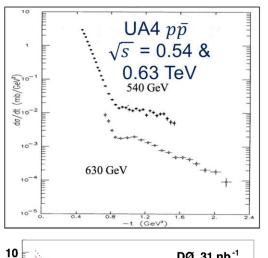
- C-odd exchange contribution predicted in Regge-theory
 L. Lukaszuk & B. Nicolescu,
 Lett. Nuovo Cim. 8 (1973) 405
 - Confirmed in QCD as C-odd exchange of 3 (or odd #) gluons at leading order J. Bartels, Nucl. Phys. B 175 (1980) 365; J. Kwiecinski & M. Praszlowics Phys. Lett. B 94 (1980) 413.
 - Searched for last 50 years, experimental evidence so far missing

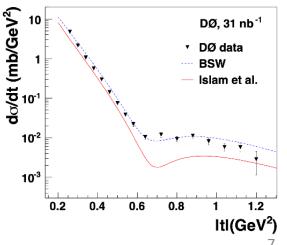


Sensitive to C-odd exchange:

- "Coulomb-nuclear interference" (CNI) region ρ
- Diffractive minimum ("dip"): $Im(A_{el}^{had})$ suppressed w.r.t. $Re(A_{el}^{had})$!

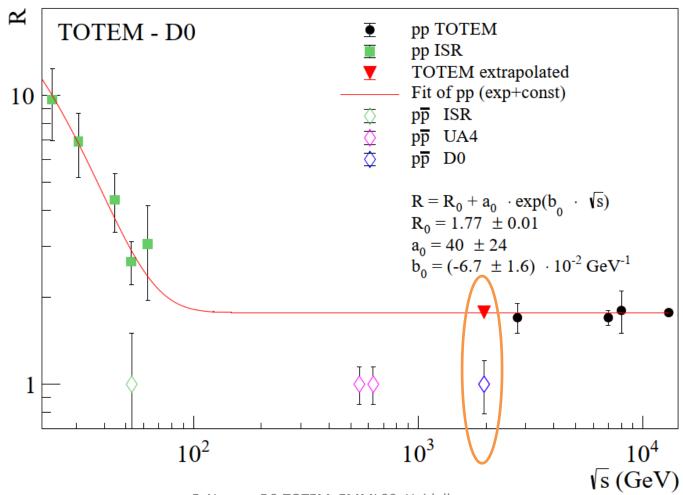



Strategy to compare pp and $p\bar{p}$ data sets



- At TeV-scale $pp\ d\sigma/dt$ characterized by a diffractive minimum ("dip") & a secondary maximum ("bump")
- @TeV scale: persistency of dip & bump for pp, absence of dip & bump for $\overline{p}p$

• $p \overline{p} \ d\sigma/dt$ characterized only by a "kink"



The bump over dip ratio R

- > 3σ difference between $pp \& \overline{p}p @ s = 1.96$ TeV (assuming flat behaviour above $\sqrt{s} \sim 100$ GeV)
- For $\overline{p}p$ R estimate, use $d\sigma/dt$ of t-bins close to expected pp bump & dip position

 (GeV^2)

t

0.8

0.7

0.6

0.5

0.4

2

Extrapolation of pp cross-sections

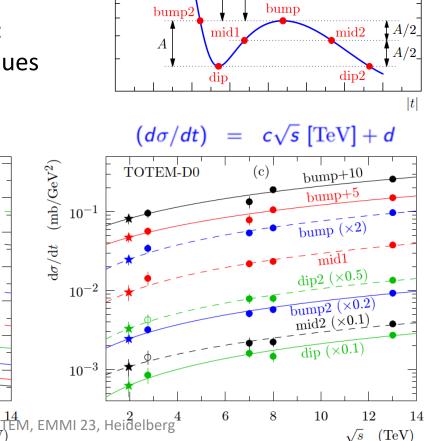
TOTEM-D0

- Extrapolate 8 characteristic points (both their $d\sigma/dt \ \& \ t$) in dip-bump region of the pp elastic $d\sigma/dt \ @ \ 2.76, 7, 8 \ \& \ 13 \ TeV$ to $1.96 \ TeV \implies pp$ elastic $d\sigma/dt$ points @ $1.96 \ TeV$
- Alternative functional forms tested: adequate fits provide consistent values within uncertainties

 $a \log(\sqrt{s}[\text{TeV}]) + b$

TOTEM-D0

dip2


mid2

bump

mid1

bump2 bump+5

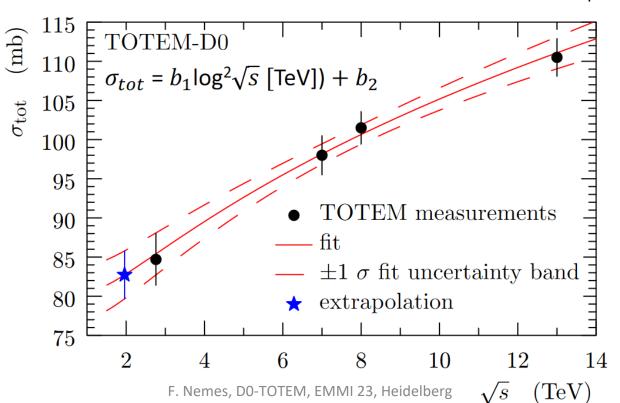
bump+10

bump+10

5A

10A

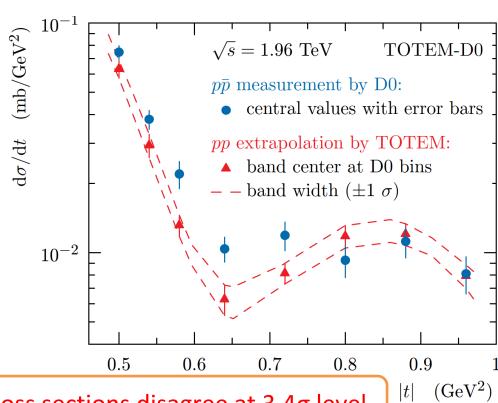
bump+5



Normalization of pp cross-sections

- $pp \ \sigma_{\rm tot}$ @ 1.96 TeV estimated from $pp \ \sigma_{\rm tot}$ @ 2.76, 7, 8 & 13 TeV
- OP $(d\sigma/dt|_{t=0})$ of pp consistent with OP of $\overline{p}p$ data
- Normalize $pp\ d\sigma/dt$ to a common OP with $\overline{p}p$ (same $\sigma_{\rm tot}$ within experimental & theoretical uncertainties)
- Normalization factor of TOTEM OP: 0.954 ± 0.076
- Elastic slopes B preserved during scaling

$$\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \left(\frac{d\sigma}{dt}(t=0)\right)$$


Comparison $pp \& p\bar{p}$ at $\sqrt{s} = 1.96 \text{ TeV}$

- The extrapolated pp cross-section is normalized to the measured $\bar{p}p$ cross-section by requiring the optical points (dsigma/dt @ t = 0) to be equal
- Extrapolated pp points fitted using a double-exponential to provide $pp\ d\sigma/dt$ values @D0 measured|t|-values. Excellent fits @ 2.76, 7, 8,13 TeV (backup sl.)
- MC used to determine $pp\ d\sigma/dt$ uncertainties @ D0 measured |t|-values

Uncertainties of *pp* data points @ D0 measured |t|-values strongly correlated; full covariance matrix used

Significance confirmed by a combined Kolmogorov-Smirnov & normalization test

 χ^2 test: pp & p \bar{p} cross sections disagree at 3.4 σ level

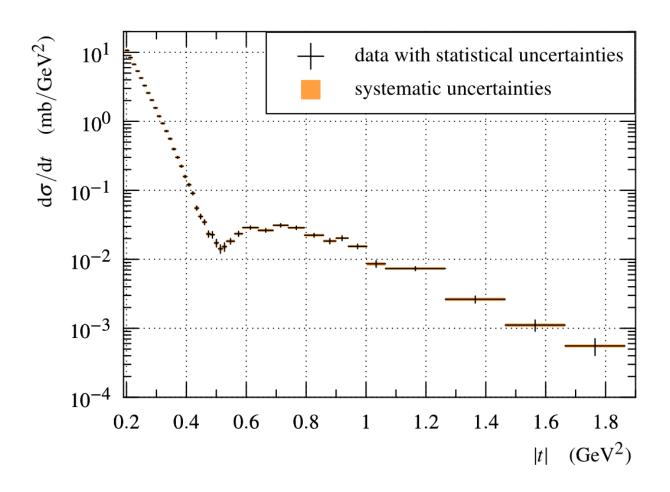
Previous evidence from pp ρ and σ_{tot}

- Using very low|t| TOTEM data @ \sqrt{s} = 13 TeV: ρ = 0.09 ± 0.01 (TOTEM, EPJC (2019) 785)
- Unable to describe TOTEM ρ & $\sigma_{\rm tot}$ measurements without adding colourless C-odd exchange (comparison to COMPETE predictions shown below)

 $(RR)^{d}PL2$ (20), $(RR)^{d}PL2_{u}$ (17), $(RR)^{d}PL2_{u}$ (19), $(RR)^{d}P^{qc}L2_{u}$ (16), $(RR_{c})^{d}PL2_{u}$ (15), $(RR_{c})^{d}P^{qc}L2_{u}$ (14), $RRPL2_{u}$ (19), $RRP_{nf}L2_{u}$ (21)

```
RRPE_{11} (19)
           R<sup>qc</sup>R<sub>c</sub>L2<sup>qc</sup> (12), RR<sub>c</sub>L2<sup>qc</sup> (15), RRL2 (18), RRL2<sup>qc</sup> (17)
           RqcR<sub>c</sub>Lqc (12), RqcRLqc (14), RR<sub>c</sub>Lqc (15), RR<sub>c</sub>PL (19), RRL (18), RRL<sub>nf</sub> (19), RRLqc (17), RRPL (21)
           RR(PL2) (20), RR(PL2)qc (18)
(mb)
     120
                                                                                                  \rho = 0.16
                                                                                                      0.15
     110
                                                                                                      0.14
     100
                                                                                                      0.13
                                                                                                      0.12
      90
                                                                                                      0.11
      80
                                                                                                       0.1
                                                                                                      0.09
      70
                                                                                                      0.08
      60
                                                                                                      0.07
      50
                                                                                                      0.06
                                                                                                      0.05
      40
                                                                                                      0.04
         10^{2}
                                            10^{3}
                                                                                                                                              10^{3}
                                                                                                                                                                                 10^{4}
                                                                               10^{4}
                                                                           \sqrt{s} (GeV)
                                                                                                                                                                                    (GeV)
                                                                  F. Nemes, D0-TOTEM, EMMI 23, Heidelberg
```


Combining with pp ρ and σ_{tot} evidence


- Combine independent evidence of colourless C-odd exchange from TOTEM ρ & $\sigma_{\rm tot}$ measurements in a completely different |t|-domain with evidence from the pp & $\overline{p}p$ comparison
- Compared to all the COMPETE models, the TOTEM ρ & $\sigma_{\rm tot}$ measurement provide an odderon evidence between 3.4 and 4.6 σ , giving a total significance between 5.2 and 5.7 σ for t-channel exchange of a colourless C-odd gluonic compound (odderon) when combined with the TOTEM-D0 result
- Combination excludes models (*) without C-odd exchange@ 5.2 5.7 $\sigma \Rightarrow$ observation of colourless C-odd gluonic compound("odderon")

- * 1. COMPETE Coll., PRL 89 (2002) 201801; Durham group, PLB 748 (2018) 192.
 - 2. Block-Halzen model, PRD 92 (2015) 114021: excluded at 5.2σ

8 TeV publication and results (update)

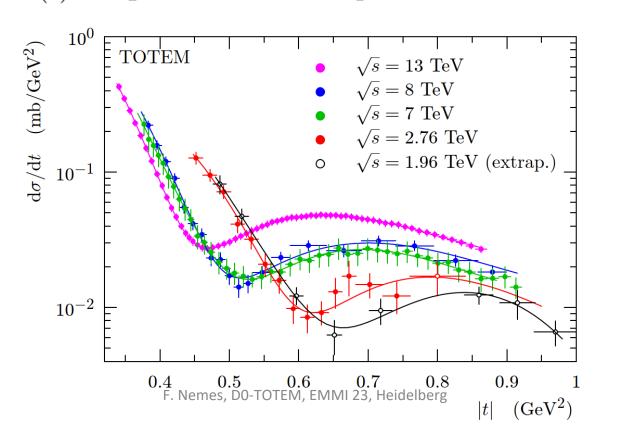
- Published in Eur. Phys. J. C (2022) 82: 263
- Precise measurement of the diffractive minimum and bump

Conclusions

- Data-driven comparison between $\bar{p}p$ (D0 @ \sqrt{s} = 1.96 TeV) & pp (TOTEM @ \sqrt{s} = 2.76, 7, 8, 13 TeV) elastic $d\sigma/dt$ PRL 127 (2021) 062003
- Extrapolate "characteristic" points of elastic $pp\ d\sigma/dt$ to predict elastic $pp\ d\sigma/dt$ @ $\forall s$ = 1.96 TeV
- Elastic pp and $\overline{p}p$ cross sections differ @ 3.4 σ at $\forall s$ = 1.96 TeV \Longrightarrow evidence of t-channel exchange of a colourless C-odd gluonic compound i.e. odderon
- Combined with TOTEM ρ & total cross section results \Rightarrow 5.2 5.7 σ & thus first experimental observation of a colourless C-odd gluonic compound i.e. odderon
- Major discovery @ LHC & Tevatron

Backup slides

Double exponential fits of TOTEM data sets

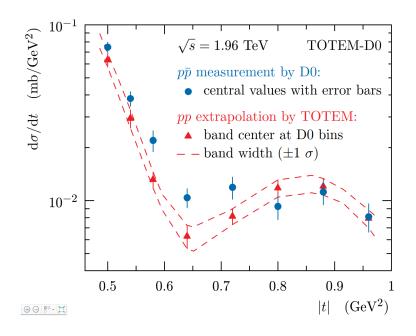


Excellent fits for all pp data sets @ 2.76, 7, 8 & 13 TeV

$$h_{1}(t) = a_{1}e^{-a_{2}|t|^{2}-a_{3}|t|}$$

$$h_{2}(t) = a_{4}e^{-a_{5}|t|^{3}-a_{6}|t|^{2}-a_{7}|t|}$$

$$h(t) = a_1 e^{-a_2|t|^2 - a_3|t|} + a_4 e^{-a_5|t|^3 - a_6|t|^2 - a_7|t|}$$



Comparison of $pp \& p\bar{p}$ at $\sqrt{s} = 1.96$ TeV: the χ^2 formula

A = normalization, B = elastic slope

$$\chi^{2} = \sum_{data\ points\ i\ j} (Tot_{i} - D0_{i})C_{ij}^{-1}(Tot_{j} - D0_{j}) + \frac{(A - A_{0})^{2}}{\sigma_{A}^{2}} + \frac{(B - B_{0})^{2}}{\sigma_{B}^{2}}$$

 χ^2 test: pp & $p\bar{p}$ cross sections disagree at 3.4 σ level