PPS program at CMS: status/prospects

Ksenia Shchelina¹ on behalf of the CMS and TOTEM Collaborations

¹CERN

PPS

- Precision Proton Spectrometer (PPS): a CMS subdetector
- Extends forward coverage of CMS to outgoing protons scattered at small angles
- Commissioned in Run 2, \sim 130 fb⁻¹ of data collected during regular, high lumi LHC runs
- The main measured variable is ξ -- fractional momentum loss of forward proton

Detectors placed inside movable beam pipe insertions (Roman pots, RP), which approach the beam down to a few mm. Two tracking, one timing station per arm.

PPS detectors in Run 2

Reconstruction combining two tracking stations per arm: better resolution, more complete kinematics reconstruction

- 2016, 2017: Si strip detectors cannot resolve multiple tracks
- 2018+: upgrade with two pixel detectors allowed multitracking

Timing: diamond sensors

different detector configurations each year!

Physics with PPS

Primary goal: study central exclusive production in $\gamma\gamma$ or gg collisions

Proton tag advantages:

- closure of event kinematics (full center of mass energy reconstructed)
- effective background rejection
- reduced theory uncertainties related to proton dissociation

Opportunity to access a variety of topics: from diffraction to BSM physics

- anomalous couplings with high sensitivity
- new resonances in very clean final state
- rare SM processes

Resolution in data

Multi-RP ξ resolution

• Exclusive dimuon events sample, comparing

JINST 18 (2023) P09009 arXiv:2210.05854

Timing resolution

- CMS vertex Z vs $z_{\text{PPS,timing}} = \Delta t_{\text{PPS}} \times \frac{c}{2}$
- Events with pileup ~1
- Double proton tagged (i.e. both PPS arms)

Exclusive top quark pairs

Production of top quark-antiquark pairs in pp scattering via the exchange of colourless particles, such as photons or pomerons

Predicted to occur at LHC with very low cross-section, which also suffers from substantial uncertainties; usually in the O(0.1 fb) range

Motivation:

- Sensitive to electroweak top-photon coupling
- First-ever search for this process

arXiv:submit/516747 Submitted to JHEP

Results

arXiv:submit/516747 Submitted to JHEP

First ever upper limit on production cross-section of exclusive tt, in the single lepton and dilepton channels:

Observed combined limit

0.59 pb

Expected: 1.14 pb $^{+1.2}_{-0.6}$ at 95% CL

Anomalous exclusive Z/y + X

A generic search for production of a Z boson or a photon with an additional unspecified massive particle X in proton-tagged events

Main variable of interest is the so-called missing mass – first use of this technique at the LHC

Motivation:

- Excellent (percent level) proton momentum reconstruction of PPS allows to search for missing mass signatures at high invariant mass
- EWK processes are enhanced relative to QCD-induced processes => look for weakly interacting BSM particle
- Relatively unknown region (600-1600 GeV) covered

EPJC 83 (2023) 827 arXiv:2303.04596

Results

0.000

600

800

1000

1200

1400

1600

m_x [GeV]

[qd] 0.200

₽0.175 6

CMS-TOTEM

 $pp \rightarrow ppZ(\mu\mu)X$

37.2 fb-1 (13 TeV)

Observed

Expected

95% CL

- No major local excess/deficit observed
- The new missing mass technique can be applied to other signatures

Exclusive hadronic $\gamma\gamma \rightarrow VV$

Search for high-mass exclusive $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow ZZ$ with both V's decaying to boosted/merged quark jets and both protons remaining intact

Due to extremely high inclusive QCD background, process can be accessed only with proton tagging

JHEP 07 (2023) 229 arXiv:2211.16320

Physics goals:

- Probing gamma-gamma collisions at hadron collider
- Search for non-resonant enhancements over the SM in high mass tails (AQGC/EFT)
- SM production for WW allowed (ZZ ~ 0), but with the Run 2 HLT jet thresholds we have no sensitivity to it in the hadronic channel – PPS trigger for SM ready for Run 3

Results

JHEP 07 (2023) 229 arXiv:2211.16320

- No significant excess over the SM
- LEP-style **Dim-6** $\gamma\gamma$ WW AQGC limits ~15 20x more stringent than the unitarized limits obtained from the $\gamma\gamma \rightarrow$ WW without proton tag in Run 1
- Dim-8 limits close to CMS same-sign WW and WZ scattering analyses at 13 TeV after unitarization
- First $\gamma\gamma ZZ$ limits through the exclusive $\gamma\gamma \rightarrow ZZ$
- New limits on the fiducial cross section for TeV-scale

```
      Fiducial cross section limits:

      \sigma(pp \rightarrow pWWp)_{0.04 < \xi < 0.20, m > 1000 \text{ GeV}} < 67(53^{+34}_{-19}) \text{ fb}

      \sigma(pp \rightarrow pZZp)_{0.04 < \xi < 0.20, m > 1000 \text{ GeV}} < 43(62^{+33}_{-20}) \text{ fb}
```

Exclusive yy production

Search for exclusive two-photon production via photon exchange in proton-proton collisions

Diphoton invariant mass above 350 GeV Matching mass and rapidity between pp and yy Possible larger number of events than expected in SM due to extra-dimensions, composite Higgs models, axion-like particles

Main results:

New limits on anomalous couplings for the four-photon interaction (updating Phys. Rev. Lett. 129 (2022))

$$\begin{array}{l|c|c|c|c|c|c|c|c|} & |\zeta_1| < 7.3(7.1) \times 10^{-14} \ \text{GeV}^{-4} & (\zeta_2 = 0), \\ & |\zeta_2| < 1.5(1.5) \times 10^{-13} \ \text{GeV}^{-4} & (\zeta_1 = 0). \end{array}$$

First limits on axion-like particles at high mass

Run 3 and HL-LHC

- Run 3 data-taking is in progress, possibility to double the Run 2 lumi
- With Run 3 data, expect almost all results to be limited by statistical uncertainties and/or upper limits on BSM processes

- The High Luminosity LHC: more lumi (~3000/fb goal), higher energy range
- **PPS2 for HL-LHC approved** by the CMS Collaboration Board and CERN
- Expression of interest published arXiv:2103.02752
- Design and construction ramping up

PPS2 for HL-LHC

• Re-install the PPS Roman Pots at locations 196m, 220m, and 234m from the CMS interaction point

- Challenges: impedance heating, order of magnitude higher pileup (µ up to 200), new emittance profile with thinner beams, increased showers
- => upgrade 3D pixel sensors for tracking, new Low Gain Avalanche Detectors for timing
- The only forward proton detector @ HL-LHC

PPS2 mass and rapidity acceptance

Assuming the latest HL-LHC optics and lumi levelling scenarios; precise values will slightly change during fill, from year to year etc

Currently expect vertical crossing angle in P5 for Run 4.

Green diamonds: values of mass and rapidity of "X" (in pp→pXp events) where both protons can be detected
 Yellow/orange bands are regions where 1 of the 2 protons can be

detected: extends acceptance to much lower masses

No acceptance Single arm, 196 m Single arm, 220 m Single arm, 234 m Double arm, 196 m Double arm, 220 m Double arm, 234 m Double arm, mixed

BSM searches

If BSM physics is below a few TeV, new particles could be directly produced with protons in PPS2

For "X" in pp \rightarrow pXp events with both protons detected: m(X) ~ 200-2800 GeV for vertical crossing

- s-channel resonances
- > axion-like particles in $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$
- "missing mass" searches new particles that do not leave any signature in the central detector
- \succ $\gamma\gamma \rightarrow \gamma X, \gamma\gamma \rightarrow ZX, \gamma\gamma \rightarrow XX$
- pair production: slepton/chargino, doubly charged particles, magnetic monopoles

SM searches

 Example of γγ->ttbar: large/steeply falling cross-section

• HW+W-: potential for probing the Higgs sector in central exclusive production

Two-arm fiducial cross sections		
Process	Vertical crossing	Horizontal crossing
үү→µµ	1.6 fb	0.04 fb
Dijets	2.3 fb	0.06 fb
γγ→WW	27 fb	4.1 fb
γγ→tī	0.18 fb	0.02 fb

 Dijet production provides information for theoretical modeling of survival factors (3% for IP, 90% for γγ).

Summary

- PPS brought proton tagging to regular, high-luminosity LHC runs
- New results in several domains of particle physics: possibility of studying processes otherwise beyond reach and employ new analysis strategies

Future:

- Analysis of Run 2 data continues; Run 3 data-taking ongoing
- PPS2 for HL-LHC: design and construction ramping up
- New collaborators very welcome: if interested get in touch!

Kinematics matching in CEP

For each event, the value of the fractional momentum loss of the scattered proton can be estimated from the centrally produced dilepton (dijet, VV ...) as:

$$\xi(\ell^+\ell^-) = rac{1}{\sqrt{s}} \left[p_{
m T}(\ell^+) {
m e}^{\pm\eta(\ell^+)} + p_{
m T}(\ell^-) {
m e}^{\pm\eta(\ell^-)}
ight]$$

where the two solutions for + and - correspond to the protons moving in the $\pm z$ direction. The formula is exact for exclusive events, but is expected to hold also for the single-dissociation case; in this case only one of the two possible solutions will correspond to the direction of the intact proton.

PPS acceptance illustration

PPS calibration

Alignment determines:

- Position of the sensors wrt each other inside a RP
- Relative position of the RPs
- Position of the spectrometer wrt the beam

Optics:

- Reconstruction of ξ from track impact point position x requires precise knowledge of the magnetic fields traversed
- Treat LHC magnets as a 'system of optical lenses', known as transport matrix
 - Constraints/calibrations from data features (focal points in proton hit distributions etc)

CMS-PAS-PRO-21-001 CERN-TOTEM-NOTE-2022-001

Proton hit x,y coordinates distribution