Forward Physics in ALICE 3

Structures in diffractive dissociation at the LHC

László Jenkovszky *(Kiev, Budapest), Rainer Schicker (Heidelberg,*
ALICE), István Szanyi (Budapest, Gyöngyös)

CERN LHC, TOTEM Collab., June 26, 2011:

Geometrical scaling (GS), saturation and unitarity

1. On-shell (hadronic) reactions (s,t, Q^2=m^2);

 $t \leftrightarrow b$ transformation: $h(s, b) = \int_0^\infty d\sqrt{-t} \sqrt{-t} A(s, t)$ and dictionary:

 TABLE I: Two-component duality

$\mathcal{I}mA(a+b\rightarrow c+d)=$		Pomeron
s -channel	A_{Res}	Non-resonant background
t -channel	A_{Regge}	Pomeron $(I = S = B = 0; C = +1)$
Duality quark diagram	Fig. 1b	Fig. 2
High energy dependence $ s^{\alpha-1}, \alpha < 1 $		$s^{\alpha-1}, \ \alpha \geq 1$

$$
\sigma_t(s) = \frac{4\pi}{s} Im A(s, t = 0); \quad \frac{d\sigma}{dt} = \frac{\pi}{s^2} |A(s, t)|^2; \quad n(s);
$$
\n
$$
\sigma_{el} = \int_{t_{min \approx -s/2 \approx \infty}}^{t_{thr \approx 0}} \frac{d\sigma}{dt} dt; \quad \sigma_{in} = \sigma_t - \sigma_{el}; \quad B(s, t) = \frac{d}{dt} \ln\left(\frac{d\sigma}{dt}\right);
$$
\n
$$
A_{pp}^{p\bar{p}}(s, t) = P(s, t) \pm O(s, t) + f(s, t) \pm \omega(s, t) \rightarrow_{LHC} \approx P(s, t) \pm O(s, t),
$$
\nwhere *P*, *O*, *f*. ω are the Pomeron, odderon and non-leading Reggeon contributions.

NB: The S-matrix theory (including Regge pole) is applicable to asymptotically free states only (not to quarks and gluons)!

The Pomeron is a dipole in the j -plane

$$
A_P(s,t) = \frac{d}{d\alpha_P} \Big[e^{-i\pi\alpha_P/2} G(\alpha_P) \Big(s/s_0 \Big)^{\alpha_P} \Big] = \tag{1}
$$

$$
e^{-i\pi\alpha_P(t)/2}\Big(s/s_0\Big)^{\alpha_P(t)}\Big[G'(\alpha_P)+\Big(L-i\pi/2\Big)G(\alpha_P)\Big].
$$

Since the first term in squared brackets determines the shape of the cone, one fixes

$$
G'(\alpha_P) = -a_P e^{b_P[\alpha_P - 1]},\tag{2}
$$

where $G(\alpha_P)$ is recovered by integration, and, as a consequence, the Pomeron amplitude can be rewritten in the following "geometrical" form

$$
A_P(s,t) = i \frac{a_P \ s}{b_P \ s_0} [r_1^2(s) e^{r - (s)[\alpha_P - 1]} - \varepsilon_P r_2^2(s) e^{r - (s)[\alpha_P - 1]}],\tag{3}
$$

where $r_1^2(s) = b_P + L - i\pi/2$, $r_2^2(s) = L - i\pi/2$, $L \equiv \ln(s/s_0)$.

The differential cross section of elastic (EL) proton-proton scattering is:

$$
\frac{d\sigma_{EL}}{dt}=A_{EL}\beta^2(t)|\eta(t)|^2\left(\frac{s}{s_0}\right)^{2\alpha_P(t)-2},
$$

where A_{EL} is a free parameter including normalization. The proton-pomeron coupling is: $\beta^2(t) = e^{bt}$, where *b* is a free parameter, $b \approx 1.97$ GeV⁻². The pomeron trajectory is $\alpha_{P}(t) = 1 + \epsilon + \alpha' t$, where $\epsilon \approx 0.08$ and $\alpha' \approx 0.3$ GeV⁻². The signature factor is $\eta(t) = e^{-i\frac{\pi}{2}\alpha(t)}$; its contribution to the differential cross section is $|\eta(t)|^2 = 1$, therefore we ignore it in what follows.

$$
A_{pp}^{p\bar{p}}(s,t) = P(s,t) \pm O(s,t) + f(s,t) \pm \omega(s,t) \rightarrow_{LHC} P(s,t) \pm O(s,t),
$$

where P is the Pomeron contribution and O is that of the Odderon.

$$
P(s,t) = i\frac{as}{bs_0}(r_1^2(s)e^{r_1^2(s)[\alpha_P(t)-1]} - \epsilon r_2^2(s)e^{r_2^2(s)[\alpha_P(t)-1]}),
$$

where $r_1^2(s) = b + L - \frac{i\pi}{2}$, $r_2^2(s) = L - \frac{i\pi}{2}$ with
 $L \equiv \ln \frac{s}{s_0}$; $\alpha_P(t)$ is the Pomeron trajectory and
 a, b, s_0 and ϵ are free parameters.

P and f (second column) have positive C-parity, thus entering in the scattering amplitude with the same sign in pp and $\bar{p}p$ scattering, while the Odderon and ω (third column) have negative C-parity, thus entering pp and $\bar{p}p$ scattering with opposite signs, as shown below:

$$
A(s,t)_{pp}^{pp} = A_P(s,t) + A_f(s,t) \pm [A_{\omega}(s,t) + A_O(s,t)],
$$
 (1)

where the symbols P, f, O, ω stand for the relevant Regge-pole amplitudes and the super(sub)script, evidently, indicate $\bar{p}p(pp)$ scattering with the relevant choice of the signs in the sum.

$$
A_P(s,t) = \frac{d}{d\alpha_P} \Big[e^{-i\pi\alpha_P/2} G(\alpha_P) \Big(s/s_0\Big)^{\alpha_P} \Big] =
$$

$$
e^{-i\pi\alpha_P(t)/2} \Big(s/s_0\Big)^{\alpha_P(t)} \Big[G'(\alpha_P) + \Big(L - i\pi/2\Big) G(\alpha_P) \Big]
$$

 e' , \cdot e $1/2$ α $-a^2 = 0^2$

The differential cross section of proton-proton single diffraction (SD) is:

$$
2\cdot\frac{d^2\sigma_{SD}}{dtdM_X^2}=A_{SD}\beta^2(t)\tilde{W}_2^{Pp}(M_X^2,t)\left(\frac{s}{M_X^2}\right)^{2\alpha p(t)-2},
$$

where $\tilde{W}_2^{Pp}(M_X^2, t) \sim F_2^p(M_X^2, t)$. Similarly, the differential cross section of proton-proton double diffraction (DD) process is:

$$
\frac{d^3\sigma_{DD}}{dtdM_X^2dM_Y^2}=A_{DD}\tilde{W}_2^{Pp}(M_X^2,t)\tilde{W}_2^{Pp}(M_Y^2,t)\left(\frac{ss_0}{M_X^2M_Y^2}\right)^{2\alpha_P(t)-2}.
$$

Similar to the case of elastic scattering, the double differential cross section for the SDD reaction, by Regge factorization, can be written as

$$
\frac{d^2\sigma}{dt dM_X^2} = \frac{9\beta^4 [F^p(t)]^2}{4\pi \sin^2[\pi\alpha_P(t)/2]} (s/M_X^2)^{2\alpha_P(t)-2} \times \left[\frac{W_2}{2m} \left(1 - M_X^2/s\right) - mW_1(t+2m^2)/s^2\right],
$$
\n(1)

where W_i , $i = 1, 2$ are related to the structure functions of the nucleon and $W_2 \gg W_1$. For high M_X^2 , the $W_{1,2}$ are Regge-behaved, while for small M_X^2 their behavior is dominated by nucleon resonances. The knowledge of the inelastic form factors (or transition amplitudes) is crucial for the calculation of low-mass diffraction dissociation.

Similar to the case of elastic scattering, the Dipole SD amplitude is recovered by differentiation (for simplicity (we set $s_0 = 1$ GeV²)):

$$
T_{DP} = \frac{d}{d\alpha}T(s, t, M^2) = e^{-i\pi\alpha/2}s^{\alpha}[G'F_2 + F'_2G + (L - i\pi/2)GF_2],
$$

where $L = \ln(s/(1 \text{GeV}^2))$ and the primes imply differentiation in $\alpha(t)$.

The extrema $(dip(s)$ and bump (s)) are calculated by a standard procedure, i.e. by equating to zero the derivative of the cross section:

$$
\frac{d|T_{SD}|^2}{d\alpha} = \frac{1}{2} \Big(\frac{s^2}{s_0^2}\Big)^{\alpha} \Big[GF' + F(LG + G') \Big] \Big[8F'G' + 4G \Big(2LF' + F'' \Big)
$$

$$
+F(4L^2+\pi^2)G+4\Big(2LG'+G''\Big)\Big],
$$

where $L = \ln(s/s_0)$ and the primes imply differentiation in $\alpha(t)$.

Similar to the case of elastic scattering, the Dipole SD amplitude is recovered by differentiation (for simplicity (we set $s_0 = 1$ GeV²)):

$$
T_{DP} = \frac{d}{d\alpha} T(s, t, M^2) = e^{-i\pi\alpha/2} s^{\alpha} [G'F_2 + F'_2 G + (L - i\pi/2)GF_2],
$$

(19)
where $L = \ln(s/(1 GeV^2))$ and the primes imply differentiation in
 $\alpha(t)$.

Experimentally known fact $[1]$ that the triple-pomeron coupling is nearly independent of t , so that $g_{PPP}(t) = g_{PPP}(0)$. Then for the t-dependent part of the amplitude of the SD process we have:

$$
A_{SD}^{SP}(s, M^2, \alpha) - \eta(\alpha) G(\alpha) \left(s/M^2\right)^{\alpha}, \qquad (12)
$$

where the *t*-dependence resulting from $g_{Ppp}(t)$ is accounted by $G(a)$. Then the *t*-dependent part of the dipole pomeron amplitude is obtained as:

$$
A_{SD}^{DP}(s, M^2, \alpha) = \frac{d}{d\alpha} A_{SD}^{SP}(s, M^2, \alpha) - e^{-i\pi\alpha/2} \left(s/M^2\right)^{\alpha} \left[G'(\alpha) + \left(L_{SD} - i\pi/2\right)G(\alpha)\right]
$$
(13)

where

$$
L_{SD} \equiv \ln \left(s / M^2 \right). \tag{14}
$$

Then double differential cross section for the SD process resulting from the dipole pomeron amplitude is:

$$
\frac{d^2\sigma_{SD}}{dt\,dM^2} = \frac{1}{M^2} \left(G'^2(\alpha) + 2L_{SD}G(\alpha)G'(\alpha) + G^2(\alpha) \left(L_{SD}^2 + \frac{\pi^2}{4} \right) \right) \left(s/M^2 \right)^{2\alpha(t)-2} \sigma^{PP}(M^2) \tag{15}
$$

where

$$
\sigma^{PP}(M^2) = \sigma^{PP}_{\text{res}}(M^2) + \sigma^{PP}_{0}(M^2). \tag{16}
$$

The resonanceless part is given as:

$$
\sigma_0^{PP}(M^2) = \text{gppp} \text{gpp}(0) \left(M^2\right)^{\alpha(0)-1} = \sigma_0 \tau^8(M_X^2) \left(M_X^2\right)^{\alpha(0)-1}.
$$
 (17)

where $\sigma_0 = 2.82$ mb or 7.249 GeV⁻² and

$$
\tau(M_X^2) = \frac{e^{-M_X^2/m_0^2} - 1}{e^{-M_X^2/m_0^2} + 1}, \quad m_0^2 = 1 \text{ GeV}^2.
$$

Here $\tau^8(M_X^2)$ is included ¹ in $\sigma_{r0}^{Pp}(M_X^2)$ to suppress it in the region $M_X^2 < (m_p + m_{\pi^0})^2$ where no dissociation occurs. A simple t -independent form for the low-mass Pp total cross section containing resonance contributions can be written as:

$$
\sigma_{t,\text{res}}^{Pp}(M^2) = \frac{8\pi}{M^2} \, \Im \, m \, A_{\text{res}}^{Pp}(M^2, \, \bar{t} = 0) \,, \tag{18}
$$

with

$$
\Im \mathbf{m} \, A_{\text{res}}^{Pp}(M_X^2, \bar{t}) = \sum_{J} \frac{[f(\bar{t})]^{J+3/2} \Im \mathbf{m} \alpha_{N^*}(M_X^2)}{(J - \Re \mathbf{e} \alpha_{N^*}(M_X^2))^2 + (\Im \mathbf{m} \alpha_{N^*}(M_X^2))^2}.
$$
\n(19)

where a_N is the nucleon trajectory,

$$
f(\bar{t}) = (1 - \bar{t}/t_0)^{-2}, \tag{20}
$$

and t_0 = 0.71 GeV². The explicit form of the nucleon trajectory is given in Refs. [3, 4]. Resonances on this trajectory appear with total spins $J = 5/2, 9/2, 13/2, ...$

$$
t_{dip}^{SD} = \frac{1}{a'b} \ln \frac{\gamma b L_{SD}}{b + L},
$$

$$
t_{bump}^{SD} = \frac{1}{a'b} \ln \frac{\gamma b(4L_{SD}^2 + \pi^2)}{4(b + L_{SD})^2 + \pi^2},
$$

$$
L_{SD} \equiv \ln \left(s / M^2 \right) = - \ln \xi.
$$

Conclusion

Theoretical and experimental searches for structures in proton diffractive dissociation provide new perspectives in high-energy physics. Theorists, make your prediction, experimentalists, do relevant *measurements!*

Thank you for your interest in diffractive dissociation!