HEAVY-ION PROCESSES ASSOCIATED WITH MEASUREMENTS OF FORWARD PROTONS AND NEUTRONS

Mariola Kłusek-Gawenda

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

- Equivalent Photon Approximation
- $\ \, \gamma\gamma \to \gamma\gamma$
- Electromagnetic excitation of nuclei. Neutron (and PROTON) evaporation

EQUIVALENT PHOTON APPROXIMATION

EPA

$$\sigma_{A_{1}A_{2}\rightarrow A_{1}A_{2}X_{1}X_{2}} = \int \sigma_{\gamma\gamma \rightarrow X_{1}X_{2}}(\omega_{1}, \omega_{2})d\omega_{1} d\omega_{2} n(\omega_{1})n(\omega_{2}) \rightarrow ...n(\omega) = \int_{B_{min}}^{\infty} 2\pi b db N(\omega, b)...$$

$$= \int \sigma_{\gamma\gamma \rightarrow X_{1}X_{2}} \left(W_{\gamma\gamma}\right) N(\omega_{1}, \mathbf{b}_{1}) N(\omega_{2}, \mathbf{b}_{2}) S_{abs}^{2}(\mathbf{b}) \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X_{1}X_{2}} d\bar{b}_{x} d\bar{b}_{y} d^{2}b$$

$$= \int \frac{d\sigma_{\gamma\gamma \rightarrow X_{1}X_{2}} \left(W_{\gamma\gamma}\right)}{d\cos\theta} N(\omega_{1}, \mathbf{b}_{1}) N(\omega_{2}, \mathbf{b}_{2}) S_{abs}^{2}(\mathbf{b}) \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{X_{1}X_{2}} d\bar{b}_{x} d\bar{b}_{y} d^{2}b$$

$$\times \frac{d\cos\theta}{dy_{X_{1}} dy_{X_{2}} dp_{t}} \times dy_{X_{1}} dy_{X_{2}} dp_{t} .$$

$$\int d\omega x x^{2} \frac{f\left(\frac{x^{2}+u^{2}}{b^{2}}\right)}{\chi^{2}+u^{2}} d_{1}(x) \Big|^{2}$$

$$F\left(q^{2}\right) = \frac{4\pi}{|q|} \int \rho(r) \sin(|q|r) r dr$$

JIGHT-BY-LIGHT SCATTERING

LIGHT-BY-LIGHT SCATTERING

JPC - ELECTROMAGNETIC EXCITATION

MARIOLA KŁUSEK-GAWENDA

18-20 X 2023 HEIDELBERG 3 / 1

LIGHT-BY-LIGHT SCATTERING

We have compared our results with:

- Jikia et al. (1993),
- Bern et al. (2001),
- Bardin et al. (2009).

Bern et al. consider QCD and QED corrections (two-loop Feynman diagrams) to the one-loop fermionic contributions in the ultrarelativistic limit (\hat{s} , $|\hat{t}|$, $|\hat{u}| \gg m_f^2$). The corrections are quite small numerically.

THE HENRYK NEWKODINGZA INSTITUTE OF NUCLE POLISH ACADEMY OF

ELEMENTARY CROSS SECTION

 large z (low $p_{t_{\gamma}}$) - VDM-Regge dominates.
 Incoherent vs. coherent sum

 Image z (low $p_{t_{\gamma}}$) - VDM-Regge dominates.
 Image z (low $p_{t_{\gamma}}$)

$AA \rightarrow AA\gamma\gamma$ - Diphoton invariant mass

$\mathbf{A}\mathbf{A}{ ightarrow}\mathbf{A}\mathbf{A}\gamma\gamma$ - CMS & Atlas results

UPC - ELECTROMAGNETIC EXCITATION

MARIOLA KŁUSEK-GAWENDA

LIGHT-BY-LIGHT SCATTERING NUCLEAR CROSS SECTION

$AA \rightarrow AA\gamma\gamma$ for $M_{\gamma\gamma} < 5 \text{ GeV}$?

The role of meson exchanges in light-by-light scattering

collisions

and in ultraperipheral ultrarelativistic heavy-ion

8/17

INSTITUTE OF NUCLEAR PHYSIC

UPC - ELECTROMAGNETIC EXCITATION

 \rightarrow

$\overline{AA \rightarrow AA} \overline{A\gamma\gamma} @ \text{LOW } p_t \text{ REGION } ?$

full rapidity range

$AA \rightarrow AA\gamma\gamma$ @ Forward region ?

✓ ALICE Collaboration, Letter of Intent: A Forward Calorimeter (FoCal) in the ALICE experiment, CERN-LHCC-2020-009

FoCal ightarrow 3.4 $<\eta<$ 5.8

The forward electromagnetic and hadronic calorimeter is an upgrade to the ALICE experiment, to be installed during LS3 for data-taking in 2027–2029 at the LHC.

UPC - ELECTROMAGNETIC EXCITATION

$AA \rightarrow AA\gamma\gamma @ ALICE 3$

$|m{p}_{t,\gamma}>$ 50 MeV, $|\eta|<$ 4

Diphoton invarian mass

ELECTROMAGNETIC EXCITATION

ELECTROMAGNETIC EXCITATION

▶ Photon \rightarrow nucleus excitation

Cross section in barns for a given multiplicity of neutrons in single-nucleus, single-photon excitation in ²⁰⁸Pb + ²⁰⁸Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV:

Single excitations [b]		
	Our results	ALICE data
0 neutrons	6.403	
1 neutron	84.301	93.0
2 neutrons	18.608	21.0
3 neutrons	2.858	6.5

DECAY OF EXCITED NUCLEAR SYSTEM

The calculation of the probability of evaporated neutron & proton multiplicity as a function of ¹⁹⁷Au and ²⁰⁸Pb excitation energy was performed with the help of the Monte Carlo code **GEMINI++**

ELECTROMAGNETIC EXCITATION FUNCTION

$$\gamma$$
 ¹⁹⁷Au $ightarrow$ 1n ¹⁹⁶Au

$$\gamma \ ^{197}\mathrm{Au}
ightarrow rac{2}{2}\mathrm{n} \ ^{195}\mathrm{Au}$$

$$\gamma$$
 ¹⁹⁷Au \rightarrow 3n ¹⁹⁴Au

A 1970

30

20

20

40

30 35 E, [MeV]

ho^0 production in heavy ion UPC with nuclear excitation

CONCLUSION

- O EPA in the impact parameter space
- O Fourier transform of the charge distribution
- $O \ \ \text{Multidimensional integrals} \to \text{differential cross} \\ section \\$
- O Description of experimental data for UPC
- O Predictions include the experimental acceptance
- O Electromagnetic excitation
- O Future:
 - more forward/backward region
 - Iower pt
 - Light-by-light scattering + neutron proton emission

Thank you

7/17