Status of phenomenological studies of GPDs

Paweł Sznajder National Centre for Nuclear Research, Poland

Forward Physics in ALICE 3 workshop, Heidelberg, Germany, October 18th, 2023

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

- Introduction
- Experimental campaign
- Recent progress
- New sources of GPD information
- Numerical tools
- Summary

Nucleon is not a point-like particle, it is made out of partons:

- quarks
- gluons

How can we recover basic properties of nucleon from those of its constituents?

- charge
- spin
- mass

How partons are distributed inside nucleon?

- momentum (longitudinal and transverse)
- position
- polarisation
- "mechanical" properties

from CERN Courier / D. Dominguez

Deeply Virtual Compton Scattering (DVCS)

factorization for $|t|/Q^2 \ll 1$

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

Chiral-even GPDs: (helicity of parton conserved)

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicitie
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference parton helicitie
nucleon helicity conserved	nucleon helicity changed	

Introduction

Reduction to Elastic Form Factors (EFFs):

$$\begin{split} \int_{-1}^{1} & dx \, H^q(x,\xi,t) \equiv F_1^q(t) & \int_{-1}^{1} & dx \, E^q(x) \\ \int_{-1}^{1} & dx \, \widetilde{H}^q(x,\xi,t) \equiv g_A^q(t) & \int_{-1}^{1} & dx \, \widetilde{E}^q(x) \\ \end{split}$$

no corresponding relations exist for other GPDs

$c, \xi, t) \equiv F_2^q(t)$

$c, \xi, t) \equiv g_P^q(t)$

Polynomiality - non-trivial consequence of Lorentz invariance:

$$\int_{-1}^{1} \mathrm{d}x \ x^{n} H^{q}(x,\xi,t) = h_{0}^{q,n}(t) + \xi^{2} h_{2}^{q,n}(t) + \dots + \mathrm{mod}(n,2) \xi^{n+1} h_{n+1}^{q,n}(t)$$
$$\int_{-1}^{1} \mathrm{d}x \ x^{n} \widetilde{H}^{q}(x,\xi,t) = \tilde{h}_{0}^{q,n}(t) + \xi^{2} \tilde{h}_{2}^{q,n}(t) + \dots + \mathrm{mod}(n+1,2) \xi^{n} \tilde{h}_{n}^{q,n}(t)$$

Positivity bounds - positivity of norm in Hilbert space, e.g.:

$$\left(1-\xi^2\right)\left(H^q-\frac{\xi^2}{1-\xi^2}E^q\right)^2+\frac{t_0-t}{4m^2}\left(E^q\right)^2\leq q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)$$

strong constraint on GPD parameterizations!

Nucleon tomography

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta}^2)$$

Study of long. polarization with GPD \widetilde{H} Study of distortion in transv. polarized nucleon with GPD E

Impact parameter \mathbf{b}_{\perp} defined w.r.t. center of momentum, such as

active quark with momentum x

center of momentum

spectators with momentum 1 - x

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

Х

Energy momentum tensor in terms of form factors:

$$\langle p', s' | \widehat{T}^{\mu\nu} | p, s \rangle = \overline{u}(p', s') \left[\frac{P^{\mu}P^{\nu}}{M} A(t) + \frac{\Delta A}{M} \right]$$
$$\frac{P^{\mu}i\sigma^{\nu\lambda}\Delta_{\lambda}}{4M} \left[A(t) + B(t) + \frac{\Delta A}{M} \right]$$

	١		
		۱	
l			

Total angular momentum:

$$A^{q}(0) + B^{q}(0) = \int_{-1}^{1} x \left[A^{q}(0) - \sum_{n=1}^{1} x \right] dx$$

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

$[H^{q}(x,\xi,0) + E^{q}(x,\xi,0)] = 2J^{q}$

Ji's sum rule

"Mechanical" forces acting on quarks, e.g. pressure in nucleon center

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

GPDs accessible in various production channels and observables \rightarrow experimental filters

DVCS Deeply Virtual Compton Scattering

TCS Timelike Compton Scattering

HEMP Hard Exclusive Meson Production

more production channels sensitive to GPDs exist!

GPDs studied in various laboratories → need to cover a broad kinematic range

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

Kinematic cuts used in our analyses:

$$Q^2 > 1.5 \text{ GeV}^2$$

 $-t/Q^2 < 0.2$

Angles:

No.	Collab.	Year	Observa	Observable		No. of points used / all
1	HERMES	2001	A_{LU}^+		ϕ	10 / 10
2		2006	$A_C^{\cos i\phi}$	i = 1	t	4 / 4
3		2008	$A_C^{\cos i\phi}$	i = 0, 1	$x_{ m Bj}$	18 / 24
			$A_{UT}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0	-	-
			$A_{UT}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0, 1		
			$A_{UT,I}^{\cos(\phi-\phi_S)\sin i\phi}$	i = 1		
4		2009	$A_{LU,\mathrm{I}}^{\sin i\phi}$	i = 1, 2	x_{Bj}	35 / 42
			$A_{LU,\mathrm{DVCS}}^{\sin i\phi}$	i = 1		
			$A_C^{\cos i\phi}$	i = 0, 1, 2, 3		
5		2010	$A_{UL}^{+,\sin i\phi}$	i = 1, 2, 3	$x_{ m Bj}$	18 / 24
			$A_{LL}^{+,\overline{\cos i\phi}}$	i = 0, 1, 2		
6		2011	$A_{LT, DVCS}^{\cos(\overline{\phi} - \phi_S)\cos i\phi}$	i = 0, 1	$x_{ m Bj}$	24 / 32
			$A_{LT}^{\sin(\phi-\phi_S)\sin i\phi}$	i = 1	-	
			$A_{LT,L}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1, 2		
			$A_{LTI}^{LT,1}$	i = 1, 2		
7		2012	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	x_{Bj}	35 / 42
			$A_{LU,DVCS}^{\sin i\phi}$	i = 1		
			$A_C^{\cos i\phi}$	i = 0, 1, 2, 3		
8	CLAS	2001	$A_{LU}^{-,\sin i\phi}$	i = 1, 2		0 / 2
9		2006	$A_{UL}^{-,\sin i\phi}$	i = 1, 2		2 / 2
10		2008	A_{LU}^-		ϕ	283 / 737
11		2009	A_{LU}^-		ϕ	22 / 33
12		2015	$A_{LU}^-, A_{UL}^-, A_{LL}^-$		ϕ	311 / 497
13		2015	$d^4\sigma^{UU}$		ϕ	1333 / 1933
14	Hall A	2015	$\Delta d^4 \sigma^{LU}$		ϕ	228 / 228
15		2017	$\Delta d^4 \sigma^{LU}$		ϕ	276 / 358
16	COMPASS	2018	$d^3\sigma^{\pm}_{UU}$		\mathbf{t}	2 / 4
17	ZEUS	2009	$d^3\sigma^+_{UU}$		\mathbf{t}	4 / 4
18	H1	2005	$d^3\sigma^+_{UU}$		\mathbf{t}	7 / 8
19		2009	$d^3\sigma^{\pm}_{UU}$		\mathbf{t}	12 / 12
					SUM:	2624 / 3996

Kinematic cuts used in our analyses:

$$Q^2 > 1.5 \text{ GeV}^2$$

 $-t/Q^2 < 0.2$

DVCS Compton Form Factors

Cross-section for single photon production $(l + N \rightarrow l + N + \gamma)$:

 $\sigma \propto |\mathscr{A}|^2 = |\mathscr{A}_{BH} + \mathscr{A}_{DVCS}|^2 = |\mathscr{A}_{BH}|^2 + |\mathscr{A}_{DVCS}|^2 + \mathcal{I}$ DVCS See e.g. NPB 878 (2014) 214 for more details

Bethe-Heitler process

calculable within QED parametrised by elastic FFs

$$\operatorname{Im} \mathscr{H}(\xi, t) \stackrel{\mathsf{LO}}{=} \pi \sum_{q} e_q^2 H^{q(+)}(\xi, \xi, t)$$

ReH

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

calculable within QCD parametrised by CFFs

$$\mathcal{C}(\xi,t) = \mathrm{PV} \int_0^1 \frac{\mathrm{d}\xi'}{\pi} \mathrm{Im}\mathcal{H}(\xi',t) \left(\frac{1}{\xi-\xi'} - \frac{1}{\xi+\xi'}\right) + C$$

GPD phenomenology (amplitude level)

What we can learn from DVCS amplitudes?

- nucleon tomography at low-xB
- "mechanical" properties •

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

Under following assumptions:

- single-exponential dependence
- dominance of CFF Im#
- negligible "skewness effect" $H(x, x, t) \sim H(x, 0, t)$

$$\frac{d\sigma^{\gamma^* p \to \gamma p}}{dt} \propto e^{-Bt}$$

related to transverse extension of quarks:

 $\langle r_{\perp}^2(x_{\rm Bj})\rangle \approx 2\langle B(x_{\rm Bj})\rangle$

 \mathbf{V}

GPD phenomenology (amplitude level)

What we can learn from DVCS amplitudes?

nucleon tomography at low-xB

GPD phenomenology (amplitude level)

What we can learn from DVCS amplitudes?

- nucleon tomography at low-xB
- "mechanical" properties

$$\mathscr{C}^{q}(t) \stackrel{\text{LO}}{=} 2 e_{q}^{2} \int_{-1}^{1} dz \, \frac{D^{q}(z,t)}{1-z} \equiv 4D^{q}(t) \qquad z$$
$$D^{q}(z,t) = (1-z^{2}) \sum_{i=0}^{\infty} d_{i}^{q} C_{2i+1}^{3/2}(z)$$
$$D^{q}(t) = \sum_{\substack{i=1\\\text{odd}}}^{\infty} d_{i}^{q}(t) \qquad d_{1}^{q}(t) \equiv 5C_{q}(t)$$

Double distribution:

$$H(x,\xi,t) = \int \mathrm{d}\Omega F(\beta,\alpha,t)$$

where:

$$d\Omega = d\beta \, d\alpha \, \delta(x - \beta - \alpha \xi)$$
$$|\alpha| + |\beta| \le 1$$

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

H. Dutrieux et al., Eur. Phys. J. C 82 (2022) 3, 252

from PRD83, 076006, 2011

GPD phenomenology (GPD level)

Double distribution:

f(

$$(1-x^2)F_C(\beta,\alpha) + (x^2)F_C(\beta,\alpha) + (x^2)F_C(\beta$$

Classical term:Share
$$F_C(\beta, \alpha) = f(\beta)h_C(\beta, \alpha) \frac{1}{1 - \beta^2}$$
 $F_S(\beta, \alpha) = f(\beta)$ $f(\beta) = \operatorname{sgn}(\beta)q(|\beta|)$ $f(\beta) = \operatorname{sgn}(\beta)q(\beta)$ $h_C(\beta, \alpha) = \frac{\operatorname{ANN}_C(|\beta|, \alpha)}{\int_{-1+|\beta|}^{1-|\beta|} d\alpha \operatorname{ANN}_C(|\beta|, \alpha)}$ $h_S(\beta, \alpha)/N_S = -\int_{-1+|\beta|}^{1-|\beta|} d\alpha \operatorname{ANN}_C(|\beta|, \alpha)$

 $\operatorname{ANN}_{S'}(|\beta|, \alpha) \equiv \operatorname{ANN}_C(|\beta|, \alpha)$

H. Dutrieux et al., Eur. Phys. J. C 82 (2022) 3, 252

$(x^2-\xi^2)F_S(\beta,\alpha)+\xi F_D(\beta,\alpha)$

dow term:

 $h_S(\beta, \alpha)$

 $|\beta|)$

 $ANN_S(|\beta|, \alpha)$ $l^{1-|\beta|}$ $d\alpha ANN_S(|\beta|, \alpha)$ $-1+|\beta|$ $ANN_{S'}(|\beta|, \alpha)$ $r^{1-|\beta|}$ $d\alpha ANN_{S'}(|\beta|, \alpha)$ $J_{-1+|\beta|}$

D-term:

$$F_D(\beta, \alpha) = \delta(\beta)D(\alpha)$$

$$D(\alpha) = (1 - \alpha^2) \sum_{\substack{i=1 \\ \text{odd}}} d_i C_i^{3/2} (\alpha)$$

GPD phenomenology (GPD level)

Conditions:

- Input: $200 x = \xi$ points generated with GK model
- Positivity forced

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

H. Dutrieux et al., Eur. Phys. J. C 82 (2022) 3, 252

 The process allows to directly probe GPDs outside x=ξ line but is much more challenging experimentally

$$(\mathcal{H}, \mathcal{E})(\rho, \xi, t) = \sum_{f=\{u, d, s\}} \int_{-1}^{1} dx \ C_f^{(-)}(x, \rho)(H_f, E_f)(x, \xi, t)$$

$$C_f^{(\pm)}(x,\rho) \stackrel{LO}{=} \left(\frac{e_f}{e}\right)^2 \left(\frac{1}{\rho - x - i0} \pm \frac{1}{\rho + x - i}\right)^2$$

- We revisit DDVCS phenomenology in view of new experiments, including reevaluation of DDVCS and BH cross-sections with Kleiss-Stirling spinor techniques
- Obtained results are available in PARTONS and EpIC MC generator

K. Deja, V. Martínez-Fernández, B. Pire, PS, J. Wagner *Phys. Rev. D* 107 (2023) 9, 094035

 $\xi = \frac{Q^2 + Q^2}{2Q^2/x_B - Q^2 - Q^2}$ $\rho = \xi \frac{Q^2 - Q^{'2}}{Q^2 + Q^{'2}}$

Lattice-QCD

• Exploratory study to include lattice-QCD results!

Reduction of GPD model uncertainties due to inclusion of pseudo-latticeQCD results

M. J. Riberdy, H. Dutrieux, C. Mezrag, PS,

Ultra-peripheral collisions (UPCs)

- The energy frontier for electromagnetic probes -> 10 times higher CM energy than available in HERA
- Allows to probe xBj down to a few 10⁻⁶ at moderate Q²
- Electromagnetic probes have $a_{EM} \sim 1/137$, so are less affected by multiple interactions than hadronic interactions
- Also important source of PDF information

Exclusive photoproduction of J/Psi

(dn) (d+ψ/L

α(γ+p

Paweł Sznajder / Forward Physics in ALICE 3 / October 18, 2023

base on Spencer R. Klein's talk at SPIN'23 and Kate Lynch's talk (hal-03822190)

H. Dutrieux, M. Winn, V. Bertone, Phys. Rev. D 107 (2023) 11, 114019

PARTONS project

- PARTONS open-source framework to study GPDs → http://partons.cea.fr
- Come with number of available physics developments implemented
- Written in C++, also available via virtual machines (VirtualBox) and containers (Docker)
- Addition of new developments as easy as possible
- Developed to support effort of GPD community, can be used by both theorists and experimentalists
- v3 version of PARTONS is now available!

B. Berthou et al., Eur. Phys. J. C 78 (2018) 6, 478

- Novel MC generator called EpIC released → https://pawelsznajder.github.io/epic
- EpIC is based on PARTONS
- EpIC is characterised by:
 - flexible architecture that utilises a modular programming paradigm
 - a variety of modelling options, including radiative corrections
 - multichannel capability (now: DVCS, TCS, DV π^0 P, diphoton; coming soon: DDVCS, J/ ψ)

E. C. Aschenauer et al., Eur. Phys. J. C 82 (2022) 9, 819

• This is the new tool to be use in the precision era commenced by the new generation of experiments

- Substantial progress in:
 - understanding of fundamental problems, like deconvolution of CFFs, and analysis methods \rightarrow important for extraction of GPDs
 - modelling of GPD, fulfilling all theory-driven constraints (including positivity) → subject not touched enough in the current literature \rightarrow developed in mind for easy inclusion of latticeQCD data
 - addressing the long-standing problem of model dependency of GPDs \rightarrow nontrivial and timely analysis
 - description of exclusive processes \bullet → new sources of GPD information
 - delivering open-source tools for the community \rightarrow to suport both experimentalists and theoreticians

This progress is important for the precision era of GPD extraction allowed by the new generation of experiments

