Diffractive Bremsstrahlung with ALICE 3

EMMI Workshop on Forward Physics in ALICE 3 Oct. 18-20, 2023

J. J. Chwastowski IFJ PAN, Cracow

Supported in part by Polish National Science Centre grants 2021/43/O/ST2/01473 <u>and</u> 2021/43/P/ST2/02279

Bremsstrahlung

Simple three-particle final state; all particles at very large rapidities

A very attractive tool for high-energy experiments (lumi, beam diagnostic @ HERA, EIC)

At the 13TeV LHC EM bremsstrahlung in the UPC approximation of pp has the cross-section of about 60 nb for 100 GeV < E_{γ} < 1500 GeV which gives ~60 Hz at 10^{33} cm $^{-2}$ s $^{-1}$

V. A. Khoze et al. JINST **6** (2011) P01005:

Measure bremsstrahlung accompanying elastic pp scattering The cross-section is of the order of microbarns

photon

Considerably extended by P. Lebiedowicz and A. Szczurek (form factors, re-scattering, ...) Phys. Rev. D87 (2013) 114013;

+ O. Nachtmann Phys. Lett. B843 (2023) 138053 includes also pp \rightarrow p $\gamma\gamma$ p

Implemented into the GenEx generator, R. Kycia et al. Commun. Comput. Phys 24 (2018) 860, arXiv: 1411.6035 [hep-ph]

What can we learn from earlier studies?

Take advantage of the existing apparatus:

- 1. Measure photons with the very forward calorimeters
- 2. Use the LHC as a magnetic spectrometer machine optics dependent

Options to be considered: coincidence and exclusive measurement

1. Coincidence measurement - low $\beta^*(0.55m)$ optics

ATLAS central detector+AFP+ZDC

Eur. Phys. J. C 76 (2016) 6, 354

J. J. Chwastowski: Forward Physics in ALICE 3, Heidelberg, Oct. 18-20, 2023

Coincidence measurement - low β^*

 $\sigma_{gen,signal}(100 < E_{\gamma} < 1500 \text{ GeV}) = 1.75 \mu \text{b}$

Photon position at the ZDC1 face

 δ set to the triple width of the ($E_{v,ZDC}+E'_{AFP}$) distribution

ZDC1 fiducial area in TAN

δ = 78 GeV

J. J. Chwastowski: Forward Physics in ALICE 3, Heidelberg, Oct. 18-20, 2023

Coincidence measurement - backgrounds

Experimentally:

$$|E_{beam} - (E_{ZDC} + E_{AFP})| < \delta + ``empty'' ATLAS detector''$$

``empty" ATLAS detector:

the inner tracker veto: no particle with $p_T > 1$ GeV and $|\eta| < 2.5$ the calorimeter veto: no particle with $E_T > 1$ GeV and $|\eta| < 4.8$

ZDC hadronic energy below 30 GeV (both sides) EM energy measured in the ``other side" ZDC below 30 GeV High mass diffractive and ND processes

Mainly double diffractive processes

Events generated with PYTHIA 8

Single and double diffractive dissociation; reported cross-section: 21.4 mb Sample: 1 000 000 000 events

Dominating process is π^0 -strahlung: p+p \rightarrow p p π^0

Use the ZDC spatial resolution ($\sigma \sim 1 \text{ mm}$) to reduce its influence; π^0 decay photons not closer than 5 mm at the ZDC1 face at the 13 TeV LHC

Coincidence measurement – optimisation of cuts

Request:

 $|E_{beam} - (E_{\gamma,ZDC} + E'_{AFP})| < 78 \text{ GeV} - effectively rejects background results:}$

$$σvis,signal = 1.31 μb
 $σvis,background = 1.88 μb$
 $S/B ~ 2/3$$$

J. J. Chwastowski: Forward Physics in ALICE 3, Heidelberg, Oct. 18-20, 2023

Coincidence measurement – optimisation of cuts

Photon position w.r.t. the ``beam position" at the ZDC face

Signal:

a clear maximum at about 14 mm, quickly falling tail

Background:

increasing with increasing R, relatively flat in 32 mm - 44 mm, and then rapidly decreases

Probability P(r<R):

requirement of R ≤ 30 mm retains about 85% of the signal rejects about 75% of the remaining background

Hence,

$$\sigma_{vis,signal} = 1.12 \ \mu b$$

 $\sigma_{vis,background} = 394 \ nb$ S/B ~ 3

Coincidence measurement - results

The AFP acceptance strongly depends on the active detector-beam distance

related to the beam properties given by the local (detector position) beam width

for the AFP (204m) σ = 0.14 mm for β^* = 0.55 m.

Distance [*]	$\sigma_{\text{vis,signal}}$ [nb]	$\sigma_{vis,bckgd}$ [nb]	5/B
10σ	1047	280	3.5
15σ	915	291	3.1
20σ	745	299	2.5
25σ	614	298	2.1
30σ	497	290	1.8

*takes into account an additional 0.5 mm
0.3 mm – the pot floor thickness,
0.2 mm – the floor–detector edge distance.

2. Exclusive measurement - high β^* optics

Eur. Phys. J. C 77 (2017) 4, 216

• Aim:

use ALFA stations and the ZDCs to perform exclusive measurement

• Event signature:

photon in the ZDC, protons registered in both arms of the ALFA system, ``empty'' central detector, veto on the other ZDC

ALFA information on the registered proton energy not accessible energy conservation equation cannot be used

A way out: use p_T conservation at the vertex and construct a pseudo-particle

- 1. Energy of a proton in the photon hemisphere $E_{p1} = E_{beam} E_{ZDC}$
- 2. Second proton energy $E_{p2} = E_{beam}$
- 3. Trace it back to (0,0,0) (elastic transport matrices)
- 4. Use p_T conservation to construct a pseudo+proton accompanying photon (pseudo- p_1)
- 5. Use parameterisation to transport it to the ALFA station in the appropriate arm
- 6. Compare positions of p_1 and pseudo- p_1 in ALFA stations

Exclusive measurement - optimisation of cuts

• cut on the photon position w.r.t. the ``beam position" at the ZDC face – same as for low β^* • check the p₁ and pseudo-p₁ positions

Oct. 18-20, 2023

Signal:

almost all events within R < 2 mm, quickly falling

Background:

initial increase, maximum at R ~ 3-4 mm, and then a rapid decrease

Probability P(r<R):

R < 2 mm retains nearly 100% of the signalwhile rejecting about 90% of the background

Exclusive measurement - results

The ALFA acceptance strongly depends on the active detector-beam distance

related to the beam properties given by the local (detector position) beam width for ALFA (237m) σ = 0.19 mm for β^* = 90 m.

S/B deteriorates with increasing R (~14 to ~1)

For $R = 0.5 \text{ mm S/B}(\sim 4)$ does not depend on the detector-beam distance

ALICE 3

Longitudinal cross section

Vertex detector+ outer tracker $|\eta| < 4$, |z| < 400 cm, 0.5 cm < R < 80 cm

The tracker is much wider: $|\eta| < 4 \text{ vs. } |\eta| < 2.5 @ \text{ ATLAS}$ The calorimeters narrower: $|\eta| < 4 \text{ vs. } |\eta| < 4.8 @ \text{ ATLAS}$

J. J. Chwastowski: Forward Physics in ALICE 3, Heidelberg, Oct. 18-20, 2023

ALICE 3

Forward Detectors:

- ``Pots'': One may use the vertex detector idea (consult with the machine): a 5 mm opening should be OK. The beam $\sigma_{x,y} \approx 200 \ \mu m$
- Location: 80 m (~40 m space) 150 m (~18 m) 180 m (~50 m)
- ?? ξ ranges, elastic option?? – dedicated running
- requires intensive studies beam transport
 MAD-X limits ξ to 0.2
- Another issue Zero Degree Calorimeters EMCAL+HCAL, good spatial (~1 mm) and energy resolutions

SECONDARY VACUUM in the petatis of the RIS tracker and in the services volume. Avoids calor seture of primary vacuum frem detector extraining.

Summary

- Past feasibility studies of the diffractive bremsstrahlung measurement at the β^* = 0.55 m and 90m LHC running at the centre of mass energy of 13 TeV were presented
- $\beta^* = 0.55$ (the AFP-ZDC case)
 - Coincidence measeurement
 - σ_{vis,signal} between 1050 nb and 500 nb with S/B between 3.5 and 2 depending on the detector-beam distance (10σ to 30σ)
- $\beta^* = 90m$ (the ALFA-ZDC case)
 - Exclusive measurement
 - $-\sigma_{vis, signal}$ between 50 nb and 540 nb depending on the track-pseudo-track cut (0.5mm to 2 mm)
 - The S/B ratio decreases from about 14 to about 1 with increasing track-pseudo-track distance (from 0.5 mm to 2 mm)
- The measurement could be performed assuming a single interaction per bunch crossing i.e. using the data gathered in the LHC runs with (very) low pile-up
- The influence of the machine background is unknown and has to be studied experimentally
- ALICE 3 case requires extensive simulations + more detailed knowledge on the experimental set-up

J. J. Chwastowski: Forward Physics in ALICE 3, Heidelberg, Oct. 18-20, 2023

Coincidence measurement - results

The AFP acceptance strongly depends on the active detector-beam distance

related to the beam properties given by the local (detector position) beam width

for the AFP (204m) σ = 0.14 mm for β^* = 0.55 m.

Distance [*]	$\sigma_{\text{vis,signal}}$ [nb]	$\sigma_{vis,bckgd}$ [nb]	5/B
10σ	1047	280	3.5
15σ	915	291	3.1
20σ	745	299	2.5
25σ	614	298	2.1
30σ	497	290	1.8

*takes into account an additional 0.5 mm
0.3 mm – the pot floor thickness,
0.2 mm – the floor–detector edge distance.

Exclusive measurement - results

The ALFA acceptance strongly depends on the active detector–beam distance related to the beam properties given by the local (detector position) beam width for ALFA (237m) σ = 0.19 mm for β^* = 90 m.

Distance*	$\sigma_{vis,signal}$ [nb]	$\sigma_{vis,bckgd}$ [nb]	S/B
10σ	281	68	4.1
15σ	252	61	4.1
20σ	224	54	4.1
25σ	197	48	4.1
30σ	171	41	4.1

*takes into account an additional 0.5 mm 0.3 mm – the pot floor thickness,

0.2 mm – the floor–detector edge distance.