

High β*-optics for ALICE

Pascal Hermes

CERN Beams Department ABP-NDC

EMMI workshop on Forward Physics in ALICE 3 19.10.2023

- Longest LHC fill ever: 54.7 hours
- Protons travelled
 6.2 × 10¹³ m in the LHC
- Beams confined by SC magnets with precision of ~ 10⁻⁴m
- Achieved by thousands of dipoles (guidance) and quadrupoles (focusing)
- This talk: How quadrupole configuration can be optimized for forward physics in ALICE

What to expect from this contribution

- Beam dynamics: how are **beams guided and focused** in the LHC?
- How is the **final focus for the experiments** done?
- How can it be **optimized for forward physics**?
- What is unique about ALICE & forward physics?
- Which **constraints** do we have to respect?
- What are **concrete and reasonable options** that could be applied?

Introduction

Constraints & Requirements

High Beta Optics

Acceptance

Conclusions

Some definitions

RMS beam size:

 $x_{\text{RMS}}, y_{\text{RMS}} = \sqrt{\epsilon \beta_{x,y}}$

IP betatron function: β*

RMS beam divergence at IP:

$$x_{\text{RMS}}^{\prime*}, y_{\text{RMS}}^{\prime*} = \sqrt{\frac{\epsilon}{\beta_{x,y}^*}}$$

Emittance ϵ : constant

Position : s

Quadrupoles and Dipoles

Periodic structure in arcs

Quadrupoles: Focusing in one plane & defocusing in the other

Solution: periodic lattice for beam transport in LHC arc regions

Phase space

- Phase space for given particle at given position
- Shape changes with $\boldsymbol{\beta}$
- Phase space volume: particle action
- Entire beam: RMS emittance

LHC Layout

Quadrupole structure and setting **outside arcs more complicated!**

Quadrupole triplet: focus in both planes for IP!

Matching section

Provides appropriate transition between IP/triplet/arc

Beam Optics for Forward Physics

Forward physics – beam requirements

 $x_{\text{RMS}}^{\prime*}, y_{\text{RMS}}^{\prime*} = \sqrt{\frac{\epsilon}{\beta_{x,y}^*}}$

- Goal: measure very small momentum transfer
- Needs beam with small divergence \rightarrow largest possible β^*
- Special beam optics developed for TOTEM (CMS) and ATLAS-ALFA
- 2023 special high-β* run

2023 Nominal

Experiment	β* [m]
ATLAS	0.3
ALICE	10
CMS	0.3
LHCb	1.5

2023 Special High- β run

Experiment	β* [m]
ATLAS	3000/6000
ALICE	10
CMS	3000/6000
LHCb	

Perspective for ALICE

$$\mathcal{L} = \frac{n_B N_B^2 f_{\rm rev} \gamma}{4\pi \epsilon_N \beta^*} F$$

- ATLAS & CMS: high luminosity experiments
 - Main operational mode with squeezed beams (lowest possible β^*)
 - Very limited beam time available with large β^* to exploit forward detectors
- ALICE luminosity is levelled: no need for small β^{\star}
 - If forward detectors were installed could operate nominally at larger β^*
 - What optics and β^* could be envisaged?

Assumptions and Constraints

Assumptions

- Detection carried out with detectors that can be moved close to the beam
- Currently done with silicon detectors in Roman Pots for ALFA and TOTEM

Assumed Roman Pot Positions

150m

220m

Optics constraints

- Largest possible β^* in ALICE compatible with high intensity operation
- Optical functions at edges of insertion must be matched to arcs
- Quadrupole currents must be in certain range: $0.03 \le k/k_{max} \le 0.90$
- **Symmetry** between B1 and B2 optics (double bore magnets with coupled circuits)
- **Tune** (number of betatron oscillations per turn) must be unchanged
- **Phase advance** between IP and second RP station close to $\pi/2$
- Enough **beam-beam separation** with the larger beams (25ns bunch spacing)
- Aperture constraints must be respected

Optics design

Maximum β* reach

- Long range beam-beam encounters outside of IP
- Sufficient bunch-bunch separation needed: 12σ
- Can **calculate analytically** the maximum permitted assuming max. reachable crossing angle 300µrad
- 2013 (LHC) assuming ε_N=3.75µmrad: Max. β*=18m

The β*=18m optics

- Matched for LHC (2013 study)
- Global HL-LHC optics will be different
- Likely similar matching can be done but not available so far

The β*=30m optics

- Not considered for LHC due to bunch separation
- With lower emittances in HL-LHC this optics is in reach
- Also here: re-matching required for HL optics

Optics parameters

- Quadrupole current constraints: phase advance to RP can't be fully optimized
- Reduces angular acceptance
- Phase advance across IR can't be maintained – can possibly be compensated outside

	Beam 1		Beam 2	
Unit	x	y	x	y
m	18.0	18.0	18.0	18.0
m	229.0	289.9	314.5	333.3
m	781.2	141.0	781.2	141.0
	0.12	-2.64	-4.48	3.00
	-7.17	1.80	-7.17	1.80
	0.4754	0.4567	0.4676	0.4534
	0.3073	0.2968	0.3271	0.3104
	0.3400	0.3400	0.3400	0.3400
	Unit m m	Bea Unit x m 18.0 m 229.0 m 781.2 0.12 -7.17 0.4754 0.3073 0.3400 0.3400	Beam 1Unitxym18.018.0m229.0289.9m781.2141.00.12-2.64-7.171.800.47540.45670.30730.29680.34000.3400	Beam 1 Bea Unit x y x m 18.0 18.0 18.0 m 229.0 289.9 314.5 m 781.2 141.0 781.2 0.12 -2.64 -4.48 -7.17 1.80 -7.17 0.4754 0.4567 0.4676 0.3073 0.2968 0.3271 0.3400 0.3400 0.3400

18m optics

Aperture constraints

- Larger betatron functions and crossing angle
- Reduces normalized
 aperture
- With all tolerances & emittance 3.75µmrad: aperture okay for 18m and 30m optics
- Even less critical with HL-LHC beam emittance!

Acceptance

Particle traces at detector stations

Position and angle of scattered particle at detectors 1 & 2

$$\begin{pmatrix} x_{1} \\ \theta_{x1} \\ y_{1} \\ \theta_{y1} \\ x_{2} \\ \theta_{x2} \\ y_{2} \\ \theta_{y2} \end{pmatrix} = \begin{pmatrix} v_{x1} & L_{x1} & 0 & 0 & D_{x1}^{loc} \\ v'_{x1} & L'_{x1} & 0 & 0 & D_{x1}^{loc'} \\ 0 & 0 & v_{y1} & L_{y1} & D_{y1}^{loc} \\ 0 & 0 & v'_{y1} & L'_{y1} & D_{y1}^{loc'} \\ v_{x2} & L_{x2} & 0 & 0 & D_{x2}^{loc} \\ v'_{x2} & L'_{x2} & 0 & 0 & D_{x2}^{loc'} \\ 0 & 0 & v_{y2} & L_{y2} & D_{y2}^{loc} \\ 0 & 0 & v'_{y2} & L'_{y2} & D_{y2}^{loc'} \end{pmatrix}$$

Position and angle at IP

Transfer matrix derived from beam optics

 $L_{ij} = \sqrt{\beta^* \beta_{ij}} \sin\left(2 \pi \Delta \mu_{ij}\right)$

Sim. Acceptance, ALICE A-Side (2013, LHC)

Evolution with emittance (2013 study, LHC)

HL-LHC nominal 2.5µmrad

Evolution with beta (2013 study, LHC)

Elastic events

Elastic events

Conclusions

Conclusions

- Higher β* optics could be feasible in ALICE
- Advantage: parallel to nominal proton operation
- Disadvantage: Much lower β^* reachable than in dedicated runs
- 2013 studies for LHC: 18m reachable simulation indicates gain in acceptance
- HL-LHC smaller emittances maybe slightly higher values could be in reach
- More details only possible by **dedicated studies for HL-LHC**
 - Repeat matching with HL-LHC optics
 - Verify compatibility with telescopic squeeze
 - Work out compensation for phase advance

Tagging of very forward protons in ALICE P. Hermes, R. Schicker, CERN-ATS-2013-001

Development of high-β* optics for ALICE P. Hermes, Master's thesis, 2013, University of Muenster

