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d Proton Detectors @ IP1 (ATLAS)

Intact protons — natural diffractive signature — usually scattered at very small angles (urad) —

detectors must be located far from the Interaction Point.
ATLAS
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o Absolute Luminosity For ATLAS @ ATLAS Forward Proton
@ 240 m from ATLAS IP @ 210 m from ATLAS IP
@ soft diffraction (elastic scattering) e hard diffraction
o special runs (high 8" optics) @ nominal runs (collision optics)
@ vertically inserted Roman Pots @ horizontally inserted Roman Pots
o tracking detectors, resolution: o tracking detectors, resolution: o,,, = 6/30 um
ox =0y, =30 um @ timing detectors, resolution: o ~ 25 ps
@ in operation between 2011 and 2023 @ in operation since 2016 (one side) / 2017 (full set)
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Properties of Roman Pot Technology
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Properties of Roman Pot Technology

LHC beam

thin window and floor (300 xm)
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1: Importance of Optics

HL-LHC Roman Pots at IP1

@ LHC optics is of primal importance for Roman pots as it defines the acceptance. g O
g
. . A . K]
@ The layout of HL-LHC is very challenging and advanced — possibilities to change it (e.g. §
<. 0.5
to move magnets) may be limited. 8
@ Still, even with fixed layout several optics are usually possible — there should be a space 04F RT;:VP?ZP;‘M
for optimisation. [ oo--250pade=-0
[ TCL4/5/6 = 16.4/16.4/164"
@ Change of optics once detectors are installed may have a huge impact on physics 08 ’
programme: ok
o example 1: inversion of inner triple polarity in vicinity of ATLAS (discussed to F
happen in 2024, but fortunately postponed to 2025) would kill AFP data-taking as ot
there will be no acceptance, [
@ example 2: optics considered for HL-LHC at IP1 (horizontal crossing angle) resulted ok
. . PR . 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
in acceptance only for very high masses limiting the physics programme. central mass [GeV]
current settings inverted triplet polarity
(assumed during detector design and installation) (proposed by LHC in order to reduce radiation on triplet)
E = = = = i E
Eo ¥5=13.0TeV, " = 0.3 m; ATS, beam 1, 6, = 145 urad, ¢ = 270, current polarity —— 6800 GeV E [ fs=136TeV, " =0.5m; ATS, beam 1, 6_ = 145 urad, ¢ =0, inv. polarity v2, | — 6800 GeV
= L < L
I~ — — 6664 GeV — — 6670 GeV
s - - 6528 GeV. - - - 6540 GeV
: """ 6392Gev |3 gz U= e 6410 GeV
r === 6256 GeV === 6280 GeV
-10 — .
C Teefeq| oo 6120 Gev -- 6150 GeV
2‘0 4‘0 6‘0 8‘0 1(')0 12‘0 I"iO IiISO léD 20‘0 220 2‘0 4‘0 6‘0 8‘0 10‘0 12‘0 110 Illil) IéO 2(‘]0 2&0 2"10
s[m] s[m]
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Detector Operation

@ Operation of Roman Pots require great care:
o they are one of few ATLAS sub-detectors which malfunction can dump the LHC beam,
@ they can also block the LHC injection permit (e.g. when not returned to HOME position).
@ The above trigger the need of a dedicated 24/7 detector expert present on site (within 30 min reach of ATLAS cavern):

@ not “one-man-job” — a pool of on-call experts is needed; in 2023 we had 9 people sharing this duty,
o dedicated training is needed, including on-site practical lessons (e.g. oxygen mask training, mandatory visits to
tunnel to show the “problematic” places).

@ Known design issue: position of detectors is monitored by a single Linear Variable Differential Transformer (LVDT):
@ there were cases of short “spikes” in the readout (milliseconds long) which caused station extraction and even beam

dump in some cases,
@ over time a mysterious (=not yet understood) drift was observed which also may lead to extraction/dump.

@ Future designs of movable devices should contain 2 LVDTs to cross-check their readout.

LVDT drift (A FAR)

225 05 T
224 — global it :
g 04 — after 1% BBA™17 Bt
223§ . — after2®BBA"17 .
- 03 - S+~ after 1 BBA™TS n
222 o ) . :
]
221 3 021 p
o 8 I Lidrift = 2.5 um / day N
220 T 0 drift = 1.3 um / day
219 & 0 * idrift = -3.6 pm / day ¢
AFP_MOVEMENT_ARMC_FAR_RPH1_LDVT 2
218
= AFP_MOVEMENT_ARMC_FAR_RPH1_Resolver -0.1
Ll 217
Sep23 Sop 25 Sep 27 Sep 29 Oct 1 Oct3 Oct5 Oct? Oct9 2017-09-01  2017-12:01  2018-03-01
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3: Services in Tunnel

@ AFP has long 23 cables per side (38.5 km in total; see table) for services in the ATLAS cavern (slow control, trigger,
data-acquisition, etc.). ALFA has similar amount (21.6 km in total).

@ In addition, there are services located in the RR alcoves (tunnel) which also need connection: vacuum pumps and cooling.
Plus electronics to readout detectors installed on pots and in their vicinity.

@ Layout of HL-LHC in vicinity of IP1 is much different from what we have now — there is much less space for cables!

@ One should carefully plan how detectors can be connected. Example: Cable name construction | ¢[mm] _ length [m]
@ in 2018 we had an issue of AFP being automatically extracted during the run, LR ALYS Bx12 fibres 12 310
. . . Fast Trigger/Clock SIT coaxial 28 300
@ very serious issue not only due to loss of data, but also because it could cause the beam dump, e comial 28 200
@ after many investigations it turned out that there was a correlation between extraction and LV cable SiT AWG10, 4 tw.pairs 22 400
moments when vacuum pump was being switched on/off, LV cable ST AWG10, 4 tw.pairs 22 400
@ it turned out that this is due to vacuum and motor signals routed in the same bundle, LV eableToP A0, 4 bavpaks | 22 400
LV cable ToF AWG10, 4 tw.pairs 22 400
@ re-routing vacuum signals via the spare cable solved the issue. LV cable spare(ToF) AWG10, 4 tw.pairs 2 a00
. . . . . . . Opto-VVDC AWG14, 7 tw.pairs. 18.7 400
@ Trigger may be an issue: latency is a serious factor to be considered during design. A,,,‘,’,Wﬁw,eg, Awm”tw_zm 187 400
HV cable siT AWG26, 18tw.pairs 13.8 400
HV cable ToF AWG26, 18tw.pairs 13.8 400
Spare AWG18, 4tw.pairs 12 400
Environmental 1 0.5mm2, 24tw.pairs. 21 400
oo Near-A w0 Far-A i 2 0.5mm2, 24tw.pairs 21 200
oo | AFP [ 26500 |- AFP [ErE—- Air-cooler1 CTRL AWG18, 6tw. pairs 14 400
ezsol 26400 Air-cooler2 CTRL AWG18, 6tw. pairs 14 400
. B CANBUS 1mm?2, 9tw.pairs 17.4 400
F H Stepper motors AWG 16, 7tw.pairs | 16.3 200
g 4 LVDT, resolver 0.5mm2, 24tw.pairs | 21 400
& & microswitches 0.5mm2, 9tw.pairs 13.5 400
general spare AWG 16, 7tw.pairs. 16.3 400
general spare AWG 16, 7tw.pairs 16.3 400
25950 5 o . o 2 s secondary vacuum 0.5mm2, 9tw.pairs. 135 60
tme (] time (] general spare AWG18, 6tw. pairs 14 60
general spare AWG18, 6tw. pairs 14 60
bef.ore afl.ev 100 in LVDT R/O s:econdary vacuum pip flexible vacuum pipe | ~25mm 60
taking taking No outlier!! Aircooler FS1 control pipe multitube 0
action action - Aircooler F$2 control pipe multitube 60
- - Aircooler NS1 control pipe multitube 60
_i The same situation Aircooler N1 control pipe multitube 40
as in side-C
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raints due to Detector Locatio

Good SiT efficiency:
@ Pots are located in the LHC tunnel: oo
o detectors must be radiation hard and very reliable — there may be days/weeks
w/o access possibility,
@ ALFA was not designed to be a radiation-hard device (the idea was to install it only
for special runs, like ZDC) and barely survived to 2023 high-3* data-taking,
@ AFP observed a “burnout” in SiT detectors — to be compensated by increase of
bias voltage, but eventually detectors must be replaced.
o experts need special, dedicated trainings to access (on top of training needed
for ATLAS service cavern),
o going to the tunnel just after LHC operation requires special preparation (e.g. ) [
presence of a person from Radiation Protection team, asking for access

(IMPACT) in advance). : e

los.

@ All items installed in the tunnel are “automatically” classified as radioactive — = o
constraints on work with such parts (e.g. special lab needed). E : os

o2

@ Radiation levels in tunnel are non-negligible: o1

Annual HL-LHC TID in the x-z plane at beam height inside/outside RR17

o o
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Lesson 5: Action Scheduling

@ Work on detectors must be agreed not only with ATLAS, but also with LHC teams.
o Example: organization of ALFA deinstallation during this Year End Technical Stop:
> Draft integration differential scheme (to be included in the ECR) prepared by EN-ACE-INT:

Ty ——=
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6: HL-LHC Constraints

@ New, special features of HL-LHC design, e.g. all elements at straight section mounted on movable
tables for the remote alignment.
@ HL-LHC would require much more services than LHC:
e limits on cables (already mentioned),
o limits on space — example around IP1:

Optics v.1.5

LHC Q5 .
L=(8229mm)

211408
mm/IP5
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mmary

o ATLAS has wide experience in operation of detectors in the tunnel:

e ALFA (2011-2023),
e AFP (since Run 2),
e ZDC (since Run 1).

@ Having of Roman pots is very challenging, especially at the HL-LHC era!

o Few lessons:
o Importance of Optics.
Detector Operation.
Services in Tunnel.
Constraints due to Detector Location.
Action Scheduling.
HL-LHC Constraints.

o | will be happy to share my experience of pot operation: maciej.trzebinski@cern.ch
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