

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

Measuring of tau g-2 using ATLAS PbPb data

EMMI Forward Physics in ALICE 3 Heidelberg, 20 Oct. 2023

Klaudia Maj AGH University

Introduction to tau g-2

Charged particles with spin have an intrinsic magnetic moment; $\vec{\mu} = g \frac{q}{2m} \vec{S}$

For leptons Dirac equation predicts g=2, but higher order correction lead to $g\neq 2$

Deviations of g-factor from 2 measured with lepton anomalous magnetic moment:

$$a_l = \frac{(g-2)_l}{2}$$

Lepton magnetic moments

Electron g-2: 10⁻⁸ precision, 2.5σ discrepancy

Muon g-2: 10⁻⁷ precision, ~5σ discrepancy (not yet conclusive)

Muon g-2 Collaboration, 2023 arxiv: 2308.06230

What about the tau?

Do photons interact equally with all lepton generations?

→ Short tau lifetime 10⁻¹³ s

→ Extremely challenging experimentally!

Electron: Odom et al <u>PRL (2006)</u> Bouchendira et al <u>PRL (2011)</u> Aoyama et al <u>PRL (2012)</u> Parker et al <u>Science (2018)</u> Morel et al <u>Nature 2020</u>

Muon: BNL PRD (2006) J-PARC PTEP (2019) Muon g-2 theory initiative JPhysRept (2020) BMW collar Nature (2021)

DELPHI results on a_{\tau}

DELPHI 2004 $\sqrt{s} \approx 200$ GeV, 650 pb⁻¹

Photo production of tau pairs

Idea: Measure cross-section, sensitive to a_{τ}

<u>e 5 e</u>

 σ \sim 400 pb

Limited by experimental uncertainty

$$a_{\tau}^{exp} = -0.018(17)$$

$$a_{\tau}^{\text{theory}} = 0.00117721(5)$$

Exp: DELPHI Collaboration EPJC (2004)

Theory: Eidelman& Passera MPLA (2007)

Tau magnetic moments

Proposal: Measure tau g-2 using LHC heavy ion data

Potential to be most precise single-experiment measurement

Follow approach outline in:

Dyndał, Kłusek-Gawęda, Szczurek, Schott PLB (2020)

Physics Letters B Volume 809, 10 October 2020, 135682

Anomalous electromagnetic moments of τ lepton in $\gamma\gamma \rightarrow \tau^+ \tau^-$ reaction in Pb+Pb collisions at the LHC

 $\frac{Mateusz Dyndał^{a}}{Matthias Schott}^{c} \boxtimes, \frac{Mariola Kłusek-Gawenda}{Matthias Schott}^{c} \boxtimes$

Beresford, Liu PRD (2020)

Phys. Rev. D **102**, 113008 – Published 22 December 2020; Erratum Phys. Rev. D **106**, 039902 (2022)

Aguila, Cornet, Illana PLB (1991)

The possibility of using a large heavyion collider for measuring the electromagnetic properties of the tau lepton ☆

<u>F. del Aguila a b, F. Cornet c b, J.I. Illana b</u>

Ultraperipheral heavy-ion collisions

Described in a Equivalent Photon Approximation (EPA) framework Equivalent photon flux scales with Z² [Fermi, Nuovo Cim. 2 (1925) 143]
[Weizsacker, Z. Phys. 88 (1934) 612]
[Williams, Phys. Rev. 45 (10 1934) 729]

6

→ Pb+Pb collisions at LHC are a superb source of high energy photons!

Excellent tool to study rare processes and to search for beyond Standard Model (BSM) physics

Head-on Pb+Pb collision

2018-11-14 18:05:31 CEST

= 11.7 GeV

 $oldsymbol{p}_{ extbf{T}}^{\mu}$

Ultra-peripheral Pb+Pb collision

Measuring a_{τ} in UPC

- Exploit $\gamma\gamma \rightarrow \tau\tau$ cross-section to set limits on a_{τ}
- Experimental challenges:
 - Hadronic backgrounds
 - Neutrinos in the final state
- Advantages of UPC over the pp collisions:
 - Z⁴ enhancement of cross sections in Pb+Pb wrt pp system
 - Very low hadronic pileup exclusivity selections
 - Low p_T thresholds in trigger and offline reconstruction
- *τ*-leptons never directly targeted in measurements using nucleus-nucleus data
- Use 1.44 nb⁻¹ ATLAS Pb+Pb 2018 data, $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$

Measurement overview

- Signal τ -leptons are low-energetic, typically with $p_T < 10$ GeV
- No standard ATLAS identification of τ -leptons is used
 - Instead events classified based on the charged τ -lepton decay products
- Three signal categories: $\mu + e$, $\mu + \text{track}$, $\mu + 3$ tracks
- Use leptons: p_T(μ/e) > 4 GeV and tracks: p_T(trk) > 100 MeV
- Single muon trigger used to record signal events with muon p_T > 4 GeV
- Exclusivity requirements:
 - veto on forward neutron activity (using 0n0n configuration based on ZDC signal)
 - for μ + track and μ + 3 tracks: veto on additional tracks and low-p_T clusters
- Main background contributions are from dimuon production and diffractive photonuclear interactions

 μ + 3 track

 $\mu 3T$ -SR

Run: 366268 Event: 3305670439 2018-11-18 16:09:33 CEST

Zero Degree Calorimeters (ZDC)

11

- Two ZDC arms: measure energies of forward neutrons
- Separate UPCs from inelastic Pb+Pb collisions
- Categorise events into 0n0n / 0nXn / XnXn
- Neutron emissions if nuclei excited through secondary photon exchanges
- Exclusive γγ processes: mostly 0n0n
- Photonuclear processes: typically 0nXn

Zero Degree Calorimeters (ZDC)

- **Two ZDC arms: measure** energies of forward neutrons
- Separate UPCs from inelastic Pb+Pb collisions
- Categorise events into 0n0n / 0nXn / XnXn
- Neutron emissions if nuclei excited through secondary photon exchanges
- Exclusive $\gamma\gamma$ processes: mostly 0n0n
- Photonuclear processes: typically 0nXn

OnOn

Main backgrounds

Estimate with MC $\gamma\gamma \rightarrow \mu\mu$ Starlight+Pythia8 $\gamma\gamma \rightarrow \mu\mu\gamma$ Madgraph5 Photon flux re-weighted to SuperChic 3

Data-driven estimate

Often leads to nucleus breakup → Forward neutrons

Rejecting background

- Exactly 1 μ + exactly 1 e or 1 or 3 tracks separated from μ
- Reject $\gamma\gamma \rightarrow \mu\mu$ events:
 - require $p_T(\mu, trk) > 1$ GeV for μ 1T-SR
- Additional rejection for $\gamma\gamma \rightarrow \mu\mu + \gamma$:
 - require $p_T(\mu, trk, \gamma/cluster) > 1$ GeV for μ 1T-SR
- Rejecting photo-nuclear and other backgrounds:
 - Zero Degree Calorimeter Energy (E_{ZDC}) < 1 TeV on side A and C
 - No unmatched clusters i.e. not near μ or track(s), for μ + track(s) SRs
 - m(trks) < 1.7 GeV for μ 3T-SR

Background estimation: $\gamma\gamma \rightarrow \mu\mu(\gamma)$ production 15

- Background from $\gamma\gamma \rightarrow \mu\mu(\gamma)$ production estimated using MC simulation
- Validation of modeling performed in dimuon control region (2μ -CR)
- Normalization off by +6% with SuperChic3 photon flux (Starlight: -13%)
- The difference is photon flux uncertainty

Signal region distributions

Phys. Rev. Lett. 131, 151802

- Good agreement of pre-fit predictions with data
- Total of about 650 events across all SRs
- Small background contributions

Observation of $\gamma\gamma \rightarrow \tau\tau$ **in Pb+Pb**

The $\gamma\gamma \rightarrow \tau\tau$ signal strength and a_{τ} value is extracted using a **profile** likelihood fit

17

Fit muon p_T distribution in the three SRs and 2μ -CR

Clear observation (>> 5 σ) of $\gamma\gamma \rightarrow \tau\tau$ process at the LHC

Signal strength

$\mu_{\tau\tau}$ = observed yield / SM expectation

- Fit of $\gamma\gamma \rightarrow \tau\tau$ signal strength assuming SM value for a_{τ}
- Results for each signal region compatible with unity
- Combined fit reaches 5% precision, limited by statistical uncertainties

Tau g-2 competitive with LEP

- The best fit value is a_{τ} = -0.041 with corresponding 95% CL interval being (-0.057, 0.024)
- Constraints on a_{τ} have similar precision as those observed by DELPHI [EPJC 35 (2004) 159]
- Statistical uncertainties dominant → expected to improve with Run-3 data
- Leading systematic uncertainties: trigger efficiency, τ decay modeling

Summary

- UPCs can be used to probe rare SM processes and search for BSM phenomena
- ATLAS provides a final measurement of exclusive ditau production in Pb+Pb UPC at the LHC with above 5σ significance
- The measurement of the τ -lepton anomalous magnetic moment is competitive with previous best limit from the LEP era
 - Improvement in precision expected with Run-3 data

Research project partly supported by the National Science Centre of Poland under grant number UMO-2021/40/C/ST2/00187 and by PL-GRID infrastructure."

Additional slides

Tau g-2 competitive with LEP

ATLAS & CMS set first new constraints on a_{τ} since 2004

First measurements of τ leptons in heavy ion collisions

Competitive with DELPHI

Statistical uncertainty dominates

Our analysis strategy

Cross-section sensitive to tau g-2 Also sensitive to tau EDM

Reduce uncertainties using $\gamma\gamma \rightarrow \mu\mu$ control region (2 μ CR), e.g. lumi, photon flux

Additional sensitivity from measuring differentially in lepton p_T

Dyndał, Kłusek-Gawęda, Szczurek, Schott PLB (2020)

Background estimation: $\gamma\gamma \rightarrow \mu\mu(\gamma)$ ²⁵

Main background

MC with Superchic3 photon flux (+6% overestimate) c.f. -13% for Starlight photon flux

Difference = photon flux uncertainty

Fit setup

- Measure $\gamma\gamma \rightarrow \tau\tau$ signal strength and a_{τ} using profile likelihood fit to the muon pT distribution in the three SRs and 2µ-CR
- Build templates for different a_τ values by reweighing signal MC using weights from PLB 809 (2020) 135682:
 - a_{τ} values: 0, ±0.01, ±0.02, ±0.03, ±0.04, ±0.05, ±0.06, ±0.1
 - 3D weights in $m_{\tau\tau}$, $|y_{\tau\tau}|$, $|\Delta\eta_{\tau\tau}|$

• Pre-fit distributions of p_T^{μ} in the SRs assuming SM value of a_{τ} :

Signal categories - ZDC selection

- Different processes present different activity in the forward region:
 - Exclusive dilepton production - ions stay intact
 - Background events with nuclear breakup
- Three classes defined, based on the signal in the ZDC

- The association between given ZDC signal and given process is nontrivial
 - Migrations due to ion excitation and presence of EM pile-up

Motivation - BSM searches

- This talk covers following results from 5.02 TeV UPC Pb+Pb collisions from ATLAS:
 - Observation of the $\gamma\gamma \rightarrow \tau^+\tau^-$ process in Pb+Pb collisions and constraints on the τ -lepton anomalous magnetic moment with the ATLAS detector [arXiv:2204.13478], accepted by PRL
 - Constraints on *τ*-lepton anomalous magnetic moment
 - Its value is sensitive to many BSM models (lepton compositeness, supersymmetry $\delta a_{\tau} \sim m_{\tau}^2/M_S^2$, TeV-scale leptoquarks, ...)

- Measurement of light-by-light scattering and search for axion-like particles with 2.2 nb⁻¹ of Pb+Pb data with the ATLAS detector [JHEP 03 (2021) 243]
 - New particles can enter the loop
 - Light-by-light (LbyL) cross-sections can be modified by various BSM phenomena (Born-Infeld extensions of QED, space-time non-commutativity in QED, extra spatial dimensions, ...)

ATLAS detector

 η - broad pseudo rapidity coverage

$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

p⊤ - transverse momentum

$$p_T = \sqrt{p_x^2 + p_y^2}$$

SR MC cutflow

Requirement	Number of $\gamma \gamma \rightarrow \tau \tau$ events
Common selection	
$\sigma \times \mathcal{L}$	352611
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}}$	28399
$\sigma \times \mathcal{L} \times \epsilon_{\text{filter}} \times w_{\text{SF}}$	35383
Pass trigger	1840
$E_{\text{ZDC}}^{A,C} < 1 \text{ TeV}$	1114
µ1T-SR	
$N_{\mu}^{\text{preselected}} = 1$	1023
$N_{\mu}^{\rm signal} = 1$	900
$N_e^r = 0$	867
N_{trk} (with $\Delta R_{\mu,\text{trk}} > 0.1$) = 1	575
Zero unmatched clusters	552
\sum charge = 0	546
$p_{\rm T}^{\mu,{\rm trk}} > 1 {\rm ~GeV}$	503
$p_T^{\mu, \text{trk}, \gamma} > 1 \text{ GeV}$	482
$p_{T}^{\mu, trk, clust} > 1 \text{ GeV}$	462
$A_{\phi}^{\mu, \text{trk}} < 0.4$	459
µ3T-SR	
$N_{\mu}^{\text{preselected}} = 1$	1023
$N_{u}^{\text{signal}} = 1$	900
$N_e = 0$	867
N_{trk} (with $\Delta R_{\mu,\text{trk}} > 0.1$) = 3	88.1
Zero unmatched clusters	85.2
\sum charge = 0	84.1
$m_{\rm trks} < 1.7 { m GeV}$	83.4
$A_{\phi}^{\mu,\mathrm{trks}} < 0.2$	83.3
μe-SR	
$N_{\mu}^{\text{signal}} = 1$	958
$\dot{N_e} = 1$	33.9
N_{trk} (with $\Delta R_{\mu/e,\text{trk}} > 0.1$) = 0	32.6
\sum charge = 0	32.5

Results: Signal strength

- Fit of $\gamma\gamma \rightarrow \tau\tau$ signal strength assuming SM value for a_{τ} : $\mu_{\tau\tau}$ = observed yield / SM expectation
- Result for each signal region compatible with unity
- Combined fit reaches 5% precision, limited by statistical uncertainties

Background processes

 $\gamma\gamma
ightarrow \mu\mu(\gamma)$ production

Background estimation: diffractive photonuclear events

- Data-driven estimation of diffractive photonuclear events in μ 1T-SR and μ 3T-SR
- Templates built from control regions similar to SRs, but requiring an additional track with $p_T < 0.5$ GeV and allowing 0nXn ZDC events
- Normalization: relax cluster veto \rightarrow use region with 4-8 unmatched clusters
- Kinematic distributions in this region well described by the CR templates

Systematic uncertainties in a_{τ}

- Detector related
 - Muon trigger efficiency
 - Muon/electron reconstruction/ID efficiency and calibration
 - Track reconstruction efficiency
 - Cluster reconstruction efficiency and calibration
- Background
 - Photonuclear background template variation
- Theory
 - Photon flux modeling (SuperChic3 vs. Starlight)
 - τ decay modelling (Tauola vs. Pythia8)
 - OnOn ZDC reweighing variation

Outline: Experimental realization

ATLAS Collaboration 2204.13478 (accepted PRL)

Observation of the $\gamma\gamma \rightarrow \tau\tau$ process in Pb+Pb collisions and constraints on the τ -lepton anomalous magnetic moment with the ATLAS detector

ATLAS Collaboration

This Letter reports the observation of τ -lepton pair production in ultraperipheral lead-lead collisions, Pb+Pb \rightarrow Pb($\gamma\gamma \rightarrow \tau\tau$)Pb, and constraints on the τ -lepton anomalous magnetic moment, a_{τ} . The dataset corresponds to an integrated luminosity of 1.44 nb⁻¹ of LHC Pb+Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV recorded by the ATLAS experiment in 2018. Selected events contain one muon from a τ -lepton decay, an electron or charged-particle track(s) from the other τ -lepton decay, little additional central-detector activity, and no forward neutrons. The $\gamma\gamma \rightarrow \tau\tau$ process is observed in Pb+Pb collisions with a significance exceeding 5 standard deviations, and a signal strength of $\mu_{\tau\tau} = 1.03^{+0.06}_{-0.05}$ assuming the Standard Model value for a_{τ} . To measure a_{τ} , a template fit to the muon transverse-momentum distribution from τ -lepton candidates is performed, using a dimuon ($\gamma\gamma \rightarrow \mu\mu$) control sample to constrain systematic uncertainties. The observed 95% confidence-level interval for a_{τ} is $-0.057 < a_{\tau} < 0.024$.

Physics briefing

See also CMS Collaboration 2205.05312