

Modeling iodine plasma for electric propulsion

A. Bourdon, B. Esteves, P. Chabert, C. Drag (LPP) S. Badin, P.-L. Bourgeois and <u>N. Sisourat</u> (LCPMR)

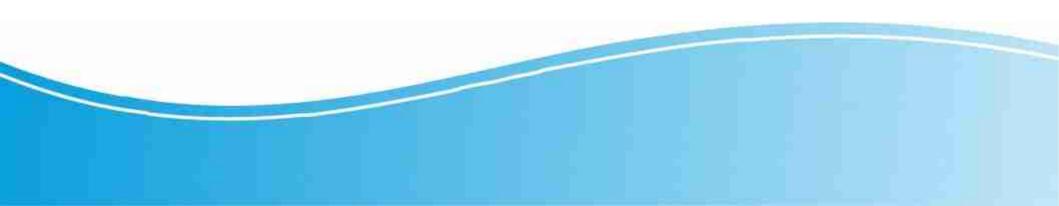
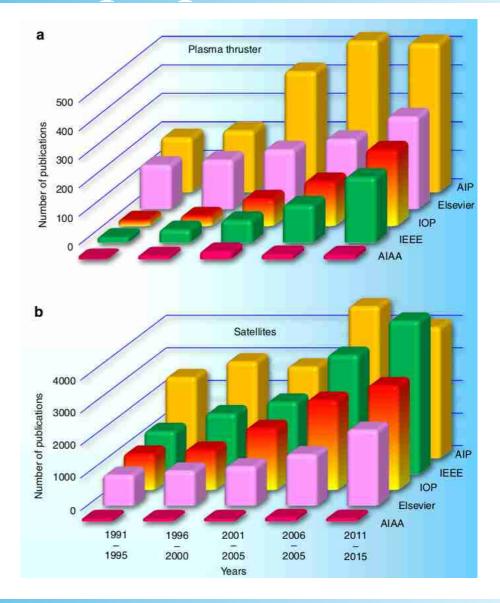
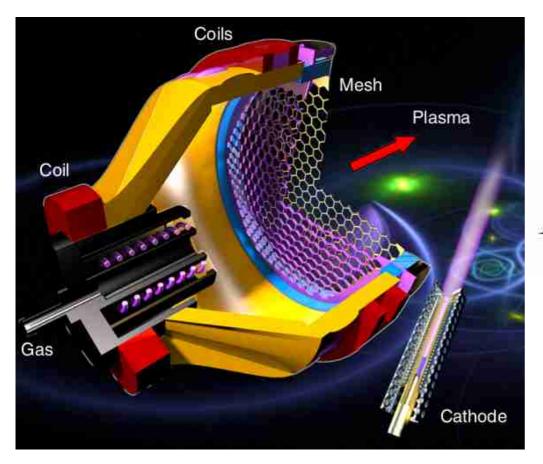




Photo illustration of satellites surrounding ear MS. TECH: ORIGINAL IMAGES: NASA

Review Article in Nat. Comm. 9, 879 (2018).

$$F = \frac{\mathcal{W}}{\mathcal{E}_{\text{ion}} + e\Delta\phi} \left(2e\Delta\phi m_i\right)^{1/2}$$

Review Article in Nat. Comm. 9, 879 (2018).

Xenon

High mass (131.3 amu) Low IP (12.1 eV)

Iodine (I₂)

High mass (253.8 amu) Low IP (9.3 eV)Cheap

SPACENEWS.

French startup demonstrates iodine propulsion in potential boost for space debris mitigation efforts

by Andrew Jones - January 22, 2021

ThrustMe's NPT30-I2-IU propulsion system installed on the Spacety Beihanghongshi-I CubeSat. Credit: Spacety

Objectives

Provide the most complete description of Iodine Plasma

- * Set-up a (complete) global model
- * Validate the model (compare to experiments)
- * Rich and accurate database (reactions in volume and at the walls)
- * Performance of iodine thrusters

Global Model

Reactions rates (neutralization, recombination, charge transfer,...)

Densities $\frac{\mathrm{d}n_k}{\mathrm{d}t} = \sum_{i} \left\{ (a_{kj}^{(2)} - a_{kj}^{(1)}) k_j \prod_{i} n_i^{a_{lj}^{(1)}} \right\}$ Temperatures $\frac{d}{dt}\left(\frac{3}{2}en_eT_e\right) = P_{abs} - P_{loss}$

Initial conditions (Gas pressure, power, ...)

Performance

Current status

LPP0D Code

$$I_2$$
, I, I_2^+ , I⁺, I⁻, e⁻

Reaction		Process	Threshold [eV]	Model	Reference
Electron im,	pact 1				
$1 + e^- \rightarrow$	1+6	Elastic	0	0D+PIC	74
$1 + e^- \rightarrow$	$1 + 2e^{-}$	Ionization	11.64	0D+PIC	74
1+e	$1^{\circ} + e^{-}$	Excitation	0.9529	0D+PIC	[74]
Electron im,	pact 13				
1,+e ⁻ →	1,+*	Elastic	0	0D+PIC	74
1. + e -+	$1^+_{2} + 2e^{2}$	Ionization	9.31	()D+PIC	[74]
$1, +e^- \rightarrow$	$1^{+}+1+2e^{-}$	Dissociative ionization	10.75	0D+PIC	[74]
$1_2 + e^- \rightarrow$	$\Gamma + 1$	Dissociative attachment	0	()D+PIC	[74]
$l_2 + e^- \rightarrow$	21 + e ⁻	Dissociation	1.567	0D+PIC	[74]
Electron im	part dissociatio	$m of I_{2}^{+}$			1
$I_{2}^{+} + e^{-} \rightarrow$	$1^+ + 1 + e^-$	Dissociation	2.17	0D	75
	achment from 1				24
$I^- + e^- \rightarrow$	Constant and the second	Detachment	2.1768	0D	75
Recombinat	ton				1000
$I^- + I_3^+ \rightarrow$	1+1,	Mutual neutralization	0	0D+PIC	[69]
$1^- + 1^{\frac{1}{2}} \rightarrow$	21	Mutual neutralization	0	0D+PIC	[158]
Isotropic sci	attering of ions				
$1 + 1^+ \rightarrow$		Elastic	0	PIC	Langevin
$1 + 1^+_7 \rightarrow$		Elastic	0	PIC	Langev in
1+1		Elastic	0	PIC	Langevin
$I_2 + I^+ \rightarrow$	$1_{2} + 1^{+}$	Elastic	0	PIC	Langev in
$1_2^+ + 1_7^+ \rightarrow$		Elastic	0	PIC	Langevin
$1_2 + 1^2 \rightarrow$		Elastic	0	PIC	Langevin
Backscatter					201110000
$I + I^+ \rightarrow$		Charge exchange	0	PIC	[124]
$I + 1^- \rightarrow$	$I^- + I$	Charge exchange	0	PIC	[124]
$l_2 + l_1^+ \rightarrow$	12+1-	Charge exchange	0	PIC	53
$I_2 + I^{+} \rightarrow$		Charge exchange	0	0D+PIC	(124)+[81]
Surface rece		S - S			
1-+	$\frac{1}{2}l_2$	Wall process	0	0D+PIC	47

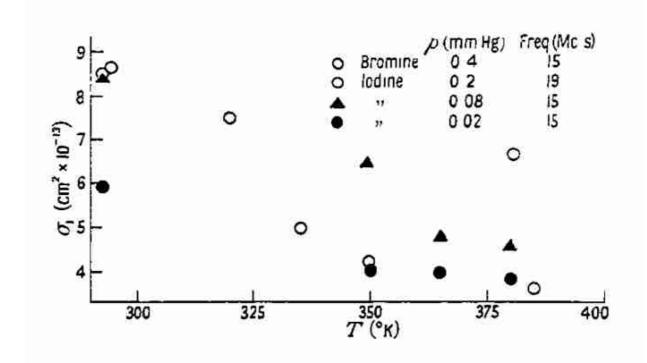
Table 5.2: Reactions of a low temperature iodine plasma investigated in this work.

Romain Lucken's PhD thesis (LPP, 2019).

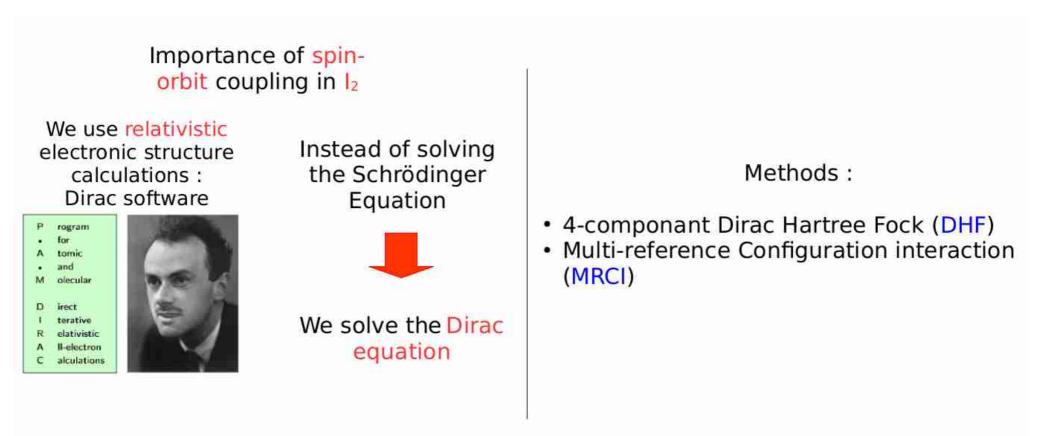
Current status

LPP0D Code

Reaction		Process	Threshold [eV]	Model	Reference
Election im,	pact 1	2.94 - 2			
$1 + e^- \rightarrow$	1+6	Elastic	Ø	0D+PIC	174
$1 + e^- \rightarrow$	$1 + 2e^{-}$	Ionization	11.64	0D+PIC	74
1+e	$1^{\circ} + e^{-}$	Excitation	0.9529	0D+PIC	[74]
Electron im,	pact 1 ₂				
$1_2 + e^- \rightarrow$	1,+ =	Elastic	0	()D+PIC	[74]
$1_2 + e^- \rightarrow$	$1^+_{2} + 2e^{2}$	Ionization	9.31	0D+PIC	[74]
$1_2 + e^- \rightarrow$	$1^{+} + 1 + 2e^{-}$	Dissociative ionization	10.75	()D+PIC	[74]
$1_2 + e^- \rightarrow$	I ⁻ +1	Dissociative attachment	0	()D+PIC	[74]
$l_2 + e^- \rightarrow$	21 + e ⁻	Dissociation	1.567	0D+PIC	[74]
Electron im	part dissociatio	$m of I_{2}^{+}$			
$I_{2}^{+} + e^{-} \rightarrow$	$1^+ + 1 + e^-$	Dissociation	2.17	0D	75
Electron del	achment from 1	5			
$1^- + e^- \rightarrow$	$1 + 2e^{-}$	Detachment	2.1768	0D	[75]
Recombinat	ton				
$1^- + 1^+_a \rightarrow$	1+1,	Mutual neutralization	0	0D+PIC	[69]
1-+1+→	21	Mutual neutralization	0	()D+PIC	[158]
	attering of ions				
$1 + 1^+ \rightarrow$		Elastic	0	PIC	Langevin
$1 + 1^+_2 \rightarrow$		Elastic	0	PIC	Langevin
$1 + 1^- \rightarrow$		Elastic	0	PIC	Langevin
$I_2 + I^+ \rightarrow$	$1_2 + 1^+$	Elastic	0	PIC	Langevin
$1_2 + 1_7^+ \rightarrow$	$1_2 + 1_2^+$	Elastic	0	PIC	Langevin
$1_2 + 1^- \rightarrow$	$1_2 + 1^-$	Elastic	0	PIC	Langevin
Backscatter	ing of ions				
$I + I^+ \rightarrow$	$I^+ + I$	Charge exchange	0	PIC	124
$I + 1^- \rightarrow$	$I^- + I$	Charge exchange	0	PIC	[124]
$l_2 + l_2^+ \rightarrow$	$1^+_2 + 1^2$	Charge exchange	0	PIC	[53]
$I_2 + I^+ \rightarrow$	$1^{+}_{2} + 1$	Charge exchange	0	0D+PIC	[124]+[81]
Surface reco		S - S			
1-+	$\frac{1}{2}l_2$	Wall process	0	0D+PIC	47

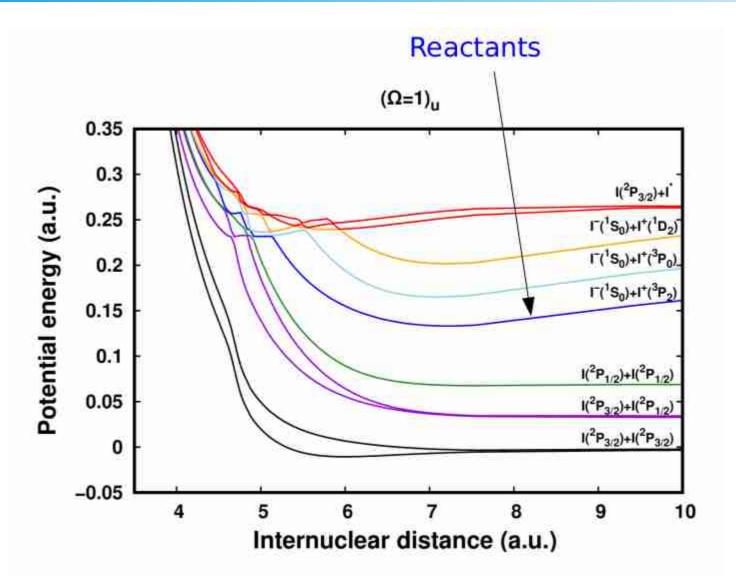

Table 5.2: Reactions of a low temperature iodine plasma investigated in this work.

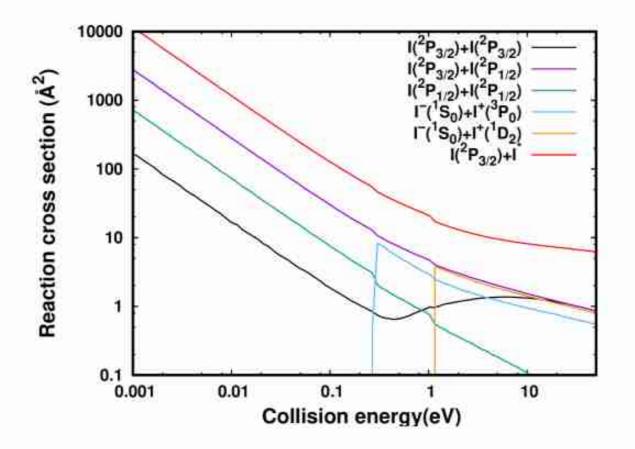
Romain Lucken's PhD thesis (LPP, 2019).


Ab initio collision cross sections

Mutual Neutralization $I^+ - I^- \Longrightarrow I - I$

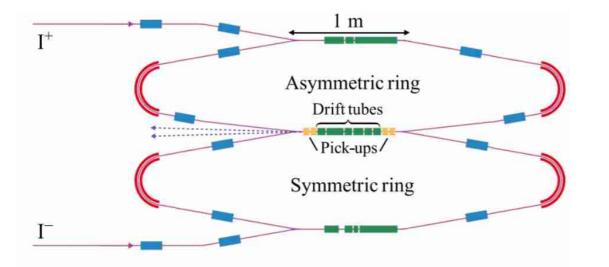
In [158] (Yeung et al. (1957)), cross sections were estimated from the afterglow plasma of a highly electronegative gas discharge





PEC computed by X. Yuan (Phlam Laboratory)

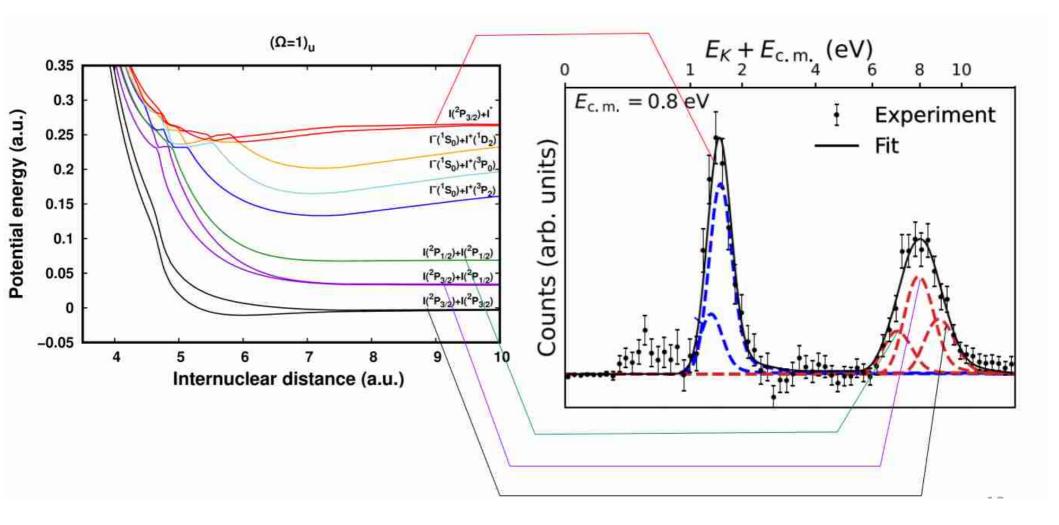
I_2 molecule



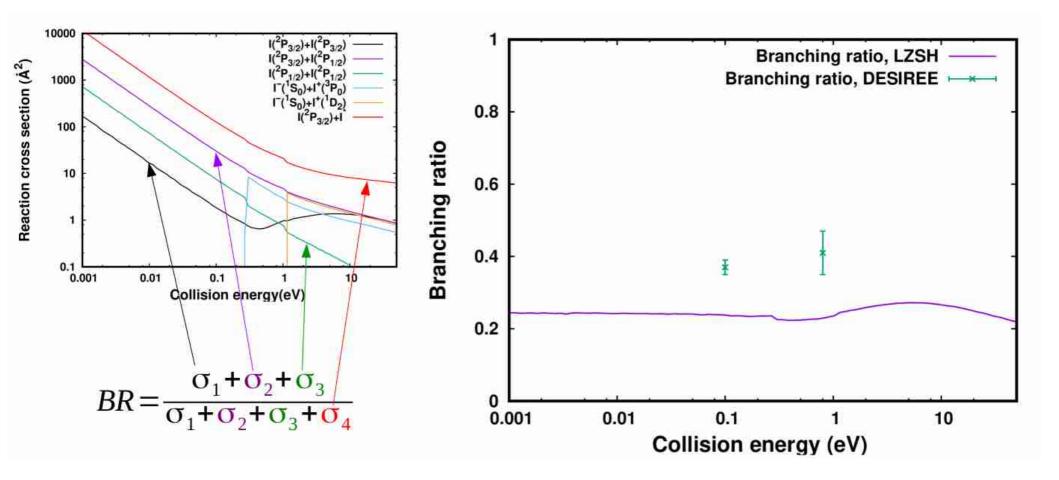
Ab initio collision cross sections

Can we check the accuracy of our cross sections?

Expt. a DESIREE



Collision energies :


- 0.1 eV
- 0.8 eV

Expt. a DESIREE

Expt. a DESIREE

Next Steps

- * Add more species in the model
- * Add more reactions in the model $(I^- + I_2^+, Theory and Expt.)$
- * Compute/revise reactions rates
- * Check the accuracy of the data/model => Validate the model + Study of performance

Acknowledgments

école normale supérieure paris-saclay

S. Badin P-L Bourgeois

H. Zettergren M. Ji

A. Severo Pereira Gomes

Thank you for your attention