Resistive High granUlarity Micromegas (RHUM) Status and Perspectives

Mauro Iodice – INFN Roma Tre On behalf of the RHUM R&D group (INFN - Italy)

M. ALVIGGI, M. BIGLIETTI, M.T. CAMERLINGO, M. DELLA PIETRA, R. DI NARDO, P. IENGO, M. IODICE, R. ORLANDINI, F. PETRUCCI, G.SEKHNIAIDZE, M. SESSA

(last 😥) RD51 Collaboration Meeting

4 December 2023

CERN

Outline of the talk – Wrap up of the RHUM R&D

- An R&D on Resistive Micromegas short history/overview
- Small size pixelised detectors
 - State of the art capability, spatial resolution, efficiency)
 - Recent studies (time resolution, thin drift gap, ...)
- Ongoing work:
 - Larger area detectors
 - New objectives and short-term perspectives
- Summary on Present Status and Future Prospects

Recent developments on resistive Micromegas

A one-slide summary from Rui (Rui De Oliveira, RD51 MPGD School)

All Resistive MM structures

Medium-rate detectors 100kHz/cm2

<u>High-rate detectors 10Mhz/cm2</u> Charge evacuation inside active area

Recent developments on resistive Micromegas

A one-slide summary from Rui (Rui De Oliveira, RD51 MPGD School)

The start (2015): Resistive Pad-Patterned Micromegas

- Configuration inspired by (1 cm² pad resistive MM) by M. Chefdeville and co-authors [1], [2], and by (non-resistive GEM + MM hybrid) detector in COMPASS [D. Neyret, et al.]
- Push the technology to high rates Main changes/improvements:
 - Combine a resistive scheme to a high granularity readout for stable operation at high gain (G~10⁴ and beyond) and high rates (up to 10 MHz/cm²)
 - o Improve and ease the production technique

The Resistive Pad-P Micromegas - manufacturing

- First Prototype: Full screen-printing (including the insulation layer)
 → failed due to sparks caused by (unavoidable?) micro-holes in the insulation layer;
- Second generation: 2 layers screen printed resistors on Kapton \rightarrow Successful
- Third Generation: Patterned DLC for the embedded resistors and shaped coverlay top structure with pad-shaped vessels "filled" with resistive paste (see Rui's talk at <u>INSTR 2020</u>) (PAD-P2 and PAD-P3 in the following plots)

The Resistive Pad-P Micromegas - Performance

10⁵

10⁴

440

Ar/CO₂/iC₄H₁₀ (93/5/2)

460

480

500

Gain

- Good stability up to a gain of 50k 🙂
- Significant charging-up it also severely affects the linearity with rates
- Independence of the rate capability on the irradiated surface ⁽²⁾
- Moderate energy resolution and spatial resolution (non-uniformity of gain – edge effects for each pad) (8)

• PADP2

• PADP3

540

520

The Double DLC layer resistive configuration

- Configuration inspired by G. Bencivenni and co-authors (applied to uRWell) (see e.g. JINST 10 P02008)
- Charge evacuation inside the active area, through "vertical dots"
- First Prototype: Grounding connection vias "filled manually"
- Second generation: the sequential build up technique (SBU) was implemented exploiting copperclad DLC foils. It allows best alignment of vias and connections by plating techniques (Rui De Oliveira at INSTR 2020)

DLC resistive Micromegas – Performance - overview

DLC MM – Rate Capability and Ion Backflow

Can achieve high-rate capability (limited gain drop up to 10 MHz/cm²) with ~20-30 MOhm/sq

Here, the rate capability is reported for gains of 6, 10, 20 k For X-rays irradiations from Cu – X-ray gun (~8 keV) (ionisation $n_0>250 e^-$, Vs $n_0\sim50$ for MIP in 5 mm)

DLC MM – Rate Capability and Ion Backflow

Can achieve high-rate capability (limited gain drop up to 10 MHz/cm²) with ~20-30 MOhm/sq

Here, the rate capability is reported for gains of 6, 10, 20 k For X-rays irradiations from Cu – X-ray gun (~8 keV) (ionisation $n_0>200 e^-$, Vs $n_0\sim50$ for MIP in 5 mm)

Ion BF within 1-3% and decreasing with rates and Vamp (inverse dependence on Eamp/Edrift - see <u>P. Colas et al.</u>)

DLC MM – rate capability and dependence on the irradiated area

- Can reach high-rate capability well above 1 MHz/cm² with ~20-30 MOhm/sq and grounding connection dot vias every 6-10 mm
- Limited dependence of the rate capability from the irradiated surface

Dependence on the irradiated area

Fixed 8 keV X-rays rate: 3 MHz/cm² (Equivalent to > 10 MHz/cm2 for MIPs)

- Logarithmic dependence
- G/G0 ~72% extrapolated to 40x40 cm² with >10 MHz/cm² MIPs
 - $\odot~$ Can be compensated with +10 V

Performance at Test-Beams - Efficiency

LOCAL INEFFICIENCIES from Circular pillars:

• 0.3 mm for DLC20

cluster efficiency DLC-20

Efficiency >99% Outside the pillars region

Tracking efficiency:

1.5 mm fiducial range wrt extrapolated position from external tracking chambers

Average tracking efficiency at plateau ~97% It includes inefficient areas on the pillars The effect is expected to be mitigated for inclined tracks (under study)

Spatial Resolution

Excellent spatial resolution: ~65 μ m with a pad size of 1 mm !

- Different resolutions measured for chambers with very similar layout, gain and cluster size, BUT with different RC
- Investigate the impact of the different contributions to the cluster size: direct induction, capacitive coupling AND resistive charge spread (dependent on RC)
- → Under investigation and ongoing work for the optimization of the charge centroid algorithms

...very promising! Results coming soon

Recent developments

- Time resolution studies
- Performance Vs (reduced) drift gap
 - o Towards a more compact multilayer structure
 - o Improved time resolution?
 - o (studies on spatial resolution for inclined tracks)
- Medium-size detctors \rightarrow Paddy400
- Multi-layer configuration with shared/common cathode

Time resolution

Angle 0 degree, Vampl = 440 V

A wide range in drift velocity was explored using different gas mixtures

The time resolution improves with the drift velocity (primary ionization fluctuations). Best time resolution achieved ~8.5 ns.

It includes the contribution of signal processing and FE (APV signal fit) time resolution (preliminary estimate is ~4-5 ns \rightarrow real $\sigma_t \sim 7.5$ ns)

From simulations σ_t also improves with a reduced drift gap (reduced pile-up in peak time with charge sensitive preamp)

→ One of the motivations to explore thin drift gaps

Spatial resolutions and Efficiencies Vs Drift-gap

- Similar behaviour for 3 and 5 mm drift gap
- Need high gain, >10 k to reach best performance with 1.5 mm gap (expected)

Medium-size (400 cm² – Paddy400) common cathode

Compact configuration. Perfectly working, as expected, with no surprises.

Present status and Future prospects

- Towards large area
- Applications
- Connection with the ECFA Roadmap for Detectors R&D

(we have also recently produced small size prototypes to thoroughly test the Capacitive Sharing concept, to reduce the number of channels – results will come soon !)

Towards Large Area

50x40 cm² in construction Fine granularity readout in the centre, 1 cm² pads elsewhere (for practical reasons – number of channels)

Central region 6.4x6.4 cm² with1x8 mm² pads Thanks Rui ! Hirose connectors on the back Central region readout through 4 connectors

Full detector readout out by 20 hybrids

1

Applications

- Digital Hadronic Calorimeters (DHCAL using ParticleFlow approach), rMM in the RD51 common project "Development for Resistive MPGD Calorimeter with timing measurement"
- SHADOWS (Search for Hidden And Dark Objects With the SPS): rMM used for Upstream and Lateral muon Veto

- AMBER (successor of Compass) will possibly upgrade the Muon detectors using rMM with RHUM configuration (M. Alexeev, "15th Pisa Meeting on Advanced Detectors")
- ...and, naturally, developing plans to leverage resistive MM a 'la RHUM for upcoming experiments

Connection with the ECFA roadmap

Our efforts align with the primary tasks outlined in the ECFA roadmaps for Detector R&D.

Muon system

Proposed technologies: RPC, Multi-GEM, resistive GEM, Micromegas, micropixel Micromegas, µRwell, µPIC ... Rad-hard/longevity Time resolution Fine granularity Gas properties (eco-gas) Spatial resolution Rate capability

Thank you!

Transimpedance preamp

Direct – no preamp!