Numerical studies of alpha particle tracking in a small TPC

RD51 Collaboration Meeting

(Dec 4 – 8, 2023), CERN

Pralay Kumar Das Saha Institute of Nuclear Physics, Kolkata Homi Bhabha National Institute, Mumbai

Pralay Kumar Das (SINP)

Outline

- Motivation
- Time Projection Chamber
- Simulation of Primary Ionisation in TPC
 - ➤ Garfield++
 - ≻ Geant4
 - ► COMSOL
- Simulation of electronic signal in anode plane of TPC
- Track reconstruction
- Conclusion
- Future Plan

Time Projection Chamber (TPC)

TPC has an active gas volume with a good position-sensitive electron collection system inside an electric field and a charged particle will produce primary ionization along its track

- The primary electrons drift under the action of the uniform electric field towards the end equipped with an electron multiplier for collecting signal producing a 2d image of the track
- ✤ 3rd dimension from the drift time of electrons
- ✤ Information
 - Angles, Energy (from range or charge), particle identification

Nuclear physics experiments in active target TPC

- In the field of low-energy nuclear physics, Active-Target Time Projection Chambers (AT-TPCs), the detector gas of the TPC is at the same time the target in which nuclear reactions take place
- Reconstruction of tracks created by charged particles leads to identify and measure their directionality which provides complete information about the reaction vertex kinematics in low-energy nuclear and high energy physics
- AT-TPC is advantageous for 4π detection efficiency and event by event 3D track reconstruction
- ATTPC, TexAT, ACTAR, Maiko are examples of active target TPC used in low energy nuclear physics

Direct and sequential Hoyle state decay in TexAT TPC 2012.08437.pdf (arxiv.org)

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

proton-emission branches from an isomeric state in 54mNi https://doi.org/10.1038/s41467-021-24920-0 (Actar TPC)

Date 06-12-2023

Motivation for alpha tracking in TPC

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

Date 06-12-2023

Introduction to simulation framework

- Our goal is to find the amount of primary ionization by alpha particle in a sensitive volume of TPC and its transport parameters respectively.
- The particle generation and tracking were governed by low energy ElectroMagnetic physics list Livermore, Penelope and PAI.
- Transport parameters of primary electrons and ions has been obtained from MAGBOLTZ in Garfield++ package
- A Finite Element Method (FEM) package, COMSOL used for time evolution of primary electrons in drift volume

Simulation Framework for primary ionisation by alpha particle

Energy deposition increases with square of the charge of incoming projectile
Number of gaseous particle decreases with decreasing pressure

• Low pressure is suitable for nuclear reaction in gaseous detector

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

Date 06-12-2023

Transport properties of different gas mixtures

- This simulation utilizes the transport parameters from Garfield++ to perform the simulation.
- Diffusion and drift velocity for different drift field have been calculated for different pressure.
- The positive ions and negative electrons are considered to be charged fluid in the gas volume.
- The hydrodynamics is governed by convection and migration mechanism which is governed by drift-diffusion reaction.

Date 06-12-2023

8

Pralay Kumar Das (SINP)

Transport of primary electron in drift region of TPC

- * The Detector plane is segmented into 10 1d strips with 1 cm width
- * The simulation is performed with 150 V/cm drift field and in atmospheric pressure

Pralay Kumar Das (SINP)

Track Reconstruction

Hough transform is a feature classification technique use in image analysis and computer vision by transforming the track parameter (x,y) to (r,θ)

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

Date 06-12-2023

count

Simulation of alpha particle track reconstruction of in drift region of TPC (He:CO₂ 90:10)

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

Date 06-12-2023

Simulation of alpha particle track reconstruction of in drift region of TPC (He: CO_2 90:10)

Pralay Kumar Das (SINP)

Optimising Readout geometry

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

Date 06-12-2023

Development of prototype small TPC

- we are developing a small TPC for tracking with ²⁴¹Am
 5.5 MeV alpha source
 - Pressure information in the chamber is measured using BMP180 sensor and arduino nano
- Change in pressure in the chamber 2.685 torr per hour

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

Date 06-12-2023

Conclusion

- We have studied the primary ionization using Geant4 and electron transport using Hydrodynamic simulation (Garfield++ and Comsol) in TPC.
- Drift time information which is required for measuring z coordinate of the track determined from the time evolution of charge collection at the anode of TPC.
- Reconstruction of tracks using Hough Transformation
 Future Work:
- Time and position information from the segmented TPC readout
- Development of prototype time projection chamber
- ***** Track reconstruction of alpha cluster decay and (p,α) reactions

Thank you for your kind attentions Questions,Comments

Pralay Kumar Das (SINP)

RD51 Collaboration Meeting

Date 20-06-2023