

Development of STCF Inner Tracker

Principle Demonstrator Manufacture

Yi Zhou

On behalf of STCF-ITKW Group

RD51 Collaboration Meeting, Dec.-07-2023

Introduction

- Electrode Design
- Mechanical Design
- Mechanical Model Assembling
- Material Budget
- Future Plans

3

Detector Candidates: µRWELL/µRGroove

GeV with a peak luminosity of 0.5×10^{35} cm⁻²s⁻¹.

The required performance of ITKW used in STCF includes:

STCF is an e + e- collider operating at $\sqrt{s}=2$ \sim 7

- Good Spatial resolution
- Measurement for Low-momentum charged particles
- > Ultra-Low material budget

▶ ...

 High occupancy operated in µTPC mode (10 signals per hit)

Motivation

Advantages of µRGroove

- > Decoupled X&Y readout strips, no charge sharing problem, lower gas gain required;
- > Signal amplitude is almost the same if the top & bottom readout strips have the same width;
- > Manufacture process is almost the same as the Compass read/out, easy to produce with low cost;
- Groove structure is very easy for clean;
- \succ Compatible with all the techniques developed for the $\mu RWELL$ manufacture

Siqi He, RD51 Mini-Week, 02/27/2023 Xiangqi Tian, RD51 Collaboration Meeting, 12/07/2023

Dead Area in PEP Model

Dead Area (TOP): 2/128=1.5625%

Active area= $100 \times 100 \text{ mm2}$ Resistivity= $50 \text{ M}\Omega$ / Strip pitch= 0.8 mmStrip width = 0.7 mmDead zone (TOP) ~ 15%Pre-preg thickness= 70 um

Marco Poli Lener, RD51 Collaboration Meeting, 12/06/2023

Geometry & Performance of STCF-ITKW

STCF-ITKW

Size of active area:

- ≻Layer0: D=131.0mm, L=100.0mm;
- ≻Layer1: D=131.0mm, L=380.0mm;
- ≻Layer2: D=229.4mm, L=650.0mm;
- ≻Layer3: D=327.9mm, L=920.0mm;

Performance:

> Spatial resolution in r- ϕ @1T Magnetic field :

- 100µm perpendicular incident track;
- 130µm for oblique incidence track;

≻Material budget : ≤0.3% X0;

➢Rate Capability: ≥30kHz/cm²;

Introduction

- Electrode Design
- Mechanical Design
- Mechanical Model Assembling
- Material Budget
- Future Plans

Drift Electrode

Low Material Budget Electrode

Total:

LMB Drift & GND are both made

Zhou Lin, RD51 Collaboration Meeting, 21/06/2023

Many thanks to Fabien for his suggestion on using the aluminum instead of copper!!!

0.0011384

PCB for Readout Strips

Requirement of readout strips:

U/V 2D strip-readout, pitch of U strips is 0.4mm, Pitch of V strips is 0.8mm, angel between UV is 15°;

Design of readout strips:

- 1. 2 PCBs (rectangle on top and parallelogram on bottom) each containing 1d strips are used, instead of 1 multilayer PCB, to avoid strip cut off on the edge of PCB, extra material budget or extra channels of electronics;
- 2. No electronic component soldered on the PCB, to avoid damage of the flexible PCB during the vacuum pump gluing process;
- 3. Use Goldfinger for the electrical connections.

µRWELL and Readout Strips

Glue (10µm)

Kapton Coverlay (25µm)

Kapton (25µm)

Al (12 μm)

µRGroove and Readout Strips

FPC for Signal and HV Connections:

Introduction

- Electrode Design
- Mechanical Design
- Mechanical Model Assembling
- Material Budget
- Future Plans

The Cylindrical Molds of µRWELL/µRGroove

- The mold consists of 4 pieces;
- After gluing, mold1 can be removed vertically, then mold2 can be removed horizontally
- M6 screw holes on both end of each piece are used for the mold removing

The Sleeves of µRWELL/µRGroove

The Molds & Sleeves of Drift Electrode

The Electrode After Gluing

μRGroove

Spacer For The Inner & Outer Sleeves

The spacers provide an uniform 5mm drift gap

c-μRWELL

c-µRGroove

- Introduction
- Electrode Design
- Mechanical Design
- Mechanical Model Assembling
- Material Budget
- Future Plans

Assembling of Molds and Sleeves

2 conical caps are used for supporting the 4 pieces of molds, to avoid the invagination of the 2 type1 molds during the vacuum pumping

Inner Cylinder Gluing: GND & Rohacell

Outer Cylinder Gluing

Model Assembling 1

Model Assembling 2

Installation of Cylinders & Spacers

Gas Leakage Check

29

Model Assembling 3

FEEs & HV Connection

Final Detector Model

- Introduction
- Electrode Design
- Mechanical Design
- Mechanical Model Assembling
- Material Budget
- Future Plans

Estimation of Material Budget

μRWELL				μRGroove			
Structure	Material	Thickness (cm)	Material budget (X0)	Structure	Material	Thickness (cm)	Material budget (X0)
Drift electrode	LMB-GND		0.001138%	Drift electrode	LMB-GND		0.001138%
	Polyimide (X0=28.57cm)	0.0025*2	0.0175%		Polyimide (X0=28.57cm)	0.0025*2	0.0175%
	Glue (X=20cm)	0.001*2	0.01%		Glue (X=20cm)	0.001*2	0.01%
	Rohacell (X0 $pprox$ 689cm)	0.2	0.029%		Rohacell (X0 $pprox$ 689cm)	0.2	0.029%
	Cr (X0=2.077cm)	0.00002*77.33%	0.0007432%		Cr (X0=2.077cm)	0.00002*77.33%	0.0007432%
Gas volume	Argon-based gas mixture (X0=11760cm)	0.5	0.00425%	Gas volume	Argon-based gas mixture (X0=11760cm)	0.5	0.00425%
lnner cylinder (μRWELL foil)	Cu (X0=1.43cm)	0.0015*77.33%	0.08112%	Inner cylinder (µRGroove foil)	Cu (X0=1.43cm)	0.0015*65%	0.0682%
	Cr (X0=2.077cm)	0.000001*77.33%	0.0000372%		Cr (X0=2.077cm)	0.000001*65%	0.0000313%
	Apical (X0=28.57cm)	0.005*83.19%	0.0147%		Apical (X0=28.57cm)	0.005*70%	0.01225%
	Glue (X0=20cm)	0.001*6	0.03%		Glue (X0=20cm)	0.001*5	0.025%
	Kapton (X0=28.57cm)	0.0025*2	0.0175%		Kapton (X0=28.57cm)	0.0025*2	0.0175%
	Al (X0=8.892cm)	12um*(1*20%+1*75%)	0.013%		Al (X0=8.899cm)	0.0012*(32.5%)	0.00438%
	DLC (X0=12.13cm)	0.0001	0.00082%		DLC (X0=12.13cm)	0.0001	0.00082%
	Polyimide (X0=28.57cm)	0.0025	0.00875%		Polyimide (X0=28.57cm)	0.0025	0.00875%
	Rohacell (X0 $pprox$ 689cm)	0.2	0.029%		Rohacell (X0 $pprox$ 689cm)	0.2	0.029%
	LMB-ground		0.001164%		LMB-ground		0.001164%
Total			<mark>0.2587%</mark>	Total			<mark>0.2297%</mark>

Top Metal of µRWELL

Material budget decreasing of μRWELL Cu (15μm) 0.2587%X0 Cr (200nm) 0.1783%X0

Top Metal of µRGroove

We still use 15µm Cu this time, to make sure there is no any delay of the production !!!

 ➤ The top metal is the U-readout strips, we can't use 200nm Cr here;
➤ Ultrasonic bath is OK for the clean, 5µm Cu is enough;

Material budget decreasing of µRGroove

- Introduction
- Electrode Design
- Mechanical Design
- Mechanical Model Assembling
- Material Budget
- Future Plans

Future Plans

The electrodes should be ready at the beginning of 2024, we will assemble the real detectors at the end of January and then test them.

Special thanks to Rui and his team, for their help on electrode design and manufacture !!!

I REALLY HOPE THESE DETECTORS CAN WORK !!!